
DISCRETE SEMICONDUCTORS

Product specification

2003 Nov 24

FEATURES

- 600 mW total power dissipation
- High current capability
- Reduces required PCB area
- Reduced pick and place costs
- Small plastic SMD package.

Transistor

• Low collector-emitter saturation voltage.

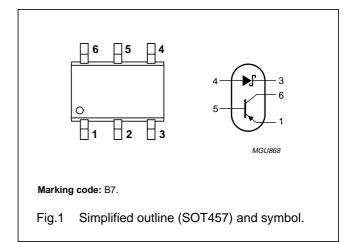
Diode

- Ultra high-speed switching
- Very low forward voltage
- Guard ring protected.

APPLICATIONS

- DC-to-DC converters
- Inductive load drivers
- General purpose load drivers
- Reverse polarity protection circuits.

DESCRIPTION


Combination of a PNP transistor with low V_{CEsat} and high current capability and a planar Schottky barrier diode with an integrated guard ring for stress protection in a SOT457 (SC-74) small plastic package. NPN complement: PMEM4020ND.

ORDERING INFORMATION

	PACKAGE			
	NAME	DESCRIPTION	VERSION	
PMEM4020PD –		plastic surface mounted package; 6 leads	SOT457	

DESCRIPTION				
emitter				
not connected				
cathode				
anode				
base				
collector				

PINNING

PMEM4020PD

PMEM4020PD

LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 60134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
PNP transis	stor	•			
V _{CBO}	collector-base voltage	open emitter	-	-40	V
V _{CEO}	collector-emitter voltage	open base	-	-40	V
V _{EBO}	emitter-base voltage	open collector	-	-5	V
I _C collector current (DC)		note 1	-	-0.75	А
		note 2	-	-1	А
		note 3	-	-1.3	А
		$T_s \le 55 \text{ °C}; \text{ note } 4$	-	-2	А
I _{CM}	peak collector current		-	-3	A
I _{BM}	peak base current		-	-1	А
P _{tot}	total power dissipation	$T_{amb} \le 25 \ ^{\circ}C;$ note 1	-	295	mW
		$T_{amb} \le 25 \ ^{\circ}C$; note 2	-	400	mW
		$T_{amb} \le 25 \ ^{\circ}C$; note 3	-	500	mW
		$T_s \le 55 \text{ °C}; \text{ note } 4$	-	1000	mW
Tj	junction temperature		-	150	°C
Schottky ba	arrier diode				
V _R	continuous reverse voltage		-	20	V
l _F	continuous forward current		-	1	А
I _{FSM}	non-repetitive peak forward current	t = 8.3 ms half sinewave; JEDEC method	_	5	A
P _{tot}	total power dissipation	T _{amb} ≤ 25 °C; note 1	-	295	mW
		$T_{amb} \le 25 \ ^{\circ}C$; note 2	-	400	mW
		$T_{amb} \le 25 \ ^{\circ}C$; note 3	-	500	mW
		$T_s \le 55 \text{ °C}; \text{ note } 4$	-	1000	mW
Tj	junction temperature	note 2	-	150	°C
Combined of	device		•	•	
P _{tot}	total power dissipation	T _{amb} = 25 °C; note 2	-	600	mW
T _{stg}	storage temperature		-65	+150	°C
T _{amb}	operating ambient temperature	note 2	-65	+150	°C

Notes

- 1. Device mounted on a FR4 printed-circuit board; single-sided copper; tinplated; standard footprint for SOT457.
- Device mounted on a FR4 printed-circuit board; single-sided copper; tinplated; mounting pads for collector and cathode both 1 cm².
- 3. Mounted on a ceramic printed-circuit board; single-sided copper; tinplated; standard footprint.
- 4. Solder point of collector or cathode tab.

PMEM4020PD

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
Single devic	e			
R _{th(j-s)}	thermal resistance from junction to solder point	in free air; notes 1 and 2	95	K/W
R _{th(j-a)}	thermal resistance from junction to	in free air; notes 1 and 3	250	K/W
	ambient	in free air; notes 1 and 4	315	K/W
		in free air; notes 1 and 5	425	K/W
Combined d	evice			
R _{th(j-a)}	thermal resistance from junction to ambient	in free air; notes 1 and 3	208	K/W

Notes

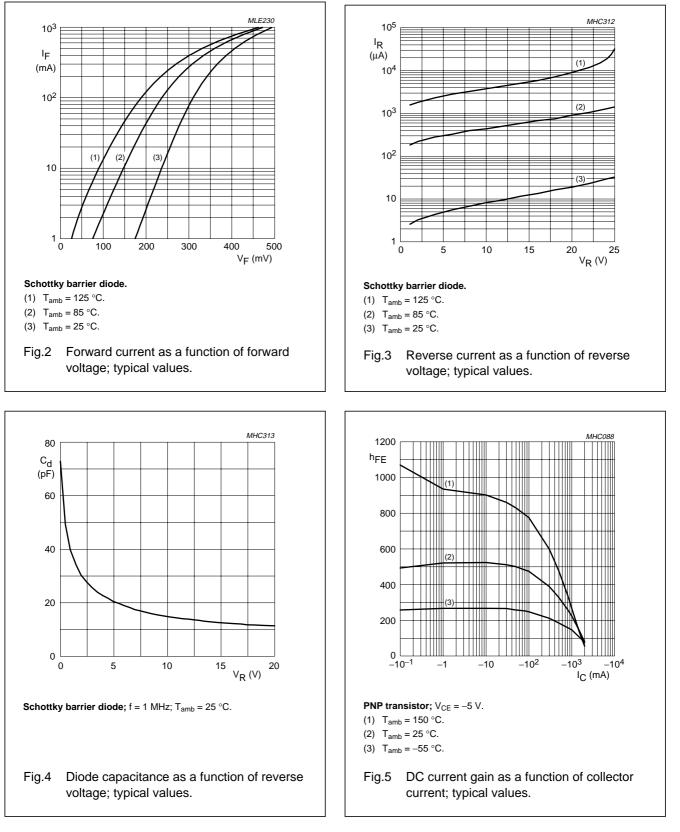
1. For Schottky barrier diodes thermal run-away has to be considered, as in some applications the reverse power losses P_R are a significant part of the total power losses. Nomograms for determination of the reverse power losses P_R and I_F (AV) rating will be available on request.

- 2. Solder point of collector or cathode tab.
- 3. Device mounted on a ceramic printed-circuit board; single-sided copper; tinplated; standard footprint.
- 4. Device mounted on a FR4 printed-circuit board; single-sided copper; tinplated; mounting pad for collector and cathode both 1 cm².
- 5. Device mounted on a FR4 printed-circuit board, single-sided copper; tinplated; standard footprint for SOT457.

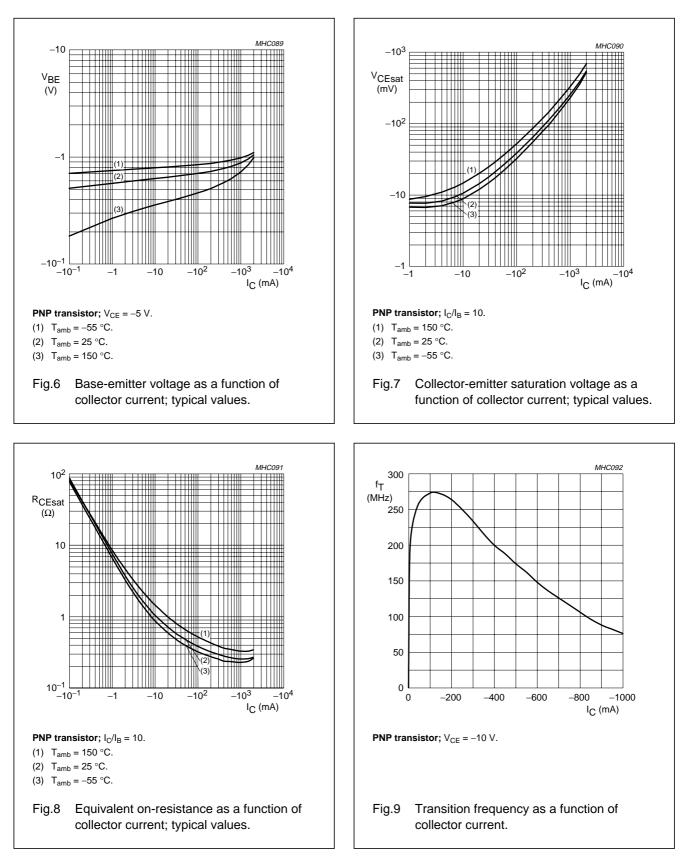
PMEM4020PD

ELECTRICAL CHARACTERISTICS

T_{amb} = 25 °C unless otherwise specified.

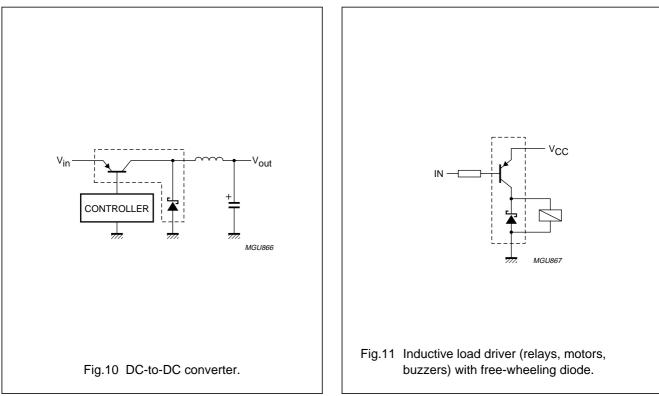

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
PNP transis	stor				•	
I _{CBO}	collector-base cut-off current	$V_{CB} = -40 \text{ V}; \text{ I}_{E} = 0$	-	-	-100	nA
		$V_{CB} = -40$ V; $I_E = 0$; $T_{amb} = 150$ °C	-	_	-50	μA
I _{CEO}	collector-emitter cut-off current	$V_{CE} = -30 \text{ V}; I_B = 0$	-	_	-100	nA
I _{EBO}	emitter-base cut-off current	$V_{EB} = -5 \text{ V}; I_{C} = 0$	-	_	-100	nA
h _{FE}	current gain (DC)	$V_{CE} = -5 \text{ V}; I_C = -1 \text{ mA}$	300	_	_	
		$V_{CE} = -5 \text{ V}; \text{ I}_{C} = -100 \text{ mA}$	300	_	800	
		$V_{CE} = -5 \text{ V}; \text{ I}_{C} = -500 \text{ mA}$	250	_	_	
		$V_{CE} = -5 \text{ V}; \text{ I}_{C} = -1 \text{ A}$	160	_	_	
		$V_{CE} = -5 \text{ V}; I_{C} = -2 \text{ A}; \text{ note } 1$	50	_	-	
V _{CEsat}	collector-emitter saturation voltage	$I_{\rm C} = -100 \text{ mA}; I_{\rm B} = -1 \text{ mA}$	-	_	-120	mV
		I _C = -500 mA; I _B = -50 mA	-	_	-145	mV
		$I_{\rm C} = -1$ A; $I_{\rm B} = -100$ mA	-	_	-260	mV
		$I_{\rm C} = -2$ A; $I_{\rm B} = -200$ mA	-	_	-530	mV
V _{BEsat}	base-emitter saturation voltage	$I_{\rm C} = -1$ A; $I_{\rm B} = -50$ mA	-	-	-1.1	V
R _{CEsat}	equivalent on-resistance	$I_{\rm C} = -1$ A; $I_{\rm B} = -100$ mA; note 1	-	180	280	mΩ
V _{BEon}	base-emitter turn-on voltage	$V_{CE} = -5 \text{ V}; \text{ I}_{C} = -1 \text{ A}$	-	_	-1	V
f _T	transition frequency	$I_{C} = -50 \text{ mA}; V_{CE} = -10 \text{ V};$ f = 100 MHz	150	-	-	MHz
Schottky ba	arrier diode			•		
V _F	continuous forward voltage	see Fig.2; note 1				
		I _F = 10 mA	-	240	270	mV
		I _F = 100 mA	_	300	350	mV
		I _F = 1000 mA	-	480	550	mV
I _R	reverse current	see Fig.3; note 1				
		$V_R = 5 V$	-	5	10	μA
		V _R = 8 V	-	7	20	μA
		V _R = 15 V	-	10	50	μA
C _d	diode capacitance	V _R = 5 V; f = 1 MHz; see Fig.4	-	19	25	рF

Note


1. Pulse test: $t_p \le 300 \ \mu s; \ \delta \le 0.02$.

PMEM4020PD

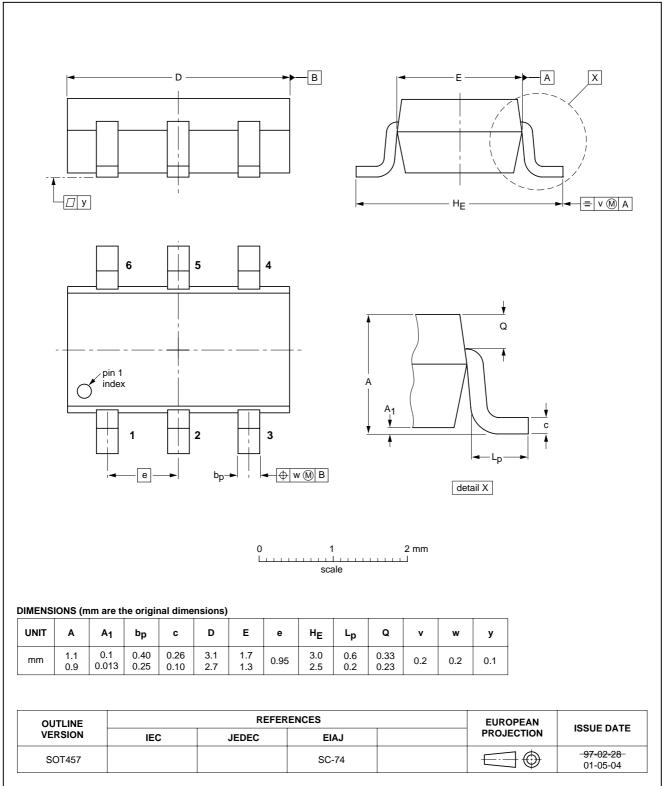
GRAPHICAL DATA



PMEM4020PD

PMEM4020PD


APPLICATION INFORMATION



PMEM4020PD

PNP transistor/Schottky-diode module

PACKAGE OUTLINE

PMEM4020PD

DATA SHEET STATUS

LEVEL	DATA SHEET STATUS ⁽¹⁾	PRODUCT STATUS ⁽²⁾⁽³⁾	DEFINITION
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
11	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

Notes

- 1. Please consult the most recently issued data sheet before initiating or completing a design.
- 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
- 3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products including circuits, standard cells, and/or software described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors – a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

© Koninklijke Philips Electronics N.V. 2003

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

R76/01/pp**11**

Date of release: 2003 Nov 24

Document order number: 9397 750 11907

SCA75

Let's make things better.

Philips Semiconductors