Media Resistant and High Temperature Accuracy Integrated Silicon Pressure Sensor for Measuring Absolute Pressure, On-Chip Signal Conditioned, Temperature Compensated and Calibrated

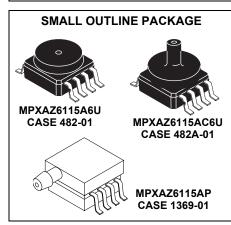
The MPXAZ6115A series sensor integrates on-chip, bipolar op amp circuitry and thin film resistor networks to provide a high output signal and temperature compensation. The sensor's packaging has been designed to provide resistance to high humidity conditions as well as common automotive media. The small form factor and high reliability of on-chip integration make the Freescale Semiconductor, Inc. pressure sensor a logical and economical choice for the system designer.

The MPXAZ6115A series piezoresistive transducer is a state-of-the-art, monolithic, signal conditioned, silicon pressure sensor. This sensor combines advanced micromachining techniques, thin film metallization, and bipolar semiconductor processing to provide an accurate, high level analog output signal that is proportional to applied pressure.

Figure 1 shows a block diagram of the internal circuitry integrated on a pressure sensor chip.

Features

- · Resistant to High Humidity and Common Automotive Media
- Improved Accuracy at High Temperature
- 1.5% Maximum Error over 0° to 85°C
- Ideally suited for Microprocessor or Microcontroller-Based Systems
- Temperature Compensated from -40° to +125°C
- Durable Thermoplastic (PPS) Surface Mount Package


Typical Applications

- Aviation Altimeters
- Industrial Controls
- · Engine Control/Manifold Absolute Pressure (MAP)
- Weather Station and Weather Reporting Devices

	ORDERING INFORMATION							
Device Type	Options	Case No.	MPX Series Order No.	Packing Options	Device Marking			
SMALL OL	JTLINE PACKAGE							
Basic	Absolute, Element Only	482	MPXAZ6115A6U	Rails	MPXAZ6115A			
Element	Absolute, Element Only	482	MPXAZ6115A6T1	Tape & Reel	MPXAZ6115A			
Ported	Absolute, Axial Port	482A	MPXAZ6115AC6U	Rails	MPXAZ6115A			
Element	Absolute, Axial Port	482A	MPXAZ6115AC6T1	Tape & Reel	MPXAZ6115A			
	Absolute, Side Port	1369	MPXAZ6115AP	Tray	MPXAZ6115A			
	Absolute, Side Port	1369	MPXAZ6115APT1	Tape & Reel	MPXAZ6115A			
SUPER SN	MALL OUTLINE PACKAGE							
Basic	Absolute, Element Only	1317	MPXHZ6115A6U	Rails	MPXHZ6115A			
Element	Absolute, Element Only	1317	MPXHZ6115A6T1	Tape & Reel	MPXHZ6115A			
Ported	Absolute, Axial Port	1317A	MPXHZ6115AC6U	Rails	MPXHZ6115A			
Element	Absolute, Axial Port	1317A	MPXHZ6115AC6T1	Tape & Reel	MPXHZ6115A			

MPXAZ6115A MPXHZ6115A SERIES

INTEGRATED
PRESSURE SENSOR
15 TO 115 kPA (2.2 TO 16.7 psi)
0.2 TO 4.8 V OUTPUT

SMALL OUTLINE PACKAGE PIN NUMBERS ⁽¹⁾					
1	N/C	5	N/C		
2	Vs	6	N/C		
3	GND	7	N/C		
4	V _{OUT}	8	N/C		

 Pins 1, 5, 6, 7, and 8 are internal device connections. Do not connect to external circuitry or ground. Pin 1 is denoted by the notch in the lead.

SUPER SMALL OUTLINE PACKAGE

MPXHZ6115A6U CASE 1317-04

MPXHZ6115AC6U CASE 1317A-03

SMALL OUTLINE PACKAGE PIN NUMBERS ⁽¹⁾					
1	N/C	5	N/C		
2	V _S	6	N/C		
3	GND	7	N/C		
4	V _{OUT}	8	N/C		

 Pins 1, 5, 6, 7, and 8 are internal device connections. Do not connect to external circuitry or ground. Pin 1 is denoted by the notch in the lead.

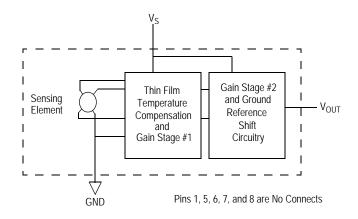
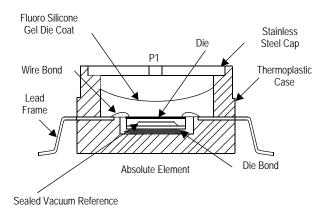


Figure 1. Fully Integrated Pressure Sensor Schematic

Table 1. Maximum Ratings⁽¹⁾


Rating	Symbol	Value	Units
Maximum Pressure (P1 > P2)	P _{max}	400	kPa
Storage Temperature	T _{stg}	-40° to +125°	°C
Operating Temperature	T _A	-40° to +125°	°C
Output Source Current @ Full Scale Output ⁽²⁾	I _o +	0.5	mAdc
Output Sink Current @ Minimum Pressure Offset ⁽²⁾	I _o -	-0.5	mAdc

- 1. Exposure beyond the specified limits may cause permanent damage or degradation to the device.
- 2. Maximum Output Current is controlled by effective impedance from V_{out} to Gnd or V_{out} to V_S in the application circuit.

Table 2. Operating Characteristics ($V_S = 5.0 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted, P1 > P2)

Characteris	stic	Symbol	Min	Тур	Max	Unit
Pressure Range		P _{OP}	15	_	115	kPa
Supply Voltage ⁽¹⁾		V _S	4.75	5.0	5.25	Vdc
Supply Current		Io	_	6.0	10	mAdc
Minimum Pressure Offset ⁽²⁾ @ V _S = 5.0 Volts	(0 to 85°C)	V _{off}	0.133	0.200	0.268	Vdc
Full Scale Output ⁽³⁾ @ V _S = 5.0 Volts	(0 to 85°C)	V _{FSO}	4.633	4.700	4.768	Vdc
Full Scale Span ⁽⁴⁾ @ V _S = 5.0 Volts	(0 to 85°C)	V _{FSS}	4.433	4.500	4.568	Vdc
Accuracy ⁽⁵⁾	(0 to 85°C)	_	_	_	±1.5	%V _{FSS}
Sensitivity		V/P	_	45.9	_	mV/kPa
Response Time ⁽⁶⁾		t _R	_	1.0	_	ms
Warm-Up Time ⁽⁷⁾		_	_	20	_	ms
Offset Stability ⁽⁸⁾		_	_	±0.25	_	%V _{FSS}

- 1. Device is ratiometric within this specified excitation range.
- 2. Offset (Voff) is defined as the output voltage at the minimum rated pressure.
- 3. Full Scale Output (V_{FSO}) is defined as the output voltage at the maximum or full rated pressure.
- 4. Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure.
- 5. Accuracy is the deviation in actual output from nominal output over the entire pressure range and temperature range as a percent of span at 25°C due to all sources of error including the following:
 - Linearity: Output deviation from a straight line relationship with pressure over the specified pressure range.
 - Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied.
 - Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from minimum or maximum rated pressure at 25°C.
 - TcSpan: Output deviation over the temperature range of 0° to 85°C, relative to 25°C.
 - TcOffset: Output deviation with minimum pressure applied, over the temperature range of 0° to 85°C, relative to 25°C.
- 6. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 7. Warm-up Time is defined as the time required for the product to meet the specified output voltage after the pressure has been stabilized.
- 8. Offset Stability is the product's output deviation when subjected to 1000 cycles of Pulsed Pressure, Temperature Cycling with Bias Test.

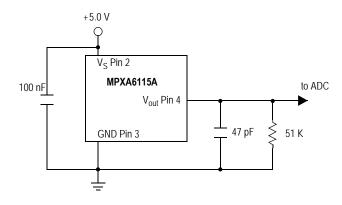


Figure 2. Cross Sectional Diagram SOP (Not to Scale)

Figure 3. Typical Application Circuit (Output Source Current Operation)

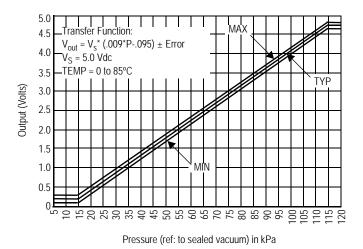
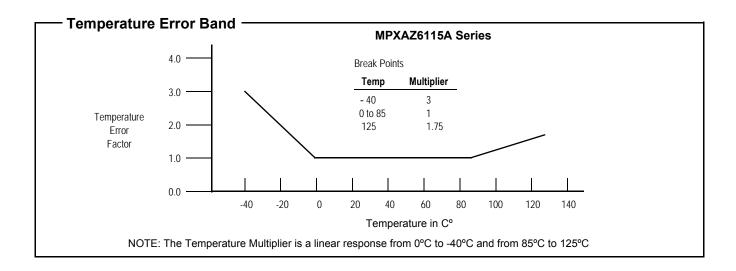
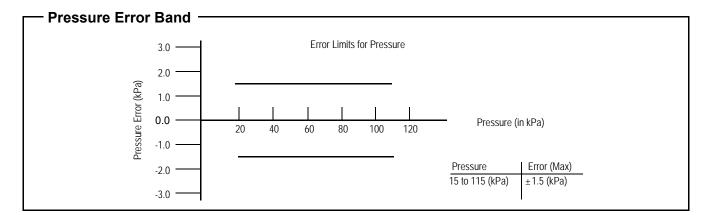


Figure 4. Output versus Absolute Pressure

Figure 4 shows the sensor output signal relative to pressure input. Typical minimum and maximum output curves are shown for operation over 0 to 85°C temperature range. The output will saturate outside of the rated pressure range.


A gel die coat isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the sensor diaphragm. The gel die coat and durable polymer package provide a media resistant barrier that allows the sensor to operate reliably in high humidity conditions as well as environments containing common automotive media. Contact the factory for more information regarding media compatibility in your specific application.


Transfer Function (MPXAZ6115A

Nominal Transfer Value: $V_{out} = V_S x (0.009 x P - 0.095)$

± (Pressure Error x Temp. Factor x 0.009 x V_S)

 $V_S = 5.0 \pm 0.25 \text{ Vdc}$

MINIMUM RECOMMENDED FOOTPRINT FOR SMALL AND SUPER SMALL PACKAGES

Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor package must be the correct size to ensure proper solder connection interface between the board and the package. With the correct pad geometry, the packages will self-align when subjected to a

solder reflow process. It is always recommended to fabricate boards with a solder mask layer to avoid bridging and/or shorting between solder pads, especially on tight tolerances and/or tight layouts.

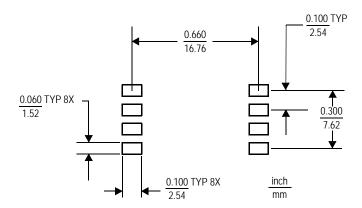


Figure 5. SOP Footprint (Case 482 and 482A)

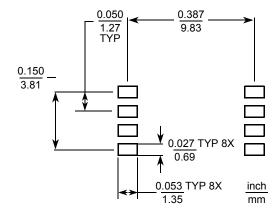
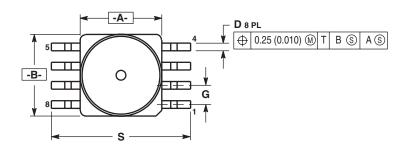
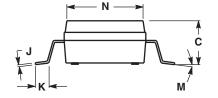
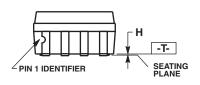
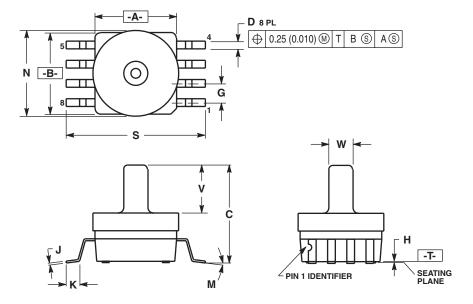
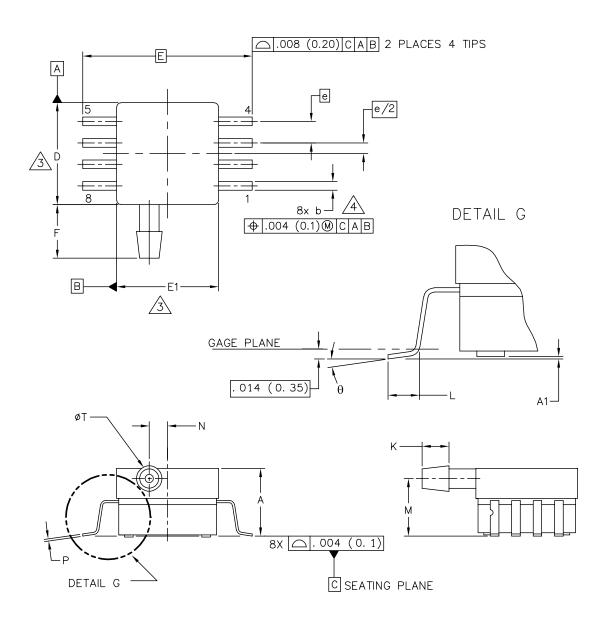





Figure 6. SSOP Footprint (Case 1317 and 1317A)



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006).
 5. ALL VERTICAL SURFACES 5' TYPICAL DRAFT.

	INC	HES	MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.415	0.425	10.54	10.79
В	0.415	0.425	10.54	10.79
С	0.212	0.230	5.38	5.84
D	0.038	0.042	0.96	1.07
G	0.100	BSC	2.54 BSC	
Н	0.002	0.010	0.05	0.25
J	0.009	0.011	0.23	0.28
K	0.061	0.071	1.55	1.80
M	0°	7°	0°	7°
N	0.405	0.415	10.29	10.54
S	0.709	0.725	18.01	18.41


CASE 482-01 ISSUE O SMALL OUTLINE PACKAGE

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006).
 5. ALL VERTICAL SURFACES 5" TYPICAL DRAFT.

	INC	HES	MILLIM	ETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.415	0.425	10.54	10.79	
В	0.415	0.425	10.54	10.79	
С	0.500	0.520	12.70	13.21	
D	0.038	0.042	0.96	1.07	
G	0.100	BSC	2.54	BSC	
Н	0.002	0.010	0.05	0.25	
J	0.009	0.011	0.23	0.28	
K	0.061	0.071	1.55	1.80	
M	0°	7°	0°	7°	
N	0.444	0.448	11.28	11.38	
S	0.709	0.725	18.01	18.41	
٧	0.245	0.255	6.22	6.48	
W	0.115	0.125	2.92	3.17	

CASE 482A-01 ISSUE A SMALL OUTLINE PACKAGE

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE	PRINT VERSION N	OT TO SCALE
TITLE:	DOCUMENT N	0: 98ASA99303D	REV: B
8 LD SOP, SIDE PO	ORT CASE NUMBE	R: 1369–01	24 MAY 2005
,	STANDARD: N	ON-JEDEC	

PAGE 1 OF 2

CASE 1369-01 ISSUE B SMALL OUTLINE PACKAGE

NOTES:

1. CONTROLLING DIMENSION: INCH

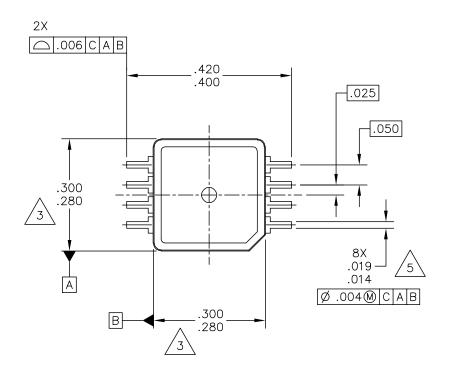
INCHES

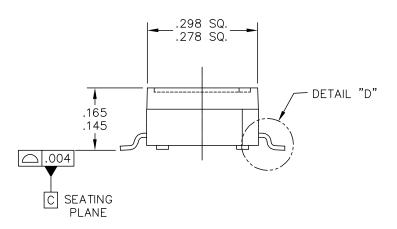
2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.

MILLIMETERS

- △ DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PPROTRUSIONS.

 MOLD FLASH AND PROTRUSIONS SHALL NOT EXCEED .006 (0.152) PER SIDE.
- A DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .008 (0.203) MAXIMUM.

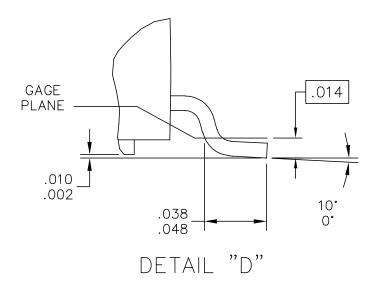

MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
. 300	. 330	7. 11	7. 62	θ	0.	7°	0,	7 °
. 002	. 010	0. 05	0. 25	-				
. 038	. 042	0. 96	1. 07	_				
. 465	. 485	11. 81	12. 32	_				
. 717	BSC	18	.21 BSC	_				
. 465	. 485	11. 81	12. 32	-				
. 100	BSC	2.	54 BSC	_				
. 245	. 255	6. 22	6. 47	-				
. 120	. 130	3. 05	3. 30	_				
. 061	. 071	1. 55	1. 80	-				
. 270	. 290	6. 86	7. 36	-				
. 080	. 090	2. 03	2. 28	-				
. 009	. 011	0. 23	0. 28	-				
. 115	. 125	2. 92	3. 17	-				
FREESCALE SEM ALL RIGH	MICONDUCTOR, TS RESERVED.	INC.	MECHANICA	L OU	TLINE	PRINT VER	SION NO	OT TO SCALE
.E:				DOC	JMENT NO): 98ASA99303	3D	REV: B
8 LD SOP, SIDE PORT CASE NUMBER: 1369-01 24 MAY 20					24 MAY 2005			
STANDARD: NON-JEDEC								
	. 300 . 002 . 038 . 465 . 717 . 465 . 100 . 245 . 120 . 061 . 270 . 080 . 009 . 115	. 300 . 330 . 002 . 010 . 038 . 042 . 465 . 485 . 717 BSC . 465 . 485 . 100 BSC . 245 . 255 . 120 . 130 . 061 . 071 . 270 . 290 . 080 . 090 . 009 . 011 . 115 . 125 . TREESCALE SEMICONDUCTOR, ALL RIGHTS RESERVED.	. 300 . 330 7. 11 . 002 . 010 0. 05 . 038 . 042 0. 96 . 465 . 485 11. 81 . 717 BSC 18 . 465 . 485 11. 81 . 100 BSC 2 245 . 255 6. 22 . 120 . 130 3. 05 . 061 . 071 1. 55 . 270 . 290 6. 86 . 080 . 090 2. 03 . 009 . 011 0. 23 . 115 . 125 2. 92	. 300 . 330 7. 11 7. 62 . 002 . 010 0. 05 0. 25 . 038 . 042 0. 96 1. 07 . 465 . 485 11. 81 12. 32 . 717 BSC 18. 21 BSC . 465 . 485 11. 81 12. 32 . 100 BSC 2. 54 BSC . 245 . 255 6. 22 6. 47 . 120 . 130 3. 05 3. 30 . 061 . 071 1. 55 1. 80 . 270 . 290 6. 86 7. 36 . 080 . 090 2. 03 2. 28 . 009 . 011 0. 23 0. 28 . 115 . 125 2. 92 3. 17	. 300 . 330 7. 11 7. 62 θ . 002 . 010 0. 05 0. 25 038 . 042 0. 96 1. 07 465 . 485 11. 81 12. 32 717 BSC 18. 21 BSC 465 . 485 11. 81 12. 32 100 BSC 2. 54 BSC 120 . 130 3. 05 3. 30 061 . 071 1. 55 1. 80 270 . 290 6. 86 7. 36 080 . 090 2. 03 2. 28 009 . 011 0. 23 0. 28 115 . 125 2. 92 3. 17 - FREESCALE SEMICONDUCTOR, INC. E: B LD SOP, SIDE PORT MECHANICAL OUT CASE	. 300 . 330 7. 11 7. 62 θ 0° . 002 . 010 0. 05 0. 25 038 . 042 0. 96 1. 07 465 . 485 11. 81 12. 32 717 BSC 18. 21 BSC 465 . 485 11. 81 12. 32 100 BSC 2. 54 BSC 120 . 130 3. 05 3. 30 120 . 130 3. 05 3. 30 061 . 071 1. 55 1. 80 270 . 290 6. 86 7. 36 080 . 090 2. 03 2. 28 009 . 011 0. 23 0. 28 115 . 125 2. 92 3. 17 **REESCALE SEMICONDUCTOR, ALL RIGHTS RESERVED.** INC. **MECHANICAL OUTLINE** **EREESCALE SEMICONDUCTOR, ALL RIGHTS RESERVED.** INC. **MECHANICAL OUTLINE** **CASE NUMBER**	. 300 . 330 7. 11 7. 62 θ 0° 7° . 002 . 010 0. 05 0. 25	. 300 . 330 7. 11 7. 62 θ 0° 7° 0° . 002 . 010 0. 05 0. 25 038 . 042 0. 96 1. 07 465 . 485 11. 81 12. 32 717 BSC 18. 21 BSC 100 BSC 2. 54 BSC 120 . 130 3. 05 3. 30 120 . 130 3. 05 3. 30 270 . 290 6. 86 7. 36 080 . 090 2. 03 2. 28 099 . 011 0. 23 0. 28 115 . 125 2. 92 3. 17 TREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. INC. MECHANICAL OUTLINE PRINT VERSION NO. 100 (ASE NUMBER: 1369-01)


INCHES

PAGE 2 OF 2

MILLIMETERS

CASE 1369-01 ISSUE B SMALL OUTLINE PACKAGE



© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANIC		MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:	8 I FAD		DOCUMENT NO): 98ARH99066A	REV: F
SSOP			CASE NUMBER: 1317-04		24 MAY 2005
			STANDARD: NO	DN-JEDEC	

PAGE 1 OF 3

CASE 1317-04 ISSUE F SUPER SMALL OUTLINE PACKAGE

	CALE SEMICONDUCTOR, INC. LL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:	8 IFAD		DOCUMENT NO): 98ARH99066A	REV: F
	SSAP		CASE NUMBER	2: 1317–04	24 MAY 2005
55UP			STANDARD: NO	N-JEDEC	

PAGE 2 OF 3

CASE 1317-04 ISSUE F SUPER SMALL OUTLINE PACKAGE

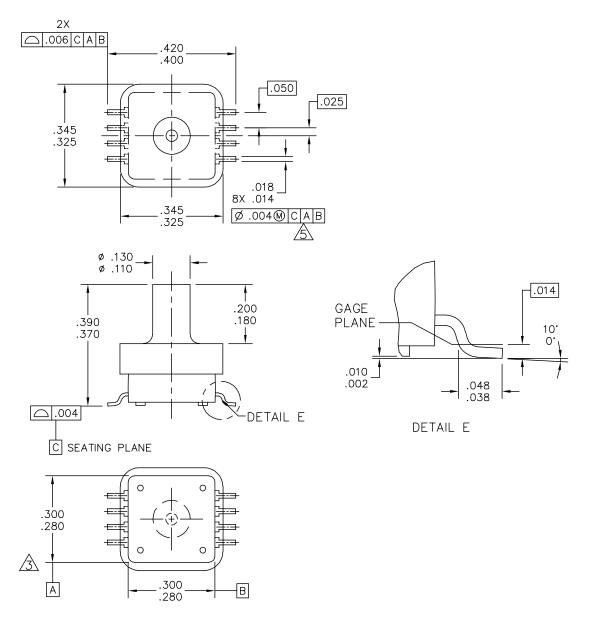
NOTES:

- 1. ALL DIMENSIONS IN INCHES.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.

MOLD FLASH OR PROTRUSION SHALL NOT EXCEED .006 INCHES PER SIDE.

4. ALL VERTICAL SURFACES TO BE 5' MAXIMUM.



DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION.
ALLOWABLE DAMBAR PROTRUSION SHALL BE .008 INCHES MAXIMUM.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL	OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE: 8 FAD	D	OCUMENT NO): 98ARH99066A	REV: F
O LLAD	С	CASE NUMBER	: 1317–04	24 MAY 2005
33UP	S	STANDARD: NO	N-JEDEC	

PAGE 3 OF 3

CASE 1317-04 ISSUE F SUPER SMALL OUTLINE PACKAGE

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RES ERV ED.	MECHANICAL OUTLINE	PRINT VERSION NOT TO SCALE	
TITLE:	DOCUMENT NO	: 98ARH99089A	REV: C
8 LD, PORTED SSC	OP CASE NUMBER	: 1317A-03	24 MAY 2005
	STANDARD: NO	N-JEDEC	

PAGE 1 OF 2

CASE 1317A-03 ISSUE C SUPER SMALL OUTLINE PACKAGE

NOTES:

- 1. ALL DIMENSIONS IN INCHES.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.

MOLD FLASH OR PROTRUSION SHALL NOT EXCEED .006 INCHES PER SIDE.

4. ALL VERTICAL SURFACES TO BE 5' MAXIMUM.

DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION.
ALLOWABLE DAMBAR PROTRUSION SHALL BE .008 INCHES MAXIMUM.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICA		OUTLINE	PRINT VERSION NOT TO SCALE	
TITLE: 8 LD, PORTED SSOP		DOCUMENT NO	: 98ARH99089A	REV: C
		CASE NUMBER	:: 1317A-03	24 MAY 2005
		STANDARD: NO	N-JEDEC	

PAGE 2 OF 2

CASE 1317A-03 ISSUE C SUPER SMALL OUTLINE PACKAGE

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale ™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2007. All rights reserved.

