

PHOTOVOLTAIC BY-PASS DIODE 50 VOLTS, 1.0 Amps

PRODUCT PREVIEW

DESCRIPTION

Large area diode chip for medium current photovoltaic bypass applications, or for higher current hybrid applications. The device is rated for 1A for applications where the device will be exposed to substantial radiation flux (space). For other applications, it may be operated at higher currents. A version with attached leads is available.

IMPORTANT: For the most current data, consult MICROSEMI's website: http://www.microsemi.com

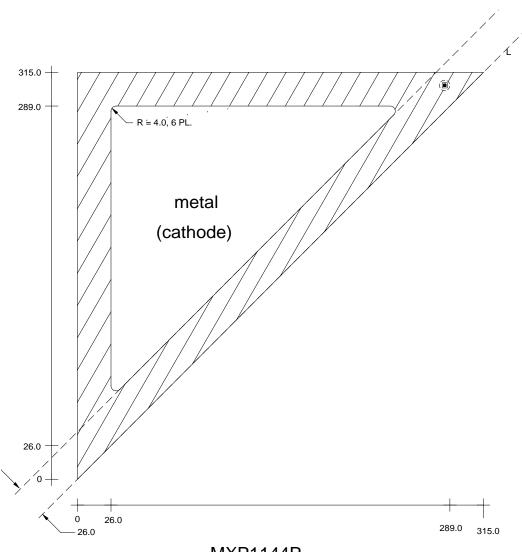
KEY FEATURES

- Oxide passivated structure for very low leakage currents
- Epitaxial structure minimizes forward voltage drop
- Triangular shape to fit in corner near flat of photovoltaic cell
- Forward voltage decreases with radiation exposure
- Targeted for terrestrial applications with silicon photovoltaic cells
- Thin construction for fit with photovoltaic cells

APPLICATIONS/BENEFITS

- Increases efficiency of photovoltaic arrays
- Protects photovoltaic cells from reverse voltage

MAXIMUM RATINGS @ 25°C (UNLESS OTHERWISE SPECIFIED)						
DESCRIPTION	SYMBOL	MAX.	UNIT			
Peak Repetitive Reverse Voltage	V_{RRM}	50	Volts			
Working Peak Reverse Voltage	V_{RWM}	50	Volts			
DC Blocking Voltage	V_R	50	Volts			
Average Rectified Forward Current, Tc≤ 135°C	$I_{F(ave)}$	1.0	Amps			
Junction Temperature Range	T_{j}	-65 to +150	°C			
Storage Temperature Range	$T_{\rm stg}$	-65 to +200	°C			


ELECTRICAL PARAMETERS						
DESCRIPTION	SYMBOL	CONDITIONS	MIN	TYP.	MAX	UNIT
Reverse (Leakage)	IR ₂₅	VR= 4 Vdc, Ta= 25°C		10		nA
Current (in dark)	IR_{25}	VR= 50 Vdc, Ta= 25°C		20	200	nA
Forward Voltage	VF1	IF= 400 mA, Ta= 25°C		750	775	mV
pulse test, pw= 300 μs	VF2	IF= 1.0 A, Ta= 25°C		770	800	mV
Junction Capacitance	Cj1	VR= 4 Vdc		1050	1300	pF
Breakdown Voltage	BVR	IR= 200 μA, Ta= 25°C	50	60		V

PHOTOVOLTAIC BY-PASS DIODE 50 VOLTS, 1.0 Amps

PRODUCT PREVIEW

Mechanical Outline

MXP1144P all dimensions in mils

Standard die thickness is 5.0 +/- 0.5 mils

PHOTOVOLTAIC BY-PASS DIODE 50 VOLTS, 1.0 Amps

PRODUCT PREVIEW

Typical location with 100mm diameter photovoltaic cell

MXP1144P

PHOTOVOLTAIC BY-PASS DIODE 50 VOLTS, 1.0 Amps

	PRODUCT PREVIEW
l	NOTES
"	110120