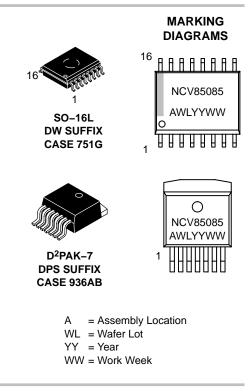
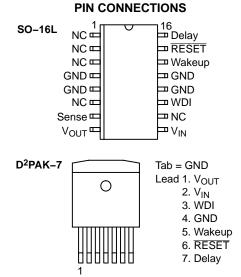
5.0 V, 250 mA LDO with Watchdog and RESET

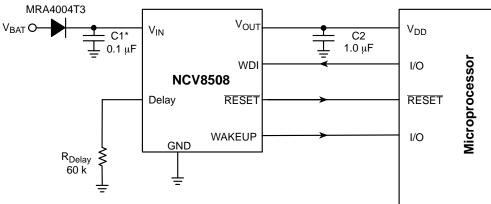
The NCV8508 is a precision micropower Low Dropout (LDO) voltage regulator. The part contains many of the required operational requirements for powering microprocessors. Its robustness makes it suitable for severe automotive environments. In addition to being a good fit for the automotive environment, the NCV8508 is ideal for use in battery operated, microprocessor controlled equipment because of its extremely low quiescent current.


Features


- Output Voltage: 5.0 V
- ±3.0% Output Voltage
- I_{OUT} Up to 250 mA
- Quiescent Current Independent of Load
- Micropower Compatible Control Functions:
 - Wakeup
 - Watchdog
 - ♦ RESET
- Low Quiescent Current (100 µA typ)
- Protection Features:
 - Thermal Shutdown
 - Short Circuit
 - ♦ 45 V Operation
- Internally Fused Leads in SO-16L Package
- NCV Prefix for Automotive and Other Applications Requiring Site and Control Changes
- Pb-Free Package is Available*

ON Semiconductor®

http://onsemi.com



*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.

*C1 required if regulator is located far from power supply filter.

Figure 1. Application Circuit

MAXIMUM RATINGS

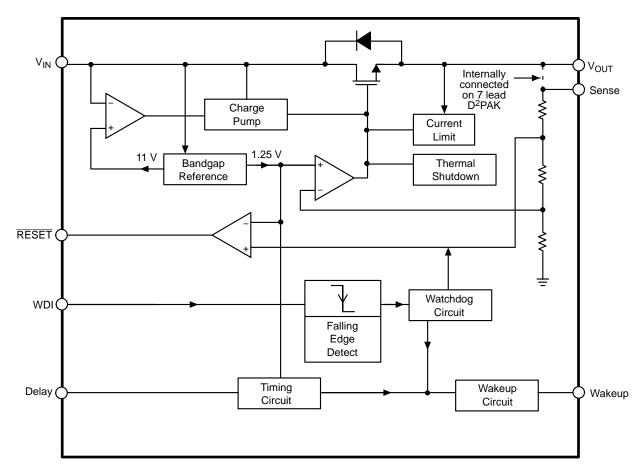
R	Value	Unit	
Input Voltage, V _{IN}		-0.3 to 45	V
Output Voltage, V _{OUT}		–0.3 to 18	V
ESD Susceptibility:	Human Body Model Machine Model	2.0 200	kV V
Logic Inputs/Outputs (RESET, WDI, Wakeup)		-0.3 to +7.0	V
Operating Junction Temperature, T _J		-40 to150	°C
Storage Temperature Range, T _S		-55 to +150	°C
Package Thermal Resistance, SO–16L:	Junction–to–Case, $R_{\theta JC}$ Junction–to–Ambient, $R_{\theta JA}$	18 80	°C/W °C/W
Package Thermal Resistance, D ² PAK, 7–Lead:	Junction–to–Case, $R_{\theta JC}$ Junction–to–Ambient, $R_{\theta JA}$	4.0 10 to 50 (Note 2)	°C/W °C/W
Lead Temperature Soldering:	Reflow: (SMD styles only) (Note 1)	240 peak (Note 3)	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. 1. 60 second maximum above 183°C.

2. Depending on thermal properties of substrate $R_{\theta JA} = R_{\theta JC} + R_{\theta JCA}$. 3. $-5^{\circ}C/+0^{\circ}C$ allowable conditions.

ELECTRICAL CHARACTERISTICS (-40°C \leq T_J \leq 125°C; 6.0 V \leq V_{IN} \leq 28 V, 100 μ A \leq I_{OUT} \leq 150 mA, C₂ = 1.0 μ F, R_{Delay} = 60 k; unless otherwise specified.)

Characteristic	Test Conditions	Min	Тур	Max	Unit
OUTPUT					
Output Voltage	_	4.85	5.00	5.15	V
Dropout Voltage (V _{IN} – V _{OUT})	I _{OUT} = 150 mA. Note 4	_	450	900	mV
Load Regulation	V_{IN} = 14 V, 100 μ A \leq I _{OUT} \leq 150 mA	-	5.0	30	mV
Line Regulation	$6.0 \text{ V} \leq \text{V}_{\text{IN}} \leq 28 \text{ V}, \text{ I}_{\text{OUT}} = 5.0 \text{ mA}$	-	5.0	50	mV
Current Limit	_	250	400	_	mA
Thermal Shutdown	Guaranteed by Design	150	180	210	°C
Quiescent Current	V_{IN} = 12 V, I_{OUT} = 150 mA, (see Figure 6)	-	100	150	μΑ
RESET					
Threshold	-	4.50	4.65	4.80	V
Output Low		-	0.2 0.4	0.4 0.8	V
Output High	$R_{LOAD} = 10 \text{ k to GND}$ $R_{LOAD} = 5.1 \text{ k to GND}$	V _{OUT} – 0.5 V _{OUT} – 1.0	V _{OUT} – 0.25 V _{OUT} – 0.5	_	V
Delay Time	V_{IN} = 14 V, R_{Delay} = 60 k, I_{OUT} = 5.0 mA V_{IN} = 14 V, R_{Delay} = 120 k, I_{OUT} = 5.0 mA	2.0	3.0 6.0	4.0 -	ms ms
WATCHDOG INPUT					
Threshold High	-	70	-	_	%V _{OUT}
Threshold Low	-	-	-	30	%V _{OUT}
Hysteresis	-	-	100	-	mV
Input Current	WDI = 6.0 V	-	0.1	+10	μΑ
Pulse Width	50% WDI falling edge to 50% WDI rising edge and 50% WDI rising edge to 50% WDI falling edge, (see Figure 5)	5.0	-	_	μs
WAKEUP OUTPUT (V _{IN} = 14 V, I _{OL}	T = 5.0 mA)				
Wakeup Period	See Figures 4 and 5, $R_{DELAY} = 60 \text{ k}$ See Figures 4 and 5, $R_{DELAY} = 120 \text{ k}$	18 -	25 50	32 -	ms ms
Wakeup Duty Cycle Nominal	See Figure 3	45	50	55	%
RESET HIGH to Wakeup Rising Delay Time	R _{DELAY} = 60 k 50% RESET rising edge to 50% Wakeup edge, R _{DELAY} = 120 k (see Figures 3 and 4)	9.0 –	12.5 25	16 -	ms ms
Wakeup Response to Watchdog Input	50% WDI falling edge to 50% Wakeup falling edge	-	0.1	5.0	μS
Wakeup Response to RESET	50% RESET falling edge to 50% Wakeup falling edge. $V_{OUT} = 5.0 V \rightarrow 4.5 V$	-	0.1	5.0	μs
Output Low	$ R_{LOAD} = 10 \text{ k to } V_{OUT}, V_{OUT} \ge 1.0 \text{ V} \\ R_{LOAD} = 5.1 \text{ k to } V_{OUT}, V_{OUT} \ge 1.0 \text{ V} $	-	0.2 0.4	0.4 0.8	V
Output High	$R_{LOAD} = 10 \text{ k to GND}$ $R_{LOAD} = 5.1 \text{ k to GND}$	V _{OUT} – 0.5 V _{OUT} – 1.0	V _{OUT} – 0.25 V _{OUT} – 0.5	-	V


DELAY

Output Voltage $I_{DELAY} = 50 \ \mu$ A. Note 5 –	-			$p_{ELAY} = 50$	I _{DE}			;	out Voltage
---	---	--	--	-----------------	-----------------	--	--	---	-------------

Measured when the output voltage has dropped 100 mV from the nominal value. (see Figure 12)
 Current drain on the Delay pin directly affects the Delay Time, Wakeup Period, and the RESET to Wakeup Delay Time.

PACKAGE PIN DESCRIPTION

PACKAG	PACKAGE PIN #				
D ² PAK–7	SO-16L	PIN SYMBOL	FUNCTION		
1	8	V _{OUT}	Regulated output voltage \pm 3.0%.		
2	9	V _{IN}	Supply Voltage to the IC.		
3	11	WDI	CMOS compatible input lead. The Watchdog function monitors the falling edge of the incoming signal.		
4	4, 5, 12, 13	GND	Ground connection.		
5	14	Wakeup	CMOS compatible output consisting of a continuously generated signal used to "wake up" the microprocessor from sleep mode.		
6	15	RESET	CMOS compatible output lead $\overline{\text{RESET}}$ goes low whenever V_{OUT} drops by more than 7.0% from nominal, or during the absence of a correct Watchdog signal.		
7	16	Delay	Buffered bandgap voltage used to create timing current for $\overline{\text{RESET}}$ and Wakeup from $\text{R}_{\text{Delay.}}$		
-	1–3, 6, 10	NC	No Connection.		
_	7	Sense	Kelvin connection which allows remote sensing of the output voltage for improved regulation. Connect to V_{OUT} if remote sensing is not required.		

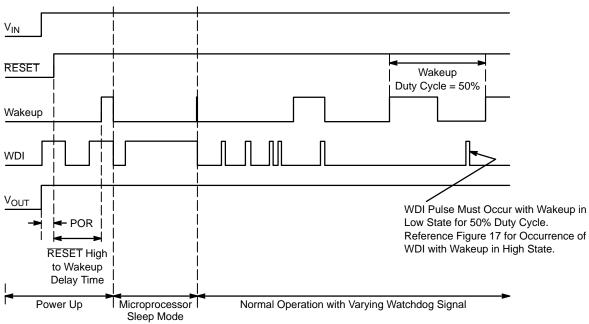
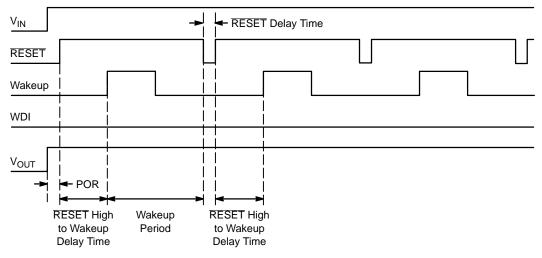
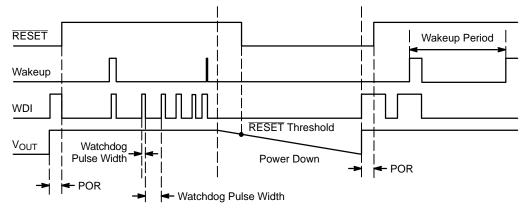
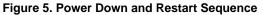





Figure 3. Power Up, Sleep Mode and Normal Operation

TYPICAL PERFORMANCE CHARACTERISTICS

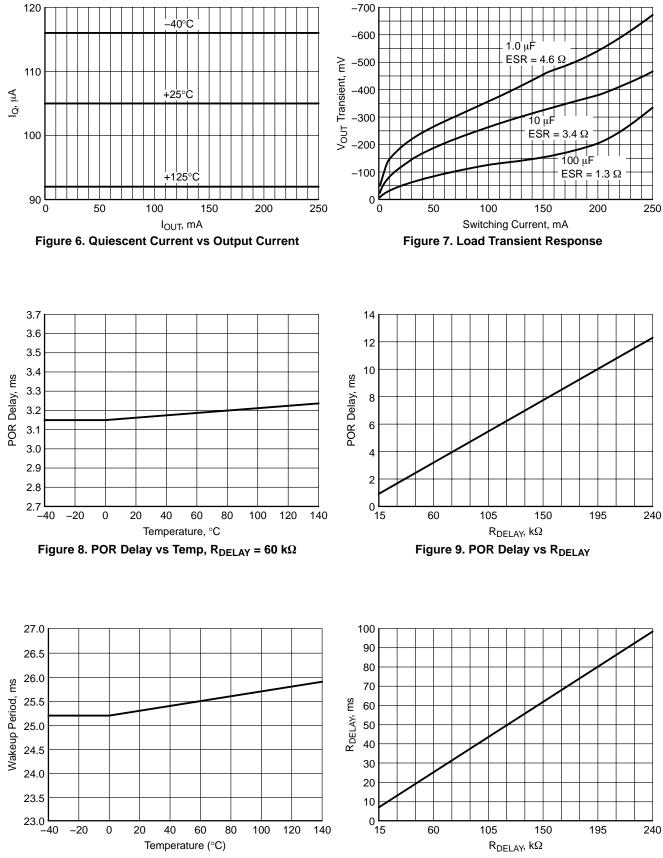
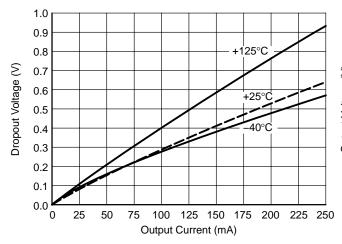



Figure 10. Wakeup Period vs Temp, $R_{DELAY} = 60 \text{ k}\Omega$

TYPICAL PERFORMANCE CHARACTERISTICS

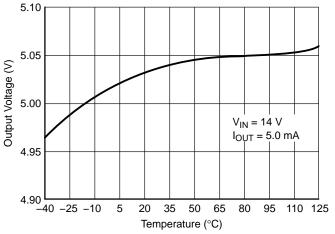


Figure 13. Output Voltage vs Temperature

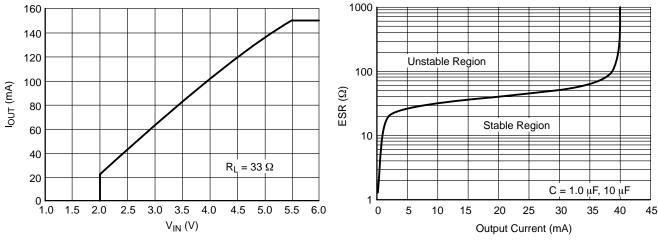


Figure 14. Output Current vs Input Voltage

DEFINITION OF TERMS

Dropout Voltage: The input–output voltage differential at which the circuit ceases to regulate against further reduction in input voltage. Measured when the output voltage has dropped 100 mV from the nominal value obtained at 14 V input, dropout voltage is dependent upon load current and junction temperature.

Input Voltage: The DC voltage applied to the input terminals with respect to ground.

Line Regulation: The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques

such that the average chip temperature is not significantly affected.

Load Regulation: The change in output voltage for a change in load current at constant chip temperature.

Quiescent Current: The part of the positive input current that does not contribute to the positive load current. The regulator ground lead current.

Ripple Rejection: The ratio of the peak–to–peak input ripple voltage to the peak–to–peak output ripple voltage.

Current Limit: Peak current that can be delivered to the output.

DETAILED OPERATING DESCRIPTION

The NCV8508 is a precision micropower voltage regulator with very low quiescent current ($100 \mu A$ typical at 250 mA load). A typical dropout voltage is 450 mV at 150 mA. Microprocessor control logic includes Watchdog, Wakeup and RESET. This unique combination of extremely low quiescent current and full microprocessor control makes the NCV8508 ideal for use in battery operated, microprocessor controlled equipment in addition to being a good fit in the automotive environment.

The NCV8508 Wakeup function brings the microprocessor out of Sleep mode. The microprocessor in turn, signals its Wakeup status back to the NCV8508 by issuing a Watchdog signal.

The Watchdog logic function monitors an input signal (WDI) from the microprocessor. The NCV8508 responds to the falling edge of the Watchdog signal which it expects at least once during each Wakeup period. When the correct Watchdog signal is received, a falling edge is issued on the Wakeup signal line.

RESET is independent of V_{IN} and operates correctly to an output voltage as low as 1.0 V. A signal is issued in any of three situations. During power up the RESET is held low until the output voltage is in regulation. During operation if the output voltage shifts below the regulation limits, the RESET toggles low and remains low until proper output voltage regulation is restored. And finally, a RESET signal is issued if the regulator does not receive a Watchdog signal within the Wakeup period.

The $\overline{\text{RESET}}$ pulse width, Wakeup signal frequency, and Wakeup delay time are all set by one external resistor, R_{Delay} .

The Delay pin is a buffered bandgap voltage (1.25 V). It can be used as a reference for an external tracking regulator as shown in Figure 16.

The regulator is protected against short circuit and thermal runaway conditions. The device runs through 45 volt transients, making it suitable for use in automotive environments.

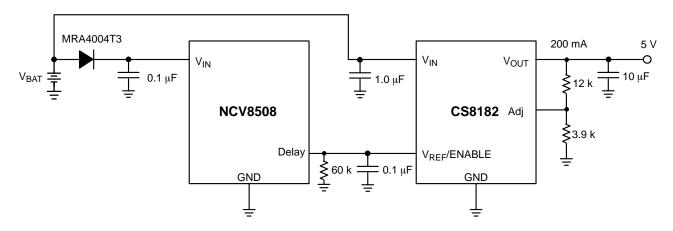


Figure 16. Application Circuit

CIRCUIT DESCRIPTION

Functional Description

To reduce the drain on the battery a system can go into a low current consumption mode when ever its not performing a main routine. The Wakeup signal is generated continuously and is used to interrupt a microcontroller that is in sleep mode. The nominal output is a 5.0 volt square wave (voltage generated from V_{OUT}) with a duty cycle of 50% at a frequency that is determined by a timing resistor, R_{Delav} .

When the microprocessor receives a rising edge from the Wakeup output, it must issue a Watchdog pulse and check its inputs to decide if it should resume normal operations or remain in the sleep mode.

The first falling edge of the Watchdog signal causes the Wakeup to go low within $2.0 \,\mu$ s (typ) and remain low until the next Wakeup cycle (see Figure 17). Other Watchdog pulses received within the same cycle are ignored (Figure 3).

During power up, $\overline{\text{RESET}}$ is held low until the output voltage is in regulation. During operation, if the output voltage shifts below the regulation limits, the $\overline{\text{RESET}}$ toggles low and remains low until proper output voltage regulation is restored. After the $\overline{\text{RESET}}$ delay, $\overline{\text{RESET}}$ returns high.

The Watchdog circuitry continuously monitors the input Watchdog signal (WDI) from the microprocessor. The absence of a falling edge on the Watchdog input during one Wakeup cycle will cause a RESET pulse to occur at the end of the Wakeup cycle. (see Figure 4).

The Wakeup output is pulled low during a $\overline{\text{RESET}}$ regardless of the cause of the $\overline{\text{RESET}}$. After the $\overline{\text{RESET}}$ returns high, the Wakeup cycle begins again (see Figure 4).

The $\overline{\text{RESET}}$ Delay Time, Wakeup signal frequency and $\overline{\text{RESET}}$ high to Wakeup delay time are all set by one external resistor R_{Delay} .

Wakeup Period = (4.17×10^{-7}) R_{Delay}

 $\overline{\text{RESET}}$ Delay Time = $(5.21 \times 10^{-8})\dot{\text{R}}_{\text{Delay}}$

RESET HIGH to Wakeup Delay Time = (2.08×10^{-7}) R_{Delay}

Resistor temperature coefficient and tolerance as well as the tolerance of the NCV8508 must be taken into account in order to get the correct system tolerance for each parameter.

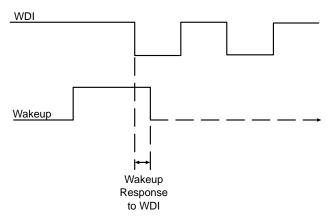
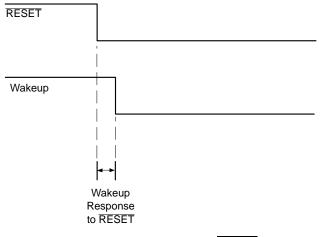



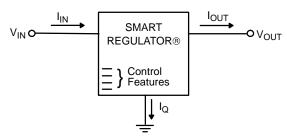
Figure 17. Wakeup Response to WDI

APPLICATION NOTES

Calculating Power Dissipation in a Single Output Linear Regulator

The maximum power dissipation for a single output regulator (Figure 19) is:

$$PD(max) = [VIN(max) - VOUT(min)]^{I}OUT(max)$$
(1)
+ VIN(max)^{I}Q


where:

 $V_{IN(max)}$ is the maximum input voltage,

V_{OUT(min)} is the minimum output voltage,

 $I_{\mbox{OUT}(\mbox{max})}$ is the maximum output current for the application, and

 I_Q is the quiescent current the regulator consumes at $I_{OUT(max)}$.

Figure 19. Single Output Regulator with Key Performance Parameters Labeled

Once the value of $P_{D(max)}$ is known, the maximum permissible value of $R_{\theta JA}$ can be calculated:

$$R_{\theta}JA = \frac{150^{\circ}C - T_{A}}{P_{D}}$$
(2)

The value of $R_{\theta JA}$ can then be compared with those in the package section of the data sheet. Those packages with $R_{\theta JA}$'s less than the calculated value in Equation 2 will keep the die temperature below 150°C.

In some cases, none of the packages will be sufficient to dissipate the heat generated by the IC, and an external heatsink will be required.

ORDERING INFORMATION

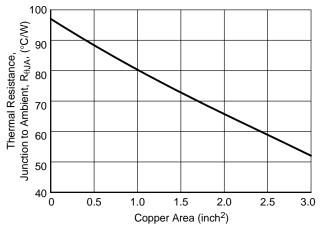


Figure 20. 16 Lead SOW (4 Leads Fused), θ JA as a Function of the Pad Copper Area (2 oz. Cu Thickness), Board Material = 0.0625" G-10/R-4

Heatsinks

A heatsink effectively increases the surface area of the package to improve the flow of heat away from the IC and into the surrounding air.

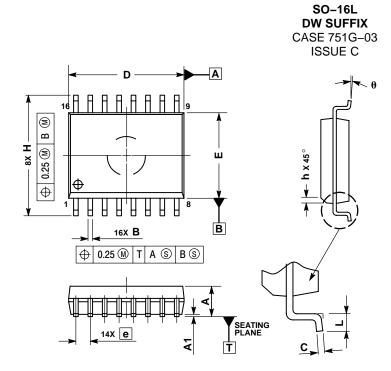
Each material in the heat flow path between the IC and the outside environment will have a thermal resistance. Like series electrical resistances, these resistances are summed to determine the value of $R_{\theta JA}$:

$$R_{\theta JA} = R_{\theta JC} + R_{\theta CS} + R_{\theta SA}$$
(3)

where:

 $R_{\theta JC}$ = the junction–to–case thermal resistance,

 $R_{\theta CS}$ = the case–to–heatsink thermal resistance, and

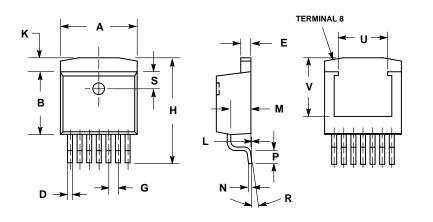

 $R_{\theta SA}$ = the heatsink-to-ambient thermal resistance.

 $R_{\theta JC}$ appears in the package section of the data sheet. Like $R_{\theta JA}$, it too is a function of package type. $R_{\theta CS}$ and $R_{\theta SA}$ are functions of the package type, heatsink and the interface between them. These values appear in heatsink data sheets of heatsink manufacturers.

Device	Output Voltage	Package	Shipping†
NCV8508DW50	5.0 V	SO-16L	47 Units / Rail
NCV8508DW50G	5.0 V	SO-16L (Pb-Free)	47 Units / Rail
NCV8508DW50R2	5.0 V	SO-16L	1000 / Tape & Reel
NCV8508D2T50	5.0 V	D ² PAK-7	50 Units / Rail
NCV8508D2T50G	5.0 V	D ² PAK–7 (Pb–Free)	50 Units / Rail
NCV8508D2T50R4	5.0 V	D ² PAK–7	750 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

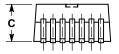
PACKAGE DIMENSIONS



- NOTES:
 1. DIMENSIONS ARE IN MILLIMETERS.
 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
 3. DIMENSIONS D AND E DO NOT INLCUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
 5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS			
DIM	MIN	MAX		
Α	2.35	2.65		
A1	0.10	0.25		
В	0.35	0.49		
С	0.23	0.32		
D	10.15	10.45		
Е	7.40	7.60		
е	1.27 BSC			
н	10.05	10.55		
h	0.25	0.75		
L	0.50	0.90		
q	0 °	7 °		

PACKAGE DIMENSIONS


D²PAK-7 (SHORT LEAD) DP SUFFIX CASE 936AB-01 ISSUE O

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.396	0.406	10.05	10.31	
В	0.326	0.336	8.28	8.53	
С	0.170	0.180	4.31	4.57	
D	0.026	0.036	0.66	0.91	
Е	0.045	0.055	1.14	1.40	
G	0.05	0 REF	1.27 REF		
н	0.539	0.579	13.69	14.71	
к	0.055	0.066	1.40	1.68	
L	0.000	0.010	0.00	0.25	
м	0.100	0.110	2.54	2.79	
N	0.017	0.023	0.43	0.58	
Р	0.058	0.078	1.47	1.98	
R	0 °	8 °	0 °	8 °	
S	0.095	0.105	2.41	2.67	
U	0.256	REF	6.50 REF		
V	0.305	REF	7.75	REF	

 DIMENSIONS AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.

NOTES

SMART REGULATOR is a registered trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use personal states CILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.