RELIABILITY REPORT

FOR

MAX1735EUK

PLASTIC ENCAPSULATED DEVICES

December 23, 2001

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR.
SUNNYVALE, CA 94086

Written by

Jim Pedicord Quality Assurance Reliability Lab Manager

Reviewed by

Bryan J. Preeshl
Quality Assurance
Executive Director

Conclusion

The MAX1735 successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

I.Device Description
II.Manufacturing Information
III.Packaging Information
IV.Die Information
V.Quality Assurance Information
VI.Reliability Evaluation
......Attachments

I. Device Description

A. General

The MAX1735 negative-output, low-dropout linear regulator operates from a -2.5 V to -6.5 V input and delivers a guaranteed 200 mA with a low 80 mV dropout. The high-accuracy ($\pm 1 \%$) output voltage is preset or can be adjusted from -1.25 V to -5.5 V with an external resistive voltage-divider.

An internal N-channel MOSFET allows for a low $85 \mu \mathrm{~A}$ quiescent current virtually independent of the load, making this device ideal for battery-powered portable equipment, such as PDAs, mobile phones, cordless phones, and wireless data modems.

The device is available in several preset output voltage versions: $-5.0 \mathrm{~V},-3.0 \mathrm{~V}$, and -2.5 V . All versions offer a 1 nA lowpower shutdown mode, short-circuit protection, and thermal overload protection. The device is offered in a tiny 5 -pin SOT23 package.

B. Absolute Maximum Ratings

Item
IN,SET to GND
SHDN to GND
Out to GND
PGND to GND
Operating Temp.
Storage Temp.
Lead Temp. (10 sec.)
Power Dissipation
5-Pin SOT
Derates above $+70^{\circ} \mathrm{C}$
5-Pin SOT

Rating

-7 V to +0.3 V
(VIN-0.3)V to +7 V
(VIN-0.3)V to +0.3 V
-0.3 V to +0.3 V
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+300^{\circ} \mathrm{C}$

571 mW
$7.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

II. Manufacturing Information

A. Description/Function: 200mA, Negative Output, Low Drop-Out Linear Regulator
B. Process:
C. Number of Device Transistors: 293
D. Fabrication Location: Oregon, USA
E. Assembly Location: Malaysia or Thailand
F. Date of Initial Production: July, 2000

III. Packaging Information

A. Package Type:
B. Lead Frame:
C. Lead Finish:
D. Die Attach:
E. Bondwire:
F. Mold Material:
G. Assembly Diagram:
H. Flammability Rating:
I. Classification of Moisture Sensitivity per JEDEC standard JESD22-A112: Level 1

IV. Die Information

A. Dimensions:
B. Passivation:
C. Interconnect:
D. Backside Metallization:
E. Minimum Metal Width:
F. Minimum Metal Spacing:
G. Bondpad Dimensions:
H. Isolation Dielectric:
I. Die Separation Method:
55×42 mils
$\mathrm{Si}_{3} \mathrm{~N}_{4} / \mathrm{SiO}_{2}$ (Silicon nitride/ Silicon dioxide)
Aluminum/Si (Si = 1\%)
None
1.2 microns (as drawn)
1.2 microns (as drawn)

5 mil. Sq.
SiO_{2}
Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Jim Pedicord (Reliability Lab Manager)

> Bryan Preeshl (Executive Director of QA) Kenneth Huening (Vice President)
B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet. 0.1% For all Visual Defects.
C. Observed Outgoing Defect Rate: < 50 ppm
D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the $135^{\circ} \mathrm{C}$ biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:
$\lambda=\frac{1}{\text { MTTF }}=\frac{1.83}{192 \times 4389 \times 160 \times 2} \quad$ (Chi square value for MTTF upper limit)

Temperature Acceleration factor assuming an activation energy of 0.8 eV

$\lambda=6.79 \times 10^{-9} \quad \lambda=6.79$ F.I.T. $\left(60 \%\right.$ confidence level @ $25^{\circ} \mathrm{C}$)

This low failure rate represents data collected from Maxim's reliability qualification and monitor programs. Maxim also performs weekly Burn-In on samples from production to assure reliability of its processes. The reliability required for lots which receive a burn-in qualification is 59 F.I.T. at a 60% confidence level, which equates to 3 failures in an 80 piece sample. Maxim performs failure analysis on rejects from lots exceeding this level. The attached Burn-In Schematic (Spec. \# 06-5610) shows the static circuit used for this test. Maxim also performs 1000 hour life test monitors quarterly for each process. This data is published in the Product Reliability Report (RR1L).
B. Moisture Resistance Tests

Maxim evaluates pressure pot stress from every assembly process during qualification of each new design. Pressure Pot testing must pass a 20% LTPD for acceptance. Additionally, industry standard $85^{\circ} \mathrm{C} / 85 \% \mathrm{RH}$ or HAST tests are performed quarterly per device/package family.
C. E.S.D. and Latch-Up Testing

The PY25 die type has been found to have all pins able to withstand a transient pulse of $\pm 400 \mathrm{~V}$, per Mil-Std-883 Method 3015 (reference attached ESD Test Circuit). Latch-Up testing has shown that this device withstands a current of $\pm 250 \mathrm{~mA}$ and/or $\pm 20 \mathrm{~V}$.

Table 1

Reliability Evaluation Test Results

MAX1735EUK

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES
Static Life Test (Note 1)				
	$\mathrm{Ta}=135^{\circ} \mathrm{C}$	DC Parameters	160	0
	Biased	\& functionality		
	Time $=192 \mathrm{hrs}$.			
Moisture Testing (Note 2)				
Pressure Pot	$\mathrm{Ta}=121^{\circ} \mathrm{C}$	DC Parameters \& functionality	355	0
	$\mathrm{P}=15 \mathrm{psi}$.			
	$\mathrm{RH}=100 \%$			
	Time $=168 \mathrm{hrs}$.			
85/85	$\mathrm{Ta}=85^{\circ} \mathrm{C}$	DC Parameters \& functionality	77	0
	RH = 85\%			
	Biased			
	Time $=1000 \mathrm{hrs}$.			

Mechanical Stress (Note 2)

Temperature	$-65^{\circ} \mathrm{C} / 150^{\circ} \mathrm{C}$	DC Parameters	77
Cycle	1000 Cycles		0
	Method 1010		

Note 1: Life Test Data may represent plastic D.I.P. qualification lots for the Small Outline package.
Note 2: Generic Package/Process data

TABLE II. $\underline{\text { Pin combination to be tested. } 1 / 2 / 2 / 20}$

	Terminal A (Each pin individually connected to terminal A with the other floating)	Terminal B (The common combination of all like-named pins connected to terminal B)
1.	All pins except $\mathrm{V}_{\text {PS1 }}$ 3/	All $\mathrm{V}_{\text {PS1 }}$ pins
2.	All input and output pins	All other input-output pins

1/ Table II is restated in narrative form in 3.4 below.
2/ No connects are not to be tested.
3/ Repeat pin combination I for each named Power supply and for ground
(e.g., where $\mathrm{V}_{\mathrm{PS} 1}$ is $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{BB}}, G N D,+\mathrm{V}_{\mathrm{S}},-\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{REF}}$, etc).

3.4 Pin combinations to be tested.

a. Each pin individually connected to terminal A with respect to the device ground pin(s) connected to terminal B. All pins except the one being tested and the ground pin(s) shall be open.
b. Each pin individually connected to terminal A with respect to each different set of a combination of all named power supply pins (e.g., $V_{s s 1}$, or $V_{S S 2}$ or $V_{S S 3}$ or $V_{C C 1}$, or $V_{C c 2}$) connected to terminal B. All pins except the one being tested and the power supply pin or set of pins shall be open.
c. Each input and each output individually connected to terminal A with respect to a combination of all the other input and output pins connected to terminal B. All pins except the input or output pin being tested and the combination of all the other input and output pins shall be open.

Method 3015.7
Notice 8

NロTE: CAVITY DUWN

PKG. CDDE: US-2		SIGNATURES		Convidential a Priprietary	
CAV./PAD SIZE:	PKG.			BCND DIAGRAM \#:	REV:
59×46	DESIGN			05-2301-0057	A

