
S3FB42F

8-BIT CMOS

MICROCONTROLLER

USER'S MANUAL

Revision 1

Important Notice

The information in this publication has been carefully
checked and is believed to be entirely accurate at the
time of publication. Samsung assumes no
responsibility, however, for possible errors or
omissions, or for any consequences resulting from
the use of the information contained herein.

Samsung reserves the right to make changes in its
products or product specifications with the intent to
improve function or design at any time and without
notice and is not required to update this
documentation to reflect such changes.

This publication does not convey to a purchaser of
semiconductor devices described herein any license
under the patent rights of Samsung or others.

Samsung makes no warranty, representation, or
guarantee regarding the suitability of its products for
any particular purpose, nor does Samsung assume
any liability arising out of the application or use of any
product or circuit and specifically disclaims any and
all liability, including without limitation any
consequential or incidental damages.

"Typical" parameters can and do vary in different
applications. All operating parameters, including
"Typicals" must be validated for each customer
application by the customer's technical experts.

Samsung products are not designed, intended, or
authorized for use as components in systems
intended for surgical implant into the body, for other
applications intended to support or sustain life, or for
any other application in which the failure of the
Samsung product could create a situation where
personal injury or death may occur.

Should the Buyer purchase or use a Samsung
product for any such unintended or unauthorized
application, the Buyer shall indemnify and hold
Samsung and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims,
costs, damages, expenses, and reasonable attorney
fees arising out of, either directly or indirectly, any
claim of personal injury or death that may be
associated with such unintended or unauthorized use,
even if such claim alleges that Samsung was
negligent regarding the design or manufacture of said
product.

S3FB42F 8-Bit CMOS Microcontroller
User's Manual, Revision 1
Publication Number: 21-S3-FB42F-052001

© 2001 Samsung Electronics

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electric or mechanical, by photocopying, recording, or otherwise, without the prior written
consent of Samsung Electronics.

Samsung Electronics' microcontroller business has been awarded full ISO-14001
certification (BVQ1 Certificate No. 9330). All semiconductor products are designed and
manufactured in accordance with the highest quality standards and objectives.

Samsung Electronics Co., Ltd.
San #24 Nongseo-Lee, Kiheung-Eup
Yongin-City Kyungi-Do, Korea
C.P.O. Box #37, Suwon 449-900

TEL: (82)-(331)-209-1907
FAX: (82)-(331)-209-1889
Home-Page URL: Http://www.samsungsemi.com/

Printed in the Republic of Korea

S3FB42F MICROCONTROLLER iii

Preface

The S3FB42F Microcontroller User's Manual is designed for application designers and programmers who are using
the S3FB42F microcontroller for application development. It is organized in two main parts:

Part I Programming Model Part II Hardware Descriptions

Part I contains software-related information to familiarize you with the microcontroller's architecture, programming
model, instruction set, and interrupt structure. It has nine chapters:

Chapter 1 Product Overview
Chapter 2 Address Spaces
Chapter 3 Register
Chapter 4 Memory Map

Chapter 5 Hardware Stack
Chapter 6 Exceptions
Chapter 7 Coprocessor Interface
Chapter 8 Instruction Set

Chapter 1, "Product Overview," is a high-level introduction to S3FB42F with general product descriptions, as well as
detailed information about individual pin characteristics and pin circuit types.

Chapter 2, "Address Spaces," describes program and data memory spaces. Chapter 2 also describes ROM code
option.

Chapter 3, "Register," describes the special registers.

Chapter 4, "Memory Map," describes the internal register file.

Chapter 5, "Hardware Stack," describes the S3FB42F hardware stack structure in detail.

Chapter 6, "Exception," describes the S3FB42F exception structure in detail.

Chapter 7, “Coprocessor Interface,” describes the S3FB42F coprocessor interface in detail.

Chapter 8, “Instruction Set,” describes the features and conventions of the instruction set used for all S3FB-series
microcontrollers.

A basic familiarity with the information in Part I will help you to understand the hardware module descriptions in Part
II. If you are not yet familiar with the S3FB-series microcontroller family and are reading this manual for the first time,
we recommend that you first read Chapters 1–3 carefully. Then, briefly look over the detailed information in Chapters
4, 5, 6, 7, and 8. Later, you can reference the information in Part I as necessary.

Part II "hardware Descriptions," has detailed information about specific hardware components of the S3FB42F
microcontroller. Also included in Part II are electrical, mechanical. It has 19 chapters:

Chapter 9 PLL (Phase Locked Loop)
Chapter 10 Reset and Power-Down
Chapter 11 I/O Ports
Chapter 12 Basic Timer
Chapter 13 Real Timer (Watch Timer)
Chapter 14 16-bit Timer (8-bit Timer A & B)
Chapter 15 Serial I/O Interface
Chapter 16 UART
Chapter 17 I2S Bus (Inter-IC Sound)
Chapter 18 SSFDC (Solid State Floppy Disk Card)

Chapter 19 Parallel Port Interface
Chapter 20 8-bit Analog-to-Digital Converter
Chapter 21 I2C-BUS Interface
Chapter 22 Random Number Generator
Chapter 23 USB
Chapter 24 Embedded Flash Memory Interface
Chapter 25 MAC2424
Chapter 26 Electrical Data
Chapter 27 Mechanical Data

Chapter 25, "MAC2424" describes the MAC2424 structure in detail, as well as instructions.

iv KS86C6204/C6208/P6208 (Preliminary Spec)

One order form is included at the back of this manual to facilitate customer order for S3FB42F microcontrollers:
the Flash Factory Writing Order Form.
You can photocopy this form, fill it out, and then forward it to your local Samsung Sales Representative.

S3FB42F MICROCONTROLLER v

Table of Contents

Part I — Programming Model

Chapter 1 Product Overview

Calmrisc Overview ...1-1
Features ...1-1
Pin Description..1-9
Pin Circuit Diagrams..1-13

Chapter 2 Address Spaces

Overview...2-1
Program Memory (ROM) ..2-2
Data Memory Organization...2-3

Chapter 3 Register

Overview...3-1
Index Registers: IDH, IDL0 and IDL1..3-2
Link Registers: ILX, ILH and ILL ..3-2
Status Register 0: SR0 ..3-3
Status Register 1: SR1 ..3-4

Chapter 4 Memory Map

Overview...4-1

Chapter 5 Hardware Stack

Overview...5-1

vi S3FB42F MICROCONTROLLER

Table of Contents (Continued)

Chapter 6 Exceptions

Overview...6-1
Hardware Reset...6-1
Nmi Exception (Edge Sensitive)..6-2
IRQ[0] Exception (Level-Sensitive)...6-2
IRQ[1] Exception (Level-Sensitive)...6-2
Hardware Stack Full Exception...6-2
Break Exception..6-2
Exceptions (or Interrupts)...6-3
Interrupt Mask Registers ..6-5
Interrupt Priority Register..6-6

Chapter 7 Coprocessor Interface

Overview...7-1

Chapter 8 Instruction Set

Overview...8-1
Glossary...8-1

Instruction Set Map ...8-2
Quick Reference..8-9
Instruction Group Summary ..8-12

ALU Instructions..8-12
Shift/Rotate Instructions ...8-16
Load Instructions ...8-18
Branch Instructions..8-21
Bit Manipulation Instructions...8-25
Miscellaneous Instruction...8-26
Pseudo Instructions ...8-29

S3FB42F MICROCONTROLLER vii

Table of Contents (Continued)

Part II — Hardware Descriptions

Chapter 9 PLL (Phase Locked Loop)

Overview...9-1
PLL Register Description..9-2

PLL Control Register (PLLCON)..9-2
PLL Frequency Divider Data Register (PLLDATA)...9-2

System Control Circuit...9-4
Oscillator Control Register (OSCCON)...9-4
Power Control Register (PCON) ..9-5

Chapter 10 Reset and Power-Down

Overview...10-1

Chapter 11 I/O Ports

Port Data Registers ...11-1
Port Control Registers..11-2

Port 0 Control Register (P0CON)...11-2
Port 1 Control Register (P1CON)...11-2
Port 2 Control Low Register (P2CONL) ..11-3
Port 2 Control High Register (P2CONH)...11-4
Port 3 Control Low Register (P3CONL) ..11-5
Port 3 Control High Register (P3CONH)...11-6
Port 3 Pull-Up Register (P3PUR)...11-6
Port 4 Control Register (P4CON)...11-7
Port 4 Interrupt Control Register (P4INTCON) ...11-7
Port 4 Interrupt Mode Register (P4INTMOD)...11-8
Port 5 Control Register (P5CON)...11-8
Port 5 Pull-Up Register (P5PUR)...11-9
Port 5 Interrupt Control Register (P5INTCON) ...11-9
Port 5 External Interrupt Pending Register (EINTPND)...11-9
Port 5 Interrupt Mode Low Register (P5INTMODL) ..11-9
Port 5 Interrupt Mode High Register (P5INTMODH) ...11-10
Port 6 Control Register (P6CON)...11-11
Port 2 Control High Register Or P6pur (P2CONH)...11-12
Port 7 Control Register (P7CON)...11-12
Port 8 Control Register (P8CON)...11-13
Port 9 Control Register (P9CON)...11-14

viii S3FB42F MICROCONTROLLER

Table of Contents (Continued)

Chapter 12 Basic Timer

Overview...12-1
Watchdog Timer..12-2

Block Diagram ..12-3

Chapter 13 Real Timer (Watch Timer)

Overview...13-1
Watch Timer Circuit Diagram..13-2

Chapter 14 16-bit Timer (8-bit Timer A & B)

Overview...14-1

Chapter 15 Serial I/O Interface

Overview...15-1
SIO Pre-Scaler Register (SIOPS)..15-2
Block Diagram ..15-2
Serial I/O Timing Diagram...15-3

Chapter 16 UART

Overview...16-1
UART Special Registers...16-2

UART Line Control Register..16-2
UART Control Register...16-3
UART Status Register..16-4
UART Transmit Buffer Register ...16-5
UART Receive Buffer Register...16-5
UART Baud Rate Prescaler Registers ...16-6
UART Interrupt Pending Register (Upend) ..16-6

S3FB42F MICROCONTROLLER ix

Table of Contents (Continued)

Chapter 17 I2S Bus (Inter-IC Sound)

Overview...17-1
The I2S Bus ..17-2
I2S Special Register Description ...17-6

I2S Control Registers ...17-6
I2S Control Registers (IISCON) ...17-6
I2S Mode Registers (IISMODE)...17-8
I2S Pointer Registers (IISPTR) ..17-9
I2S Buffer Registers (IISBUF)..17-9

Chapter 18 SSFDC (Soild State Floppy Disk Card)

Overview...18-1
SSFDC Register Description ..18-3

Smartmedia Control Register (SMCON)...18-3
Smartmedia Ecc Count Register (ECCNT) ..18-3
Smartmedia Ecc Data Register (ECCDATA) ..18-4
Smartmedia Ecc Result Data Register (ECCRST) ..18-4

Chapter 19 Parallel Port Interface

Overview...19-1
PPIC Operating Modes ..19-2

PPIC Special Registers..19-5
Parallel Port Data/Command Data Register..19-5
Parallel Port Status Control And Status Register..19-6
Parallel Port Control Register..19-8
Parallel Port Interrupt Event Registers ...19-11
Parallel Port Ack Width Register...19-12

Chapter 20 8-bit Analog-to-Digital Converter

Overview...20-1
Function Description..20-1
Conversion Timing ...20-2
A/D C Special Registers ..20-3

A/D C Control Registers ...20-3
A/D Converter Data Registers ...20-3

x S3FB42F MICROCONTROLLER

Table of Contents (Continued)

Chapter 21 I2C Bus Interface

Overview...21-1
Functional Description ...21-2

I2C Special Registers...21-3
Multi-Master I2C-Bus Control Register ...21-3
Multi-Master I2C-Bus Control/Status Register (IICSR) ...21-4
Multi-Master I2C-Bus Transmit/Receive Data Register (IICDATA)..21-5
Multi-Master I2C-Bus Address Register (IICADDR)..21-5
Prescaler Counter Register (IICCNT)..21-6

Chapter 22 Random Number Generator

Overview...22-1
Functional Description ...22-3
Random Number Control Register ...22-3
Ring Oscillator ..22-4
Linear Feedback Shift Register 8 (LFSR8) ...22-5
Linear Feedback Shift Register 16 (LFSR16)..22-5

Chapter 23 USB

USB Peripheral Features...23-1
Functional Specification ...23-1

USB Module Block Diagram ...23-2
Function Description..23-3
USB Function Registers Description ...23-5
USB Releated Registers ..23-6

Chapter 24 Embedded Flash Memory Interface

Overview...24-1
Tool Program Mode ...24-1
Flash Memory Control Register...24-3

S3FB42F MICROCONTROLLER xi

Table of Contents (Continued)

Chapter 25 MAC2424

Introduction...25-1
Architecture Features ..25-2
Block Diagram ..25-3
I/O Description ..25-4
Programming Model...25-6

Multiplier and Accumulator Unit ..25-7
Arithmetic Unit ..25-11
Status Register 1 (MSR1) ..25-16

Ram Pointer Unit...25-18
Address Modification ...25-18
Data Memory Spaces and Organization...25-23

Arithmetic Unit ..25-24
A, B Accumulators ..25-25
Overflow Protection in A/B Accumulators ...25-25
Arithmetic Unit ..25-26
External Condition Generation Unit..25-27
Status Register 0 (MSR0) ..25-27
Status Register 2 (MSR2) ..25-30

Barrel Shifter and Exponent Unit ...25-31
Barrel Shifter...25-32
Exponent Block...25-35

Instruction Set Map and Summary ..25-37
Addressing Modes...25-37
Instruction Coding..25-42
Quick Reference..25-55
Quick Reference..25-56

Instruction Set...25-60
Glossary...25-60
Instruction Description ...25-61

Chapter 26 Electrical Data

Overview...26-1

Chapter 27 Mechanical Data

Overview...27-1

S3FB42F MICROCONTROLLER xiii

List of Figures

Figure Title Page
Number Number

1-1 Top Block Diagram ..1-3
1-2 CalmRISC Pipeline Diagram ...1-4
1-3 CalmRISC Pipeline Stream Diagram..1-5
1-4 Block Diagram ..1-6
1-5 100-QFP Pin Assignment...1-7
1-6 100-TQFP Pin Assignment ...1-8
1-7 Pin Circuit Type 1 (Port 0, P1.0-P1.4, P6.0-P6.5, and Port 7)1-13
1-8 Pin Circuit Type 2 (P6.6 and P6.7) ..1-13
1-9 Pin Circuit Type 3 (P4.2) ..1-14
1-10 Pin Circuit Type 4 (Port 2, Port 8, and Port 9) ..1-15
1-11 Pin Circuit Type 5 (Port 3) ..1-15
1-12 Pin Circuit Type 6 (P4.0, and P4.1) ...1-16
1-13 Pin Circuit Type 7 (Port 5) ..1-16
1-14 Pin Circuit Type 8 (RESET) ..1-17
1-15 Pin Circuit Type 9 (TEST) ...1-17

2-1 Flash Memory (Code Memory Area)..2-2
2-2 Data Memory Map...2-3
2-3 Data Memory Map in CalmRISC Side..2-4
2-4 Data Memory Map in MAC-2424 Side..2-5
2-5 Data Memory Map...2-6

3-1 Bank Selection by Setting of GRB Bits and IDB Bit ..3-3

4-1 Memory Map Area...4-1

5-1 Hardware Stack...5-1
5-2 Even and Odd Bank Selection Example...5-2
5-3 Stack Operation with PC [19:0]...5-3
5-4 Stack Operation with Registers...5-4
5-5 Stack Overflow ..5-5

6-1 Interrupt Structure..6-3
6-2 Interrupt Structure..6-4
6-3 Interrupt Mask Register..6-5
6-4 Interrupt Priority Register..6-6

xiv S3FB42F MICROCONTROLLER

List of Figures (Continued)

Figure Title Page
Number Number

7-1 Coprocessor Interface Diagram ...7-1
7-2 Coprocessor Instruction Pipeline...7-3

9-1 Simple Circuit Diagram ..9-1
9-2 PLL Frequency Divider Data Register (PLLDATA)...9-3
9-3 System Clock Circuit Diagram..9-6

11-1 Port Data Register Structure...11-1

12-1 Basic Timer Control Register (BTCON) ..12-1
12-2 Watchdog Timer Control Register (WDTCON) ..12-2
12-3 Watchdog Timer Enable Register (WDTEN) ...12-2
12-4 Basic Timer & Watchdog Timer Functional Block Diagram12-3

13-1 Watch Timer Circuit Diagram..13-2

14-1 Timer A Control Register (TACON) ..14-1
14-2 Timer B Control Register (TBCON) ..14-2
14-3 Timer A, B Function Block Diagram ..14-3

15-1 Serial I/O Module Control Registers (SIOCON) ...15-1
15-2 SIO Pre-scaler Register (SIOPS) ..15-2
15-3 SIO Function Block Diagram ..15-2
15-4 Serial I/O Timing in Transmit/Receive Mode (Tx at falling, SIOCON.4=0)...................15-3
15-5 Serial I/O Timing in Transmit/Receive Mode (Tx at rising, SIOCON.4=1)15-3

16-1 UART Block Diagram...16-1
16-2 UART Line Control Register (LCON) ..16-2

17-1 Simple System Configuration..17-1
17-2 I2S Basic Interface Format (Phillips)..17-2
17-3 LSI Interface Format (Sony)..17-2
17-4 Timing for I2S Transmitter...17-4
17-5 Timing for I2S Receiver...17-4

18-1 Simple System Configuration..18-2
18-2 ECC Processor Block Diagram...18-5

S3FB42F MICROCONTROLLER xv

List of Figures (Continued)

Figure Title Page
Number Number

19-1 Compatibility Hardware Handshaking Timing ..19-3
19-2 ECP Hardware Handshaking Timing (Forward)..19-4
19-3 ECP Hardware Handshaking Timing (Reverse)..19-4

20-1 A/D C Block Diagram...20-2

21-1 I2C-Bus Block Diagram ..22-1
21-2 Multi-Master I2C-Bus Tx/Rx Data Register (IICDATA)..22-5
21-3 Multi-Master I2C-Bus Address Register (IICADDR)..22-6

22 -1 Top Block Diagram of Random Number Generator ..22-2
22-2 Ring Oscillator Block ...22-4

23-1 USB Module Block Diagram ...23-2
23-2 Function Address Register ...23-6
23-3 Power Management Register..23-7
23-4 Frame Number Low Register ..23-8
23-5 Frame Number High Register..23-8
23-6 Interrupt Pending Register ..23-9
23-7 Interrupt Enable Register..23-11
23-8 Endpoint Index Register ...23-12
23-9 Endpoint Direction Register ..23-12
23-10 EP0 CSR Register (EP0CSR)...23-14
23-11 INCSR Register...23-16
23-12 OUT Control Status Register ..23-18
23-13 IN MAX Packet Register (INMAXP)..23-19
23-14 OUT MAX Packet Register ...23-20
23-15 EP0 MAX Packet Register ...23-21
23-16 Write Counter LO Regsiter ...23-22
23-17 Write Counter HI Register...23-22
23-18 USB Enable Register...23-24

24-1 Flash memory structure ...24-2
24-2 Flash Memory Control Register...24-4

xvi S3FB42F MICROCONTROLLER

List of Figures (Continued)

Figure Title Page
Number Number

25-1 MAC2424 Block Diagram ...25-3
25-2 MAC2424 Pin Diagram...25-4
25-3 Multiplier and Accumulator Unit Block Diagram ..25-7
25-4 MAU Registers Configuration..25-10
25-5 Integer Division Example ..25-13
25-6 Fractional Division Example..25-14
25-7 MSR1 Register Configuration..25-16
25-8 RAM Pointer Unit Block Diagram ..25-19
25-9 Pointer Register and Index Register Configuration...25-20
25-10 Modulo Control Register Configuration ...25-21
25-11 Data Memory Space Map...25-23
25-12 Arithmetic Unit Block Diagram..25-24
25-13 Ai Accumulator Register Configuration...25-25
25-14 MSR0 Register Configuration..25-27
25-15 MSR2 Register Configuration..25-30
25-16 Barrel Shifter and Exponent Unit Block Diagram...25-31
25-17 Various Barrel Shifter Instruction Operation..25-34
25-18 Indirect Addressing Example I (Read Operation)...25-37
25-19 Indirect Addressing Example II (Write Operation)..25-38
25-20 Short Direct Addressing Example ...25-39
25-21 Long Direct Addressing Example ..25-40

26-1 Input Timing for External Interrupts (Port 4, Port5)...26-3
26-2 Input Timing for RESET..26-3
26-3 Stop Mode Release Timing When Initiated by a RESET..26-6
26-4 Stop Mode Release Timing When Initiated by Interrupts..26-7
26-5 Serial Data Transfer Timing...26-8
26-6 Clock Timing Measurement at XIN...26-11

27-1 100-QFP-1420C Package Dimensions...27-1
27-2 100-TQFP-1414 Package Dimensions ...27-2

S3FB42F MICROCONTROLLER xvii

List of Tables

Table Title Page
Number Number

1-1 S3FB42F Pin Descriptions (100-TQFP) ...1-9

3-1 General and Special Purpose Registers...3-1
3-2 Status Register 0: SR0 ..3-3
3-3 Status Register 1: SR1 ..3-4

4-1 Registers ..4-1

6-1 Exceptions ...6-1

7-1 Coprocessor instructions..7-2

8-1 Instruction Notation Conventions ...8-1
8-2 Overall Instruction Set Map...8-2
8-3 Instruction Encoding ..8-4
8-4 Index Code Information ("idx")...8-7
8-5 Index Modification Code Information ("mod")...8-7
8-6 Condition Code Information ("cc")..8-7
8-7 "ALUop1" Code Information ..8-8
8-8 "ALUop2" Code Information ..8-8
8-9 "MODop1" Code Information ...8-8

9-1 PLL Register Description..9-2
9-2 System Control Circuit Register Description...9-4

11-1 Port Data Register Summary ..11-1

13-1 Watch Timer Control Register (WTCON): 8-Bit R/W..13-1

17-1 Master Transmitter with Data Rate of 2.5 MHz (10%) (Unit: ns)................................17-5
17-2 Slave Receiver with Data Rate of 2.5 MHz (10%) (Unit: ns)......................................17-5
17-3 Function Register Description...17-6

xviii S3FB42F MICROCONTROLLER

List of Tables (Continued)

Table Title Page
Number Number

18-1 Control Register Description ...18-3

23-1 General USB Features ...23-1
23-2 General Function Features ...23-1
23-3 USB Function Registers Description ...23-5
23-4 Interrupt Pending Register ..23-10

25-1 MAC2424 Pin Description ..25-5
25-2 Exponent Evaluation and Normalization Example ...25-35

26-1 Absolute Maximum Ratings..26-1
26-2 D.C. Electrical Characteristics..26-1
26-3 A.C. Electrical Characteristics..26-3
26-4 Input/Output Capacitance...26-3
26-5 A/D Converter Electrical Characteristics ..26-4
26-6 I2S Master Transmitter with Data Rate of 2.5 MHz (10%) (Unit: ns)..........................26-4
26-7 I2S Slave Receiver with Data Rate of 2.5 MHz (10%) (Unit: ns)26-5
26-8 Flash Memory D.C. Electrical Characteristics ..26-5
26-9 Flash Memory A.C. Electrical Characteristics ..26-5
26-10 Data Retention Supply Voltage in Stop Mode...26-6
26-11 Synchronous SIO Electrical Characteristics...26-8
26-12 Main Oscillator Frequency (fosc1)...26-9
26-13 Sub Oscillator Frequency (fosc2) ..26-10

S3FB42F MICROCONTROLLER xix

List of Programming Tips

Description Page
Number

Chapter 6: Exceptions

Interrupt Programming Tip 1..6-7
Interrupt Programming Tip 2..6-8

S3FB42F MICROCONTROLLER xxi

List of Instruction Descriptions

Instruction Full Instruction Name Page
Mnemonic Number

ADC Add with Carry ..8-31
ADD Add..8-32
AND Bit-wise AND ..8-33
AND SR0 Bit-wise AND with SR0Call Procedure ...8-34
BANK Bank GPR Selection..8-35
BITC Bit Complement ..8-36
BITR Bit Reset ..8-37
BITS Bit Set..8-38
BITT Bit Test ..8-39
BMC/BMS TF bit clear/set ..8-40
CALL Conditional subroutine call (Pseudo Instruction) ...8-41
CALLS Call Subroutine..8-42
CLD Load into Coprocessor ...8-43
CLD Load from Coprocessor ..8-44
COM 1's or Bit-wise Complement ..8-45
COM2 2's Complement ..8-46
COMC Bit-wise Complement with Carry ...8-47
COP Coprocessor ...8-48
CP Compare...8-49
CPC Compare with Carry ...8-50
DEC Decrement ..8-51
DECC Decrement with Carry ..8-52
DI Disable Interrupt (Pseudo Instruction) ..8-53
EI Enable Interrupt (Pseudo Instruction) ..8-54
IDLE Idle Operation (Pseudo Instruction) ...8-55
INC Increment ...8-56
INCC Increment with Carry ..8-57
IRET Return from Interrupt Handling...8-58
JNZD Jump Not Zero with Delay Slot ..8-59
JP Conditional Jump (Pseudo Instruction) ..8-60
JR Conditional Jump Relative...8-61
LCALL Conditional Subroutine Call...8-62
LD adr:8 Load into Memory..8-63

xxii S3FB42F MICROCONTROLLER

List of Instruction Descriptions (Continued)

Instruction Full Instruction Name Page
Mnemonic Number

LD @idm Load into Memory Indexed ...8-64
LD Load Register..8-65
LD Load GPR:bankd, GPR:banks ..8-66
LD Load GPR, TBH/TBL..8-67
LD Load TBH/TBL, GPR..8-68
LD SPR Load SPR...8-69
LD SPR0 Load SPR0 Immediate...8-70
LDC Load Code ..8-71
LJP Conditional Jump...8-72
LLNK Linked Subroutine Call Conditional ..8-73
LNK Linked Subroutine Call (Pseudo Instruction) ..8-74
LNKS Linked Subroutine Call ...8-75
LRET Return from Linked Subroutine Call ...8-76
NOP No Operation...8-77
OR Bit-wise OR ..8-78
OR SR0 Bit-wise OR with SR0 ..8-79
POP POP...8-80
POP POP to Register..8-81
PUSH Push Register ...8-82
RET Return from Subroutine ..8-83
RL Rotate Left ..8-84
RLC Rotate Left with Carry ..8-85
RR Rotate Right..8-86
RRC Rotate Right with Carry ..8-87
SBC Subtract with Carry ..8-88
SL Shift Left ...8-89
SLA Shift Left Arithmetic ...8-90
SR Shift Right...8-91
SRA Shift Right Arithmetic...8-92
STOP Stop Operation (Pseudo Instruction) ...8-93
SUB Subtract ...8-94
SWAP Swap..8-95
SYS System ..8-96
TM Test Multiple Bits ..8-97
XOR Exclusive OR ..8-98

S3FB42F PRODUCT OVERVIEW

1-1

1 PRODUCT OVERVIEW

CALMRISC OVERVIEW

The S3FB42F single-chip CMOS microcontroller is designed for high performance using Samsung's newest
8-bit CPU core, CalmRISC.

CalmRISC is an 8-bit low power RISC microcontroller. Its basic architecture follows Harvard style, that is, it has
separate program memory and data memory. Both instruction and data can be fetched simultaneously without
causing a stall, using separate paths for memory access. Represented below is the top block diagram of the
CalmRISC microcontroller.

FEATURES

CPU

• 8-Bit CalmRISC Core

• DSP Architecture (24 x 24-bit MAC)

Memory

• Code memory: 144K byte (72K word)
half flash type memory

• Data memory: 48K byte SRAM + 69K byte
flash type memory

STACK

• Size: maximum 16 (word)-level.

65 I/O Pins

• I/O: 59 pins

• Input only: 6 pins

8-Bit Serial I/O Interface

• 8-bit transmit/receive or 8-bit receive mode.

• LSB first or MSB first transmission selectable.

• Internal and external clock source.

• • 8-Bit Basic Timer & Watchdog timer

• Programmable basic timer 8-bit counter + WDT
3-bit counter

• 8 kinds of clock source

• Overflow signal of 8-bit counter makes a basic timer
interrupt. And control the oscillation warm-up time

• Overflow signal of 3-bit counter makes a system
reset.

One 16-Bit Timer/Counter

• Programmable interval timer

• Two 8-bit timer counter mode and one 16-bit timer
counter mode, selectable by S/W

One Real Time Clock

• Real time clock generation (0.5 or 1 second)

• Buzzer signal generation (1, 2, 4 or 8 kHz)

ROM Code Options

• Basic timer counter clock source selecting reset
value

PRODUCT OVERVIEW S3FB42F

1-2

FEATURES (Continued)

I2C, I2S Interface

• One-Ch Multi-Master I2C controller

• Two-Ch Sony/Phillips I2S controller

UART Interface

• One Full-duplex UART controller

USB Specification Compliance (Ver1.0, Ver1.1)

• Built in Full Speed Transceiver

• Support 1 device address and 4 endpoints.

• 1 control endpoint and 3 data endpoints

• One 16 bytes endpoint, one 32 bytes end point,
and two 64 bytes end points.

• Each data endpoint can be configurable as
interrupt, bulk and isochronous.

Parallel Port Interface Controller

• Interrupt-based operation

• Support IEEE Standard 1284 communication
mode (compatibility, nibble, byte and ECP mode).

• Automatic handshaking mode for any forward or
reverse protocol with software enable/disable

SSFDC (Smart MediaTM card) Interface

• Control signals are operated by CPU instruction

Random Number Generator

• Two ring oscillators

• Linear feedback shifter register LFSR8/LFSR16

External Interrupt

• 8 source (Edge triggered 6 + Level triggered 2)

ADC

• Six 8-bit resolution channels and normal input

Two Power-down Modes

• Idle mode: only CPU clock stop.

• Stop mode: system clock and CPU clock stop.

Oscillation Sources

• Clock synthesizer (Phase-locked loop circuit)
based on 32.768 kHz

• CPU clock divider circuit
(Div by 1, 2, 4, 8, 16, 32, 64, 128)

Instruction Execution Times

• 33.3ns at fxx = 30 MHz when 1 cycle instruction

• 66.6ns at fxx = 30 MHz when 2 cycle instruction

Operating Temperature

• - 40 °C to 85 °C

Operating Voltage Range

• 3.0 V to 3.6 V at 30 MHz

Package Types

• 100-QFP, 100-TQFP

S3FB42F PRODUCT OVERVIEW

1-3

BBUS[7:0]

20

Program Memory Address
Generation Unit

PC[19:0]

Hardware
Stack

HS[0]

HS[15]

8

8

R0

R3

R1

R2

ALU

ABUS[7:0]

ALUL ALUR

PA[19:0]

PD[15:0]

IDL0

IDL1

SR0SR1

ILHILX ILL

SPR

IDH

DO[7:0]

DI[7:0]

GPR

Data Memory
 Address

Generation Unit
DA[15:0]

20

Flag

RBUS

TBH TBL

Figure 1-1. Top Block Diagram

PRODUCT OVERVIEW S3FB42F

1-4

The CalmRISC building blocks consist of:

— An 8-bit ALU

— 16 general purpose registers (GPR)

— 11 special purpose registers (SPR)

— 16-level hardware stack

— Program memory address generation unit

— Data memory address generation unit

16 GPR's are grouped into four banks (Bank0 to Bank3) and each bank has four 8-bit registers (R0, R1, R2, and R3).
SPR's, designed for special purposes, include status registers, link registers for branch-link instructions, and data
memory index registers. The data memory address generation unit provides the data memory address (denoted as
DA[15:0] in the top block diagram) for a data memory access instruction. Data memory contents are accessed
through DI[7:0] for read operations and DO[7:0] for write operations. The program memory address generation unit
contains a program counter, PC[19:0], and supplies the program memory address through PA[19:0] and fetches the
corresponding instruction through PD[15:0] as the result of the program memory access. CalmRISC has a 16-level
hardware stack for low power stack operations as well as a temporary storage area.

CalmRISC has a 3-stage pipeline as discribed below:

Instruction Fetch
(IF)

Instruction Decode/
Data Memory Access

(ID/MEM)

Execution/Writeback
(EXE/WB)

Figure 1-2. CalmRISC Pipeline Diagram

As can be seen in the pipeline scheme, CalmRISC adopts a register-memory instruction set. In other words, data
memory where R is a GPR, can be one operand of an ALU instruction as shown below:
The first stage (or cycle) is Instruction Fetch stage (IF for short), where the instruction pointed to by the program
counter, PC[19:0] , is read into the Instruction Register (IR for short). The second stage is Instruction Decode and
Data Memory Access stage (ID/MEM for short), where the fetched instruction (stored in IR) is decoded and data
memory access is performed, if necessary. The final stage is Execute and Write-back stage (EXE/WB), where the
required ALU operation is executed and the result is written back into the destination registers.
Since CalmRISC instructions are pipelined, the next instruction fetch is not postponed until the current instruction is
completely finished, but is performed immediately after the current instruction fetch is done. The pipeline stream of
instructions is illustrated in the following diagram.

S3FB42F PRODUCT OVERVIEW

1-5

 EXE/WBIF

IF

IF

IF IF

IF

IF

ID/MEM

ID/MEM

ID/MEM

ID/MEM

ID/MEM

ID/MEM

 EXE/WB

 EXE/WB

 EXE/WB

 EXE/WB

 EXE/WB

I1

I2

I3

I4

I6

I5

Figure 1-3. CalmRISC Pipeline Stream Diagram

Most CalmRISC instructions are 1-word instructions, while same branch instructions such as "LCALL" and "LJT"
instructions are 2-word instructions. In Figure 1-3, the instruction, I4, is a long branch instruction and it takes two
clock cycles to fetch the instruction. As indicated in the pipeline stream, the number of clocks per instruction (CPI)
is 1 except for long branches, which take 2 clock cycles per instruction.

PRODUCT OVERVIEW S3FB42F

1-6

I/O0-I/O7

P9.0-P9.5

P8.0-P8.3

P7.0-P7.7

P6.0-P6.7

P5.0-P5.5

CalmRISC
CPU

Flash
Memory

213-Kbytes

SRAM
48-Kbytes

DSP Core
MAC 2424

OSC & PLL
Control

RTC Basic
Timer

WDT

SSFDC

Port 9

Port 8

Port 7

Port 6

SIO/UART
IIC/IIS SO, Tx, SOD

SCK, SCL, SOC

SI, Rx, SDA, SOI

USB DP, DM

8-bit A/D C AVss
ADC0-ADC5

AVref

Ext Interrupt INT0-INT5
INT8-INT9

PPIC nSTROBE/nINIT
BUSY/PERROR

PD0-PD7

Timer 0/1 TACK/TBCK
TAOUT

Port 5

P
4.

0-
P

4.
3

P
or

t 4

P
3.

0-
P

3.
7

P
or

t 3

P
2.

0-
P

2.
7

P
or

t 2

P
1.

0-
P

1.
4

P
or

t 1

P
0.

0-
P

0.
7

P
or

t 0

Random
Number Gen.

BUZXIN XOUT

CP, CZ
Fvco

Figure 1-4. Block Diagram

S3FB42F PRODUCT OVERVIEW

1-7

VDD

VSS

nWE/P6.7
I/O0/P7.0
I/O1/P7.1
I/O2/P7.2
I/O3/P7.3

VDD

VSS

I/O4/P7.4
I/O5/P7.5
I/O6/P7.6

SDAT/I/O7/P7.7
SCLK /nSLCTIN/P8.0

VDD/VDD

VSS/VSS

XIN

XOUT

VPP/TEST
XT IN

XTOUT

RESETRESET /RESET
VDD

VSS

N.C
FVCO/nSTROBE/P8.1

nAUTOFD/P8.2
CP
CZ

VSS

P6
.6

/n
R

E
P6

.5
/n

W
P

P6
.4

/R
/n

B
P6

.3
/A

LE
P6

.2
/C

LE
P6

.1
/n

C
E1

P6
.0

/n
C

E0
V

D
D

A
V

SS

A
V

RE
F

P5
.5

/A
D

C
5/

IN
T5

P5
.4

/A
D

C
4/

IN
T4

P5
.3

/A
D

C
3/

IN
T3

P5
.2

/A
D

C
2/

IN
T2

P5
.1

/A
D

C
1/

IN
T1

P5
.0

/A
D

C
0/

IN
T0

P4
.2

/n
C

E2
P4

.1
/IN

T8
P4

.0
/IN

T9
P9

.6
/M

C
LK

nI
N

IT
/P

8.
3

PP
D

0/
P0

.0
PP

D
1/

P0
.1

PP
D

2/
P0

.2
PP

D
3/

P0
.3

PP
D

4/
P0

.4
PP

D
5/

P0
.5

PP
D

6/
P0

.6
PP

D
7/

P0
.7 V
D

D

nA
C

K/
P1

.0
BU

SY
/P

1.
1

SE
LE

C
T/

P1
.2

PE
RR

O
R/

P1
.3

nF
AU

LT
/P

1.
4

TA
C

LK
/P

2.
0

TB
C

LK
/P

2.
1

TA
O

U
T/

P2
.2

BU
Z/

P2
.3

R
x/

P2
.4

VSS

VSS

VDD

P9.5/SD1
P9.4/SCLK1
P9.3/WS1
VSS

VDD

P9.2/SD0
P9.1/SCLK0
P9.0/WS0
P3.7
P3.6
P3.5
P3.4/SDA
VSS

VDD

P3.3/SCL
P3.2/SCK
DM
VSS

VDD

DP
P3.1/SO
P3.0/SI
P2.7
P2.6
P2.5/Tx
VSS

VDD

S3FB42F

(100-QFP)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

10
0 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81

NOTE: N.C means No - Connection.

Figure 1-5. 100-QFP Pin Assignment

PRODUCT OVERVIEW S3FB42F

1-8

V
SS

V
D

D

P6
.6

/n
R

E
P6

.5
/n

W
P

P6
.4

/R
/n

B
P6

.3
/A

LE
P6

.2
/C

LE
P6

.1
/n

C
E1

P6
.0

/n
C

E0
V

D
D

A
V

SS

A
V

RE
F

P5
.5

/A
D

C
5/

IN
T5

P5
.4

/A
D

C
4/

IN
T4

P5
.3

/A
D

C
3/

IN
T3

P5
.2

/A
D

C
2/

IN
T2

P5
.1

/A
D

C
1/

IN
T1

P5
.0

/A
D

C
0/

IN
T0

P4
.2

/n
C

E2
P4

.1
/IN

T8
P4

.0
/IN

T9
P9

.6
/M

C
LK

V
SS

V
SS

V
D

D

CP CZ V
SS

nI
N

IT
/P

8.
3

PP
D

0/
P0

.0
PP

D
1/

P0
.1

PP
D

2/
P0

.2
PP

D
3/

P0
.3

PP
D

4/
P0

.4
PP

D
5/

P0
.5

PP
D

6/
P0

.6
PP

D
7/

P0
.7 V
D

D

nA
C

K/
P1

.0
BU

SY
/P

1.
1

SE
LE

C
T/

P1
.2

PE
RR

O
R/

P1
.3

nF
AU

LT
/P

1.
4

TA
C

K/
P2

.0
TB

C
K/

P2
.1

TA
O

U
T/

P2
.2

BU
Z/

P2
.3

R
x/

P2
.4

V
D

D

V
SS

P9.5/SD1
P9.4/SCLK1
P9.3/WS1
VSS

VDD

P9.2/SD0
P9.1/SCLK0
P9.0/WS0
P3.7
P3.6
P3.5
P3.4/SDA
VSS

VDD

P3.3/SCL
P3.2/SCK
DM
VSS

VDD

DP
P3.1/SO
P3.0/SI
P2.7
P2.6
P2.5/Tx

nWE/P6.7
I/O0/P7.0
I/O1/P7.1
I/O2/P7.2
I/O3/P7.3

VDD

VSS

I/O4/P7.4
I/O5/P7.5
I/O6/P7.6

SDAT/I/O7/P7.7
SCLK /nSLCTIN/P8.0

VDD/VDD

VSS/VSS

XIN

XOUT

VPP/TEST
XT IN

XTOUT

RESET
VDD

VSS

N.C
FVCO/nSTROBE/P8.1

nAUTOFD/P8.2

S3FB42F

(100-TQFP-1414C)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

10
0 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76

NOTE: N.C means No - Connection

Figure 1-6. 100-TQFP Pin Assignment

S3FB42F PRODUCT OVERVIEW

1-9

PIN DESCRIPTION

Table 1-1. S3FB42F Pin Descriptions (100-TQFP)

Pin
Name

Pin
Type

Pin
Description

Circuit
Type

Pin
Number

Share
Pins

P0.0-P0.7 I/O I/O port with bit programmable pins; Input or output
mode selected by software; Alternately can be used
as parallel port data bus pins, PPD0-PPD7.

P0.0/PPD0-P0.7/PPD7: Parallel port data bus

1 30-37
(32-39)

PPD0-
PPD7

P1.0-P1.4 I/O I/O port with bit programmable pins; Push-pull output
mode is selected by software; Alternately can be
used as parallel port control bus pins, nACK, BUSY,
SELECT, PERROR and nFAULT pin.

P1.0/nACK: Not parallel port acknowledge.
P1.1/BUSY: Parallel port busy.
P1.2/SELECT: Parallel port select.
P1.3/PERROR: Parallel port paper error
P1.4/nFAULT: Not parallel port fault.

1 39-43
(41-45)

nACK-
nFAULT

P2.0-P2.7 I/O I/O port with bit programmable pins; Input and output
mode are selected by software; Alternately can be
used as TACLK, TBCLK, TAOUT, BUZ,
Rx and Tx.

P2.0/TACLK: Timer 0 clock or capture input
P2.1/TBCLK: Timer 1 clock input
P2.2/TAOUT: Timer 2 capture input or, PWM or
toggle output
P2.3/BUZ: Buzzer output
P2.4/Rx: Receive input in UART
P2.5/Tx: Transmit output in UART
P2.6: Normal input/output pin
P2.7: Normal input/output pin

4 44-48,
51-53

(46-50,
53-55)

TACLK-Tx

P3.0-P3.7 I/O I/O port with bit programmable pins; Input or output
mode selected by software; Alternately can be used
as SI, SO, SCK, SCL and SDA.
N-channel open drains are configurable.

P3.0/SI: Serial data input pin in SIO(SPI)
P3.1/SO: Serial data output pin in SIO(SPI)
P3.2/SCK: Serial clock pin in SIO(SPI)
P3.3/SCL: Serial clock pin in I2C
P3.4/SDA: Serial data pin in I2C
P3.5: Normal input/output pin
P3.6: Normal input/output pin
P3.7: Normal input/output pin

5 54-55,
60-61,
64-67

(56-57,
62-63,
66-69)

SI-SDA

NOTE: Parentheses indicate pin number for 100-QFP package.

PRODUCT OVERVIEW S3FB42F

1-10

Table 1-1. S3FB42F Pin Descriptions (100-TQFP) (Continued)

Pin
Name

Pin
Type

Pin
Description

Circuit
Type

Pin
Number

Share
Pins

P4.0-P4.2 I/O I/O port with bit programmable pins; Input and output
mode are selected by software; P4.0-P4.1 can be
used as inputs for external interrupts INT9-INT8. (with
noise filter) and assigned pull-up by software;
Alternately P4.2 can be used as CE2 for SmartMedia
chip select signal.

P4.0/INT9: External interrupt 9 input
P4.1/INT8: External interrupt 8 input
P4.2/CE2: Normal in/output pin

6, 3 80-82
(82-84)

INT9-INT8
CE2

P5.0-P5.5 I Input port with bit programmable pins; Input or ADC
input mode selected by software; software assignable
pull-up; Port 5 can be used as inputs for external
interrupts INT0-INT5 or ADC block.

P5.0/INT0/ADC0: Ext interrupt 0 or ADC0 input
P5.1/INT1/ADC1: Ext interrupt 1 or ADC1 input
P5.2/INT2/ADC2: Ext interrupt 2 or ADC2 input
P5.3/INT3/ADC3: Ext interrupt 3 or ADC3 input
P5.4/INT4/ADC4: Ext interrupt 4 or ADC4 input
P5.5/INT5/ADC5: Ext interrupt 5 or ADC5 input

7 83-88
(85-90)

INT0/ADC0-
INT5/ADC5

P6.0-P6.7 I/O I/O port with bit programmable pins; Alternately Port
6 can be used as CE0, CE1, CLE, ALE, WE, WP,
RE and R/B for SmartMedia control signal.

P6.0/CE0: Chip Select strobe output 0 for SM.
P6.1/CE1: Chip Select strobe output 1 for SM.
P6.2/CLE: Command latch enable output for SM.
P6.3/ALE: Address latch enable output for SM.
P6.4/R/B: Ready and Busy status input for SM.
P6.5/WP: Write protect output for SM.
P6.6/RE: Read enable strobe output for SM.
P6.7/WE: Write enable strobe output for SM.

1, 2 92-98, 1
(94-100, 3)

CE0-WE

P7.0-P7.7 I/O I/O port with bit programmable pins; Alternately Port
7 can be used as I/O port for SmartMedia control
signal.

P7.0/I/O0-P7.7/I/O7: I/O port for SmartMedia control
signal.

1 2-5,
8-11
(4-7,

10-13)

I/O0-I/O7

NOTE: Parentheses indicate pin number for 100-QFP package.

S3FB42F PRODUCT OVERVIEW

1-11

Table 1-1. S3FB42F Pin Descriptions (100-TQFP) (Continued)

Pin
Name

Pin
Type

Pin
Description

Circuit
Type

Pin
Number

Share
Pins

P8.0-P8.3 I/O I/O port with bit programmable pins; Alternately can be
used as parallel port control bus pins, nSLCTIN,
NsTROBE, nAUTOFD and nINIT pin.

P8.0/nSLCTIN: Not select information input.
P8.1/nSTROBE/FVCO: Not strobe input or FVCO output
P8.2/nAUTOFD: Not auto-feed input
P8.3/nINIT: Not parallel port initialization.

4 12, 24,
25, 29

(14, 26,
27, 31)

nSLCTIN-
nINIT

P9.0-P9.6 I/O I/O port with bit programmable pins; Alternately can be
used as serial data interface pins, WS0, SCLK0, SD0,
WS1, SCLK1, SD1 and MCLK.

P9.0/WS0: Word select pin in I2S0
P9.1/SCLK0: Bit serial clock pin in I2S0.
P9.2/SD0: Serial data pin in I2S0
P9.3/WS1: Word select pin in I2S1.
P9.4/SCLK1: Bit serial clock pin in I2S1.
P9.5/SD1: Serial data pin in I2S1.
P9.6/MCLK: Master Clock pin in I2S0.

4 68-70,
73-76, 79
(70-72,

75-77, 79)

WS0-
MCLK

DM I/O Only be used USB transceive/receive port – 59 (61) –

DP I/O Only be used USB transceive/receive port – 56 (58) –

VDD, VDD – Power supply – 6, 13,
21, 26,
38, 49,
57, 62,
71, 76,
91, 99
(1, 8,

15, 23,
28, 40,
52, 59,
64, 73,
78, 93)

–

VSS, VSS – Ground – 7, 14,
22, 27,
28, 50,
58, 63,
72, 77,
78, 100
(2, 9,

16, 24,
29, 30,
51, 60,
65, 74,
79, 80)

–

NOTE: Parentheses indicate pin number for 100-QFP package.

PRODUCT OVERVIEW S3FB42F

1-12

S3FB42F PRODUCT OVERVIEW

1-13

Table 1-1. S3FB42F Pin Descriptions (100-TQFP) (Continued)

Pin
Name

Pin
Type

Pin
Description

Circuit
Type

Pin
Number

Share
Pins

XIN, XOUT – Crystal, ceramic oscillator signal for PLL reference
frequency (for external clock input, use XIN and input
XIN's reverse phase to XOUT)

– 15, 16
(17, 18)

–

XTIN, XTOUT – Crystal, ceramic oscillator (for external clock input,
use XTIN and input XTIN's reverse phase to XTOUT)

– 18, 19
(20,21)

–

CP, CZ – Low pass filter circuit for PLL – 26, 27
(28, 29)

–

TEST I Test signal input 9 17 (19) –

RESET I Reset signal 8 20 (22) –

AVREF,
AVSS

– Power supply pin and ground pin for A/D converter. – 89, 90
(91, 92)

–

SDAT I/O Serial data in/output pin for serial program block 1 11 (13) P7.7

SCLK I Serial clock input pin for serial program block 1 12 (14) P8.0

VDD – Power supply pin for serial program block – 13 (15) –

VSS – Ground pin for serial program block – 14 (16) –

VPP – Flash Cell Power supply pin or mode selection pin for
serial program block

– 17 (19) TEST

RESET I Reset pin for serial program block 8 20 (22) RESET

NOTE: Parentheses indicate pin number for 100-QFP package.

PRODUCT OVERVIEW S3FB42F

1-14

PIN CIRCUIT DIAGRAMS

VDD

In/Out

M
U
X

VSS

Select

Port Data

Alternative Signal

Output Disable

Alternative Input

Normal Input

Data

Figure 1-7. Pin Circuit Type 1 (Port 0, P1.0-P1.4, P6.0-P6.5, and Port 7)

VDD

In/Out

M
U
X

VSS

Select

Port Data

Alternative Signal

Output Disable

Alternative Input

Normal Input

Pull-up
Resistor

VDD

Pull-up Enable

Data

Figure 1-8. Pin Circuit Type 2 (P6.6 and P6.7)

S3FB42F PRODUCT OVERVIEW

1-15

VDD

In/Out

M
U
X

VSS

Select

Port Data

Alternative Signal

Output Disable

Alternative Input

Normal Input

Pull-up
Resistor

VDD

Pull-up Enable

Data

Figure 1-9. Pin Circuit Type 3 (P4.2)

PRODUCT OVERVIEW S3FB42F

1-16

VDD

In/Out

M
U
X

VSS

Select

Port Data

Alternative Signal

Output Disable

Alternative Input

Normal Input

Data

Figure 1-10. Pin Circuit Type 4 (Port 2, Port 8, and Port 9)

VDD

M
U
X

VSS

Select

Port Data

Alternative Signal

Output Disable

Alternative Input

Normal Input

Pull-up
Resistor

VDD

Pull-up Enable

Data

Open-Drain

In/Out

Figure 1-11. Pin Circuit Type 5 (Port 3)

S3FB42F PRODUCT OVERVIEW

1-17

VDD

In/Out

VSS

Output Disable

Input

External
Interrupt Input

Pull-up
Resistor

VDD

Pull-up Enable

Noise
Filter

Data

Figure 1-12. Pin Circuit Type 6 (P4.0, and P4.1)

Normal Input Mode

Normal Input

Interrupt Input Noise
Filter

In

Pull-up
Resistor

VDD

Pull-up Resistor
Enable

VREF

A/D C Logic +
-

Figure 1-13. Pin Circuit Type 7 (Port 5)

PRODUCT OVERVIEW S3FB42F

1-18

In

VDD

Figure 1-14. Pin Circuit Type 8 (RESETRESET)

In

Figure 1-15. Pin Circuit Type 9 (TEST)

S3FB42F PRODUCT OVERVIEW

1-19

NOTES

S3FB42F ADDRESS SPACE

2-1

2 ADDRESS SPACE

OVERVIEW

CalmRISC has 20-bit program address lines, PA[19:0], which supports up to 1M-word program memory.
The 1M-word program memory space is divided into 256 pages and each page is 4K words long as shown in the next
page. The upper 8 bits of the program counter, PC[19:12], points to a specific page and the lower 12 bits, PC[11:0],
specify the offset address of the page.

CalmRISC also has 16-bit data memory address lines, DA[15:0], which supports up to 64K-byte data memory.
The 64K-byte data memory space is divided into 256 pages and each page has 256 bytes. The upper 8 bits of the
data address, DA[15:8], points to a specific page and the lower 8 bits, DA[7:0], specify the offset address of the
page.

S3FB42F has 72K-word (144K-byte) flash ROM type program memory, 34.5K-word (69K-byte) flash ROM type data
memory and 48K-byte RAM type data memory.

Memory configuration in CalmRISC side

Data Memory: Total size - 117K bytes (Flash ROM type, 69K bytes and SRAM type, 48K bytes)

Code Memory: Total size - 144K bytes (Flash ROM type, 144K bytes)

Memory configuration in MAC-2424 side

Data Memory: X-Memory area - SRAM, 12K LWords (36K bytes)
Y-Memory area - SRAM, 4K LWords (12K bytes) and Flash ROM, 23K LWords (69K bytes)

Code Memory: Total size - 72K words (Flash ROM type, 144K byte)

Memory Type

Flash ROM: 213K bytes

SRAM: 48K bytes

ADDRESS SPACE S3FB42F

2-2

PROGRAM MEMORY (ROM)

00H

FFFH

18 page

72K-word
(144K-byte)

00H

FFFH

4K-word
(8K-byte)

16-Bit

00000H

11FFFH

00020H
0001FH

Vector and
Option Area

Flash ROM Memory
(4K-word x 18 Page
= 72K-word)

72K-word Code
Momory~~~~

Figure 2-1. Flash Memory (Code Memory Area)

From 00000H to 00004H addresses are used for the vector address of exceptions, and 0001EH, 0001FH are used for
the option only. Aside from these addresses others are reserved in the vector and option area. Program memory area
from the address 00020H to 11FFH can be used for normal programs.

S3FB42F's program memory is 72K words (144K bytes).

S3FB42F ADDRESS SPACE

2-3

DATA MEMORY ORGANIZATION

The total data memory bank address space is 64 K-byte, addressed by DA[15:0], which is also divided into 256
pages, Each page consists of 256 bytes as shown below. S3FB42F has 2 data bank memory.

64K-Byte

FFH

00H

8-Bit

Bank 0

00H

FFH

256 pages

FFH

00H
128 pages (X-Memory)

128 pages (Y-Memory)

8-Bit

Bank 1

256-Byte

FFH

256-Byte

Figure 2-2. Data Memory Map

ADDRESS SPACE S3FB42F

2-4

SRAM

SRAM

Blank

8000H

7FFFH

4000H
3FFFH

0100H

12K-byte

Page 144

Page 128

Page 63

Page 16

Bank 1

SRAM

Blank

9FFFH

8000H

7FFFH

2000H
1FFFH

0100H

8K-byte

24K-byte

7.75K-byte

Page 128

Page 127

Page 1

Bank 0

Y-Memory

X-Memory

SRAM

Page 0
00FFH

Page Address I/O Area

4K-byte

Blank

8FFFH

1000H
Page 31
Page 32

FFFFH

C000H

B800H

D000H

16KB

18KB
12KB

2
1

YROM Bank 0

Flash ROM

FFFFH

E000H

DC00H
E800H

8KB

9KB
6KB

2
1

YROM Bank 0

Flash ROM

0000H

MAC access unit, LWord = 3-Byte Long.
(1-Byte to Bank 1, and 2-Byte of Bank 0)
BANK 0 XM = 2000H + MAC Offset x 2
 YM = 8000H + MAC Offset x 2
BANK 1 XM = 1000H + MAC Offset
 YM = 8000H + MAC Offset

Figure 2-3. Data Memory Map in CalmRISC Side

S3FB42F ADDRESS SPACE

2-5

4000H

3FFFH

1000H
0FFFH

0000H

4K-LWord

12K-LWord

SRAM Y-Memory

X-Memory

SRAM

Blank

7FFFH

6000H

5C00H
6800H

2
1

YROM Bank 0

Flash ROM

6K-LW
9K-LW

8K-LW

Where, LWord: 3-Byte Long.
(1-Byte of Bank 1, and 2-Byte of Bank 0)
XM MAC Offset = MAC Address - 1000H
YM MAC Offset = MAC Address - 4000H

4FFFH

4K-LWord

Figure 2-4. Data Memory Map in MAC-2424 Side

ADDRESS SPACE S3FB42F

2-6

SRAM
(24KB)

9FFFH

8000H

7FFFH

2000H

SRAM
(8KB) Y-Memory

X-Memory

Bank 1 Bank 0

Page 0
00FFH
0000H

8000H

3FFFH

1000H

CalmRISC Memory Space MAC2424 Memory Space

E000H
DC00H

E800H

Flash ROM
(8KB)

9KB

6KB

8FFFH

FFFFH

C000H

B800H

Flash ROM
(16KB)

18KB
D000H

12KB

3FFFH

1000H

SRAM
(12K-LWord)

5FFFH

4FFFH

4000H

5000H

Blank
(4K-LWord)

SRAM
(4K-LWord)

7FFFH

6000H

5C00H

Flash ROM
(8K-LWord)

9K-LW

6800H

6K-LW

SRAM
(4KB)

SRAM
(12KB)

I/O Area

Figure 2-5. Data Memory Map

S3FB42F REGISTERS

3-1

3 REGISTERS

OVERVIEW

The registers of CalmRISC are grouped into 2 parts: general purpose registers and special purpose registers.

Table 3-1. General and Special Purpose Registers

Registers Mnemonics Description Reset Value

General Purpose
Registers (GPR)

R0 General Register 0 Unknown

R1 General Register 1 Unknown

R2 General Register 2 Unknown

R3 General Register 3 Unknown

Special Purpose
Registers (SPR)

Group 0 (SPR0) IDL0 Lower Byte of Index Register 0 Unknown

IDL1 Lower Byte of Index Register 1 Unknown

IDH Higher Byte of Index Register Unknown

SR0 Status Register 0 00H

Group 1 (SPR1) ILX Instruction Pointer Link Register for
Extended Byte

Unknown

ILH Instruction Pointer Link Register for
Higher Byte

Unknown

ILL Instruction Pointer Link Register for
Lower Byte

Unknown

SR1 Status Register 1 Unknown

GPR’s can be used in most instructions such as ALU instructions, stack instructions, load instructions, etc (See
the instruction set sections). From the programming standpoint, they have almost no restriction whatsoever.
CalmRISC has 4 banks of GPR’s and each bank has 4 registers, R0, R1, R2, and R3. Hence, 16 GPR’s in total are
available. The GPR bank switching can be done by setting an appropriate value in SR0[4:3] (See SR0 for details).
The ALU operations between GPR’s from different banks are not allowed.

SPR’s are designed for their own dedicated purposes. They have some restrictions in terms of instructions that can
access them. For example, direct ALU operations cannot be performed on SPR’s. However, data transfers between
a GPR and an SPR are allowed and stack operations with SPR’s are also possible (See the instruction sections for
details).

REGISTERS S3FB42F

3-2

INDEX REGISTERS: IDH, IDL0 AND IDL1

IDH in concatenation with IDL0 (or IDL1) forms a 16-bit data memory address. Note that CalmRISC’s data memory
address space is 64K bytes (addressable by 16-bit addresses). Basically, IDH points to a page index and IDL0 (or
IDL1) corresponds to an offset of the page. Like GPR’s, the index registers are 2-way banked. There are 2 banks in
total, each of which has its own index registers, IDH, IDL0 and IDL1. The banks of index registers can be switched
by setting an appropriate value in SR0[2] (See SR0 for details). Normally, programmers can reserve an index register
pair, IDH and IDL0 (or IDL1), for software stack operations.

LINK REGISTERS: ILX, ILH AND ILL

The link registers are specially designed for link-and-branch instructions (See LNK and LRET instructions in the
instruction sections for details). When an LNK instruction is executed, the current PC[19:0] is saved into ILX, ILH
and ILL registers, i.e., PC[19:16] into ILX[3:0], PC[15:8] into ILH [7:0], and PC[7:0] into ILL[7:0], respectively. When
an LRET instruction is executed, the return PC value is recovered from ILX, ILH, and ILL, i.e., ILX[3:0] into PC[19:16],
ILH[7:0] into PC[15:8] and ILL[7:0] into PC[7:0], respectively. These registers are used to access program memory
by LDC/LDC+ instructions. When an LDC or LDC+ instruction is executed, the (code) data residing at the program
address specified by ILX:ILH:ILL will be read into TBH:TBL. LDC+ also increments ILL after accessing the program
memory.

There is a special core input pin signal, nP64KW, which is reserved for indicating that the program memory address
space is only 64 K word. By grounding the signal pin to zero, the upper 4 bits of PC, PC[19:16], is deactivated and
therefore the upper 4 bits , PA[19:16], of the program memory address signals from CalmRISC core are also
deactivated. By doing so, power consumption due to manipulating the upper 4 bits of PC can be totally eliminated
(See the core pin description section for details). From the programmer’s standpoint, when nP64KW is tied to the
ground level, then PC[19:16] is not saved into ILX for LNK instructions and ILX is not read back into PC[19:16] for
LRET instructions. Therefore, ILX is totally unused in LNK and LRET instructions when nP64KW = 0.

S3FB42F REGISTERS

3-3

STATUS REGISTER 0: SR0

SR0 is mainly reserved for system control functions and each bit of SR0 has its own dedicated function.

Table 3-2. Status Register 0: SR0

Flag Name Bit Description Reset Value

eid 0 Data memory page selection in direct addressing 1

ie 1 Global interrupt enable x

idb 2 Index register banking selection 0

grb[1:0] 4,3 GPR bank selection 00

exe 5 Stack overflow/underflow exception enable x

ie0 6 Interrupt 0 enable x

ie1 7 Interrupt 1 enable x

SR0[0] (or eid) selects which page index is used in direct addressing. If eid = 0, then page 0 (page index = 0) is
used. Otherwise (eid = 1), IDH of the current index register bank is used for page index. SR0[1] (or ie) is the global
interrupt enable flag. As explained in the interrupt/exception section, CalmRISC has 3 interrupt sources (non-
maskable interrupt, interrupt 0, and interrupt 1) and 1 stack exception. Both interrupt 0 and interrupt 1 are masked by
setting SR0[1] to 0 (i.e., ie = 0). When an interrupt is serviced, the global interrupt enable flag ie is automatically
cleared. The execution of an IRET instruction (return from an interrupt service routine) automatically sets ie = 1.
SR0[2] (or idb) and SR0[4:3] (or grb[1:0]) selects an appropriate bank for index registers and GPR’s, respectively as
shown below:

R3

R0

R2

R1

R3

R0

R2

R1

R3

R0

R2

R1

R3

R0

R2

R1
IDH IDL0

IDL1IDH IDL0

IDL1Bank 0
Bank 1

Bank 2

Bank 3
11
10

01
00

grb [1:0]

0
1

idb

Figure 3-1. Bank Selection by Setting of GRB Bits and IDB Bit

SR0[5] (or exe) enables the stack exception, that is, the stack overflow/underflow exception. If exe = 0, the stack
exception is disabled. The stack exception can be used for program debugging in the software development stage.
SR0[6] (or ie0) and SR0[7] (or ie1) are enabled, by setting them to 1. Even though ie0 or ie1 are enabled, the
interrupts are ignored (not serviced) if the global interrupt enable flag ie is set to 0.

REGISTERS S3FB42F

3-4

STATUS REGISTER 1: SR1

SR1 is the register for status flags such as ALU execution flag and stack full flag.

Table 3-3. Status Register 1: SR1

Flag Name Bit Description

C 0 Carry flag

V 1 Overflow flag

Z 2 Zero flag

N 3 Negative flag

SF 4 Stack Full flag

– 5,6,7 Reserved

SR1[0] (or C) is the carry flag of ALU executions. SR1[1] (or V) is the overflow flag of ALU executions. It is set to 1 if
and only if the carry-in into the 8-th bit position of addition/subtraction differs from the carry-out from the 8-th bit
position. SR1[2] (or Z) is the zero flag, which is set to 1 if and only if the ALU result is zero. SR1[3] (or N) is the
negative flag. Basically, the most significant bit (MSB) of ALU results becomes N flag. Note a load instruction into a
GPR is considered an ALU instruction. However, if an ALU instruction touches the overflow flag (V) like ADD, SUB,
CP, etc, N flag is updated as exclusive-OR of V and the MSB of the ALU result. This implies that even if an ALU
operation results in overflow, N flag is still valid. SR1[4] (or SF) is the stack overflow flag. It is set when the hardware
stack is overflowed or underflowed. Programmers can check if the hardware stack has any abnormalities by the
stack exception or testing if SF is set (See the hardware stack section for great details).

NOTE: When an interrupt occur SR0 and SR1 are not saved by hardware, so the SR1 register values must be saved by
software.

S3FB42F MEMORY MAP

4-1

4 MEMORY MAP

OVERVIEW

To support the control of peripheral hardware, the address for peripheral control registers are memory-mapped to
page 0 of the RAM. Memory mapping lets you use a mnemonic as the operand of an instruction in place of the
specific memory location.
In this section, detailed descriptions of the S3FB42F control registers are presented in an easy-to-read format.
You can use this section as a quick-reference source when writing application programs.

This memory area can be accessed with the whole method of data memory access.

— If SR0 bit 0 is "0" then the accessed register area is always page 0.

— If SR0 bit 0 is "1" then the accessed register page is controlled by the proper IDH register's value.

So if you want to access the memory map area, clear the SR0.0 and use the direct addressing mode.
This method is used for most cases.
This control register is divided into five areas. Here, the system control register area is same in every device.

FFH

Control Register

System Control Register Area

Port Data Register Area

Peripheral Control Register (1 x 16 or 2 x 8)

Reserved Area (1 x 16 or 2 x 8)
Specially in S3FB42F the area from 60H-7FH
can be used for external device.
So if you want to use some peripheral externally,
then you can control that by means of this special
area.

Peripheral Control Register (4 x 8)

Port Control Register Area (4 x 8)

80H

7FH

70H
6FH

40H
3FH

20H
1FH

10H
0FH

00H

Standard exhortative area

Standard area

~~ ~~

Figure 4-1. Memory Map Area

MEMORY MAP S3FB42F

4-2

Table 4-1. Registers

Register Name Mnemonic Decimal Hex Reset R/W

Location 1AH-1FH are not mapped

Port 9 data register P9 25 19H 00H R/W

Port 8 data register P8 24 18H 00H R/W

Port 7 data register P7 23 17H 00H R/W

Port 6 data register P6 22 16H 00H R/W

Port 5 data register P5 21 15H 00H R

Port 4 data register P4 20 14H 00H R/W

Port 3 data register P3 19 13H 00H R/W

Port 2 data register P2 18 12H 00H R/W

Port 1 data register P1 17 11H 00H R/W

Port 0 data register P0 16 10H 00H R/W

Watchdog timer control register WDTCON 15 0FH 00H R/W

Watchdog timer enable register WDTEN 14 0EH 00H R/W

Basic timer counter BTCNT 13 0DH 00H R

Basic timer control register BTCON 12 0CH 00H R/W

Interrupt ID register 1 IIR1 11 0BH – R/W

Interrupt priority register 1 IPR1 10 0AH 00H R/W

Interrupt mask register 1 IMR1 9 09H 00H R/W

Interrupt request register 1 IRQ1 8 08H – R/W

Interrupt ID register 0 IIR0 7 07H – R/W

Interrupt priority register 0 IPR0 6 06H 00H R/W

Interrupt mask register 0 IMR0 5 05H 00H R/W

Interrupt request register 0 IRQ0 4 04H - R/W

Oscillator control register OSCCON 3 03H 00H R/W

Power control register (stop or idle mode) PCON 2 02H 04H R/W

Locations 00H-01H are not mapped

NOTES:
1. '–' means underlined.
2. If you want to clear the bit of IRQx, then write the number which you want to clear to IIRx. For example, when clear

IRQ0.4 then LD R0, #04H and LD IIR0, R0.

S3FB42F MEMORY MAP

4-3

Table 4-1. Registers (Continued)

Register Name Mnemonic Decimal Hex Reset R/W

Port 0 control register P0CON 32 20H 00H R/W

Port 1 control register P1CON 33 21H 00H R/W

Port 2 control register low P2CONL 34 22H 00H R/W

Port 2 control register high P2CONH 35 23H 30H R/W

Port 3 control register low P3CONL 36 24H 00H R/W

Port 3 control register high P3CONH 37 25H 00H R/W

Port 3 pull-up resistor P3PUR 38 26H 00H R/W

Location 27H is not mapped

Port 5 control register P5CON 40 28H 00H R/W

Port 5 pull-up resistor P5PUR 41 29H 00H R/W

Port 5 Int. control register P5INTCON 42 2AH 00H R/W

Port 5 Int. mode register low P5INTMODL 43 2BH 00H R/W

Port 5 Int. mode register High P5INTMODH 44 2CH 00H R/W

External Int. pending register EINTPND 45 2DH 00H R/W

Locations 2E-2FH are not mapped

Port 4 control register P4CON 48 30H 00H R/W

Port 4 Int. control register P4INTCON 49 31H 00H R/W

Port 4 Int. mode register P4INTMOD 50 32H 00H R/W

Location 33H is not mapped

Port 6 control register P6CON 52 34H 00H R/W

Port 7 control register P7CON 53 35H 00H R/W

Port 8 control register P8CON 54 36H 00H R/W

Port 9 control register P9CON 55 37H 00H R/W

Locations 38H-3FH are not mapped

Timer A control register TACON 64 40H 00H R/W

Timer A data register TADATA 65 41H 00H R/W

Timer A counter TACNT 66 42H – R

Location 43H is not mapped

Timer B control register TBCON 68 44H 00H R/W

Timer B data register TBDATA 69 45H 00H R/W

Timer B counter TBCNT 70 46H – R

Locations 47H-4BH are not mapped

Watch timer control register WTCON 76 4CH 00H R/W

Locations 4DH-4FH are not mapped

MEMORY MAP S3FB42F

4-4

Table 4-1. Registers (Continued)

Register Name Mnemonic Decimal Hex Reset R/W

Serial I/O control register SIOCON 80 50H 00H R/W

Serial I/O pre-scale register SIOPS 81 51H 00H R/W

Serial I/O data register SIODATA 82 52H 00H R/W

Location 53H is not mapped

A/D C control register ADCON 84 54H 00H R/W

A/D conversion result data register ADDATA 85 55H – R

Locations 56H-57H are not mapped

IIS control register 0 IISCON0 88 58H 00H R/W

IIS mode register 0 IISMODE0 89 59H 00H R/W

IIS buffer pointer register 0 IISPTR0 90 5AH 00H R/W

Location 5BH is not mapped

IIS control register 1 IISCON1 92 5CH 00H R/W

IIS mode register 1 IISMODE1 93 5DH 00H R/W

IIS buffer pointer register 1 IISPTR1 94 5EH 00H R/W

Location 5FH is not mapped

Parallel port data register PPDATA 96 60H 00H R/W

Parallel port command data register PPCDATA 97 61H 00H R/W

Parallel port status control register PPSCON 98 62H 08H R/W

Parallel port status register PPSTAT 99 63H 3FH R/W

Parallel port control register low PPCONL 100 64H 00H R/W

Parallel port control register high PPCONH 101 65H 00H R/W

Parallel port int. control register low PPINTCONL 102 66H 00H R/W

Parallel port int. control register high PPINTCONH 103 67H 00H R/W

Parallel port int. pending register low PPINTPNDL 104 68H 00H R/W

Parallel port int. pending register high PPINTPNDH 105 69H 00H R/W

Parallel port ack. width data register PPACKD 106 6AH xxH R/W

Locations 6BH-6FH are not mapped

SmartMedia control register SMCON 112 70H 00H R/W

ECC counter ECCNT 113 71H 00H R/W

ECC data register low ECCL 114 72H 00H R/W

ECC data register high ECCH 115 73H 00H R/W

ECC data register extension ECCX 116 74H 00H R/W

ECC result register low ECCRSTL 117 75H 00H R/W

S3FB42F MEMORY MAP

4-5

Table 4-1. Registers (Continued)

Register Name Mnemonic Decimal Hex Reset R/W

ECC result register high ECCRSTH 118 76H 00H R/W

ECC clear register ECCCLR 119 77H – W

Flash memory control register FMCON 120 78H 00H R/W

Location 79H is not mapped

Flash user programming serial clock register FSCLK 122 7AH 00H R/W

Flash user programming serial data register FSDAT 123 7BH 00H R/W

Locations 7CH-7FH are not mapped

Function address register FUNADDR 128 80H 00H R

Power management register PWRMAN 129 81H 00H R

Frame number LO register FRAMELO 130 82H 00H R

Frame number HI register FRAMEHI 131 83H 00H R

Interrupt pending register INTREG 132 84H 00H R/W

Interrupt enable register INTENA 133 85H 00H R/W

Endpoint index register EPINDEX 134 86H 00H R/W

Locations 87H-88H are not mapped

Endpoint direction register EPDIR 137 89H 00H W

IN control status register INCSR 138 8AH 00H R/W

OUT control status register OUTCSR 139 8BH 00H R/W

IN MAX packet register INMAXP 140 8CH 00H R/W

OUT MAX packet register OUTMAXP 141 8DH 00H R/W

Write counter LO register WRTCNTLO 142 8EH 00H R/W

Write counter HI register WRTCNTHI 143 8FH 00H R/W

Endpoint 0 FIFO register EP0FIFO 144 90H 00H R/W

Endpoint 1 FIFO register EP1FIFO 145 91H 00H R/W

Endpoint 2 FIFO register EP2FIFO 146 92H 00H R/W

Endpoint 3 FIFO register EP3FIFO 147 93H 00H R/W

MEMORY MAP S3FB42F

4-6

Table 4-1. Registers (Continued)

Register Name Mnemonic Decimal Hex Reset R/W

Control register for random number generator RANCON 168 A8H – R/W

8-bit linear feedback shift register LFSR8 169 A9H – R/W

16-bit linear feedback shift register lower LFSR16L 170 AAH – R/W

16-bit linear feedback shift register higher LFSR16H 171 ABH – R/W

PLL data register lower PLLDATAL 172 ACH – R/W

PLL data register higher PLLDATAH 173 ADH – R/W

PLL control register PLLCON 174 AEH 0 R/W

Location AFH is not mapped

UART line control register LCON 176 B0H 00H R/W

UART control register UCON 177 B1H 00H R/W

UART status register USSR 178 B2H C0H R

UART transmit buffer register TBR 179 B3H – W

UART receive buffer register RBR 180 B4H – R

UART band rate divisor register UBRDR 181 B5H 00H R/W

UART interrupt pending register UPEND 182 B6H 00 R/W

Location BFH is not mapped

IIC control register IICCON 184 B8H 00H R/W

IIC status register IICSR 185 B9H 00H R/W

IIC data register IICDATA 186 BAH – R/W

IIC address register IICADDR 187 BBH – R/W

IIC pre-scaler register IICPS 188 BCH FFH R/W

IIC pre-scaler count register for test IICCNT 189 BDH – R

Locations BEH-BFH is not mapped

64-byte IIS I/O buffer BUF64 C0H
FFH

– R/W

S3FB42F HARDWARE STACK

5-1

5 HARDWARE STACK

OVERVIEW

The hardware stack in CalmRISC has two usages:

— To save and restore the return PC[19:0] on LCALL, CALLS, RET, and IRET instructions.

— Temporary storage space for registers on PUSH and POP instructions.

When PC[19:0] is saved into or restored from the hardware stack, the access should be 20 bits wide. On the other
hand, when a register is pushed into or popped from the hardware stack, the access should be 8 bits wide. Hence,
to maximize the efficiency of the stack usage, the hardware stack is divided into 3 parts: the extended stack bank
(XSTACK, 4-bits wide), the odd bank (8-bits wide), and the even bank (8-bits wide).

3 0 7 0 7 0

Level 0

Level 1

Level 2

Level 14

Level 15

XSTACK Odd Bank Even Bank

Hardware Stack

015

Stack Pointer
SPTR [5:0]

Odd or Even
Bank Selector

Stack Level
Pointer

Figure 5-1. Hardware Stack

HARDWARE STACK S3FB42F

5-2

The top of the stack (TOS) is pointed to by a stack pointer, called sptr[5:0]. The upper 5 bits of the stack pointer,
sptr[5:1], points to the stack level into which either PC[19:0] or a register is saved. For example, if sptr[5:1] is 5H or
TOS is 5, then level 5 of XSTACK is empty and either level 5 of the odd bank or level 5 of the even bank is empty. In
fact, sptr[0], the stack bank selection bit, indicates which bank(s) is empty. If sptr[0] = 0, both level 5 of the even and
the odd banks are empty. On the other hand, if sptr[0] = 1, level 5 of the odd bank is empty, but level 5 of the even
bank is occupied. This situation is well illustrated in the figure below.

Level 0
Level 1
Level 2

Level 15

XSTACK Odd Bank Even Bank

0
15

SPTR [5:0]

Bank Selector

Stack Level
Pointer

Level 3

Level 4
Level 5

0 0 11 0
0

Level 0
Level 1
Level 2

Level 15

XSTACK Odd Bank Even Bank

0
15

SPTR [5:0]

Bank Selector

Stack Level
Pointer

Level 3

Level 4
Level 5

0 0 11 1
0

Figure 5-2. Even and Odd Bank Selection Example

As can be seen in the above example, sptr[5:1] is used as the hardware stack pointer when PC[19:0] is pushed or
popped and sptr[5:0] as the hardware stack pointer when a register is pushed or popped. Note that XSTACK is used
only for storing and retrieving PC[19:16]. Let us consider the cases where PC[19:0] is pushed into the hardware
stack (by executing LCALL/CALLS instructions or by interrupts/exceptions being served) or is retrieved from the
hardware stack (by executing RET/IRET instructions). Regardless of the stack bank selection bit (sptr[0]), TOS of
the even bank and the odd bank store or return PC[7:0] or PC[15:8], respectively. This is illustrated in the following
figures.

S3FB42F HARDWARE STACK

5-3

Level 0

Level 15

XSTACK Odd Bank Even Bank

15
SPTR [5:0]

Bank Selector
Level 5

001 100

Level 6

0

Level 0

Level 15

XSTACK Odd Bank Even Bank

15
SPTR [5:0]

Bank Selector

Stack Level
Pointer

Level 5

011 000

Level 6

0

PC[7:0]

Stack Level
Pointer

Level 0

Level 15

XSTACK Odd Bank Even Bank

15
SPTR [5:0]

Bank Selector
Level 5

101 100

Level 6

0

Level 0

Level 15

XSTACK Odd Bank Even Bank

15
SPTR [5:0]

Bank Selector

Level 5

111 000

Level 6

0

by Executing RET, IRET
by Executing CALL, CALLS
or Interrupts/Exceptions

Stack Level
Pointer

Stack Level
Pointer

PC[19:16] PC[15:8]

PC[15:8]

PC[19:16] PC[7:0]

by Executing RET, IRET
by Executing CALL, CALLS
or Interrupts/Exceptions

Figure 5-3. Stack Operation with PC [19:0]

As can be seen in the figures, when stack operations with PC[19:0] are performed, the stack level pointer sptr[5:1]
(not sptr[5:0]) is either incremented by 1 (when PC[19:0] is pushed into the stack) or decremented by 1 (when
PC[19:0] is popped from the stack). The stack bank selection bit (sptr[0]) is unchanged. If a CalmRISC core input
signal nP64KW is 0, which signifies that only PC[15:0] is meaningful, then any access to XSTACK is totally
deactivated from the stack operations with PC. Therefore, XSTACK has no meaning when the input pin signal,
nP64KW, is tied to 0. In that case, XSTACK doesn’t have to even exist. As a matter of fact, XSTACK is not included
in CalmRISC core itself and it is interfaced through some specially reserved core pin signals (nPUSH, nSTACK,
XHSI[3:0], XSHO[3:0]), if the program address space is more than 64K words (See the core pin signal section for
details).

With regards to stack operations with registers, a similar argument can be made. The only difference is that the data
written into or read from the stack are a byte. Hence, the even bank and the odd bank are accessed alternately as
shown below.

HARDWARE STACK S3FB42F

5-4

Level 0

Level 15

XSTACK Odd Bank Even Bank

15
SPTR [5:0]

Bank Selector
Level 5

001 100

Level 6

0

Level 0

Level 15

XSTACK Odd Bank Even Bank

15
SPTR [5:0]

Bank Selector

Stack Level
Pointer

Level 5

101 100

Level 6

0

Register

Stack Level
Pointer

Level 0

Level 15

XSTACK Odd Bank Even Bank

15
SPTR [5:0]

Bank Selector
Level 5

101 100

Level 6

0

Level 0

Level 15

XSTACK Odd Bank Even Bank

15
SPTR [5:0]

Bank Selector

Level 5

011 000

Level 6

0

Register

POP Register PUSH Register

Stack Level
Pointer

Stack Level
Pointer

POP Register PUSH Register

Figure 5-4. Stack Operation with Registers

When the bank selection bit (sptr[0]) is 0, then the register is pushed into the even bank and the bank selection bit is
set to 1. In this case, the stack level pointer is unchanged. When the bank selection bit (sptr[0]) is 1, then the
register is pushed into the odd bank, the bank selection bit is set to 0, and the stack level pointer is incremented by
1. Unlike the push operations of PC[19:0], any data are not written into XSTACK in the register push operations. This
is illustrated in the example figures. When a register is pushed into the stack, sptr[5:0] is incremented by 1 (not the
stack level pointer sptr[5:1]). The register pop operations are the reverse processes of the register push operations.
When a register is popped out of the stack, sptr[5:0] is decremented by 1 (not the stack level pointer sptr[5:1]).

Hardware stack overflow/underflow happens when the MSB of the stack level pointer, sptr[5], is 1. This is obvious
from the fact that the hardware stack has only 16 levels and the following relationship holds for the stack level pointer
in a normal case.

Suppose the stack level pointer sptr[5:1] = 15 (or 01111B in binary format) and the bank selection bit sptr[0] = 1.
Here if either PC[19:0] or a register is pushed, the stack level pointer is incremented by 1. Therefore, sptr[5:1] = 16
(or 10000B in binary format) and sptr[5] = 1, which implies that the stack is overflowed. The situation is depicted in
the following.

S3FB42F HARDWARE STACK

5-5

Level 0

Level 15

XSTACK Odd Bank Even Bank

PUSH Register

111 110
15

SPTR [5:0]
0

Level 1

Level 14

Level 0

Level 15

XSTACK Odd Bank Even Bank

000 001
15

SPTR [5:0]
0

Level 1

Level 14

Level 0

Level 15

100 001
15

SPTR [5:0]
0

Level 1

Level 14

XSTACK Odd Bank Even Bank

PUSH PC [19:0]

Register PC[19:16] PC[15:8]

PC[7:0]

Figure 5-5. Stack Overflow

The first overflow happens due to a register push operation. As explained earlier, a register push operation
increments sptr[5:0] (not sptr[5:1]) , which results in sptr[5] = 1, sptr[4:1] = 0 and sptr[0] = 0. As indicated by sptr[5]
= 1, an overflow happens. Note that this overflow doesn’t overwrite any data in the stack. On the other hand, when
PC[19:0] is pushed, sptr[5:1] is incremented by 1 instead of sptr[5:0], and as expected, an overflow results. Unlike
the first overflow, PC[7:0] is pushed into level 0 of the even bank and the data that has been there before the push
operation is overwritten. A similar argument can be made about stack underflows. Note that any stack operation,
which causes the stack to overflow or underflow, doesn’t necessarily mean that any data in the stack are lost, as is
observed in the first example.

In SR1, there is a status flag, SF (Stack Full Flag), which is exactly the same as sptr[5]. In other words, the value of
sptr[5] can be checked by reading SF (or SR1[4]). SF is not a sticky flag in the sense that if there was a stack
overflow/underflow but any following stack access instructions clear sptr[5] to 0, then SF = 0 and programmers
cannot tell whether there was a stack overflow/underflow by reading SF. For example, if a program pushes a register
64 times in a row, sptr[5:0] is exactly the same as sptr[5:0] before the push sequence. Therefore, special attention
should be paid.

HARDWARE STACK S3FB42F

5-6

Another mechanism to detect a stack overflow/underflow is through a stack exception. A stack exception happens
only when the execution of any stack access instruction results in SF = 1 (or sptr[5] = 1). Suppose a register push
operation makes SF = 1 (the SF value before the push operation doesn’t matter). Then the stack exception due to
the push operation is immediately generated and served If the stack exception enable flag (exe of SR0) is 1. If the
stack exception enable flag is 0, then the generated interrupt is not served but pending. Sometime later when the
stack exception enable flag is set to 1, the pending exception request is served even if SF = 0. More details are
available in the stack exception section.

S3FB42F EXCEPTIONS

6-1

6 EXCEPTIONS

OVERVIEW

Exceptions in CalmRISC are listed in the table below. Exception handling routines, residing at the given addresses
in the table, are invoked when the corresponding exception occurs. The starting address of each exception routine is
specified by concatenating 0H (leading 4 bits of 0) and the 16-bit data in the exception vector listed in the table. For
example, the interrupt service routine for NMI starts from 0H:PM[00001H]. Note that “:” means concatenation and
PM[*] stands for the 16-bit content at the address * of the program memory. Aside from the exception due to reset
release, the current PC is pushed in the stack on an exception. When an exception is executed due to
NMI/IRQ[1:0]/IEXP, the global interrupt enable flag, ie bit (SR0[1]), is set to 0, whereas ie is set to 1 when IRET or
an instruction that explicitly sets ie is executed.

Table 6-1. Exceptions

Name Address Priority Description

Reset 00000H 1 st Exception due to reset release.

NMI 00001H 2 nd Exception due to nNMI signal. Non-maskable.

IRQ[0] 00002H 4 th Exception due to nIRQ[0] signal. Maskable by setting ie/ie0.

IRQ[1] 00003H 5 th Exception due to nIRQ[1] signal. Maskable by setting ie/ie1.

IEXP 00004H 3 rd Exception due to stack full. Maskable by setting exe.

– 00005H – Reserved.

– 00006H – Reserved.

– 00007H – Reserved.

NOTE: Break mode due to BKREQ has a higher priority than all the exceptions above. That is, when BKREQ is active,
 even the exception due to reset release is not executed.

HARDWARE RESET

When Hardware Reset is active (the reset input signal pin nRES = 0), the control pins in the CalmRISC core are
initialized to be disabled, and SR0 and sptr (the hardware stack pointer) are initialized to be 0. Additionally, the
interrupt sensing block is cleared. When Hardware Reset is released (nRES = 1), the reset exception is executed
by loading the JP instruction in IR (Instruction Register) and 0h:0000h in PC. Therefore, when Hardware Reset is
released, the “JP {0h:PM[00000h]}” instruction is executed. When the reset exception is executed, a core output
signal nEXPACK is generated to acknowledge the exception.

EXCEPTIONS S3FB42F

6-2

NMI EXCEPTION (EDGE SENSITIVE)

On the falling edge of a core input signal nNMI, the NMI exception is executed by loading the CALL instruction in IR
and 0h:0001h in PC. Therefore, when NMI exception is activated, the "CALL {0h:PM[00001h]}" instruction is
executed. When the NMI exception is executed, the ie bit (SR0[1]) becomes 0 and a core output signal nEXPACK
is generated to acknowledge the exception.

IRQ[0] EXCEPTION (LEVEL-SENSITIVE)

When a core input signal nIRQ[0] is low, SR0[6] (ie0) is high, and SR0[1] (ie) is high, IRQ[0] exception is generated,
and this will load the CALL instruction in IR (Instruction Register) and 0h:0002h in PC. Therefore, on an IRQ[0]
exception, the "CALL {0h:PM[00002h]}" instruction is executed. When the IRQ[0] exception is executed, SR0[1] (ie)
is set to 0 and a core output signal nEXPACK is generated to acknowledge the exception.

IRQ[1] EXCEPTION (LEVEL-SENSITIVE)

When a core input signal nIRQ[1] is low, SR0[7] (ie1) is high, and SR0[1] (ie) is high, IRQ[1] exception is generated,
and this will load the CALL instruction in IR (Instruction Register) and 0h:0003h in PC. Therefore, on an IRQ[1]
exception, the "CALL {0h:PM[00003h]}" instruction is executed. When the IRQ[1] exception is executed, SR0[1] (ie)
is set to 0 and a core output signal nEXPACK is generated to acknowledge the exception.

HARDWARE STACK FULL EXCEPTION

A Stack Full exception occurs when a stack operation is performed and as a result of the stack operation sptr[5]
(SF) is set to 1. If the stack exception enable bit, exe (SR0[5]), is 1, the Stack Full exception is served. One
exception to this rule is when nNMI causes a stack operation that sets sptr[5] (SF), since it has higher priority.

Handling a Stack Full exception may cause another Stack Full exception. In this case, the new exception is
ignored. On a Stack Full exception, the CALL instruction is loaded in IR (Instruction Register) and 0h:0004h in PC.
Therefore, when the Stack Full exception is activated, the "CALL {0h:PM[00004h]}" instruction is executed. When
the exception is executed, SR0[1] (ie) is set to 0, and a core output signal nEXPACK is generated to acknowledge
the exception.

BREAK EXCEPTION

Break exception is reserved only for an in-circuit debugger. When a core input signal, BKREQ, is high, the
CalmRISC core is halted or in the break mode, until BKREQ is deactivated. Another way to drive the CalmRISC core
into the break mode is by executing a break instruction, BREAK. When BREAK is fetched, it is decoded in the fetch
cycle (IF stage) and the CalmRISC core output signal nBKACK is generated in the second cycle (ID/MEM stage).
An in-circuit debugger generates BKREQ active by monitoring nBKACK to be active. BREAK instruction is exactly
the same as the NOP (no operation) instruction except that it does not increase the program counter and activates
nBKACK in the second cycle (or ID/MEM stage of the pipeline). There, once BREAK is encountered in the program
execution, it falls into a deadlock. BREAK instruction is reserved for in-circuit debuggers only, so it should not be
used in user programs.

S3FB42F EXCEPTIONS

6-3

EXCEPTIONS (or INTERRUPTS)

Non-maskable interrupt

-

NMI 0001H

-

Ext INT 8

IIS1 INT

WT INT

TB INT

TA INT

IVEC0 0002H

IVEC1 0003H Ext INT 4

Ext INT 5

H/W

H/W (S/W)

Vector SourceLevel Reset (Clear)

Reset or WDT overflowReset 0000H H/W

IIS0 INT

H/W (S/W)

H/W (S/W)

H/W (S/W)

H/W (S/W)

H/W (S/W)

H/W (S/W)

H/W (S/W)

H/W (S/W)

H/W (S/W)

NOTES:
1. NMI has the highest priority for an interrupt level, followed by SF_EXCEP, IVEC0 and IVEC1.
2. In the case of IVEC0 and IVEC1, one interrupt vector has several interrupt sources.
 The priority of the sources is controlled by setting the IPR register.
3. External interrupts are triggered by a rising or falling edge, depending on the corresponding
 control register setting, Ext INT0-Ext INT5 have no interrupt pending bit but have an enable bit.
4. After system reset, IIS0 INT has the highest priority in the IVEC0 level, followed by IIS1 INT
 and other interrupt sources.
5. The interrupt priority can be changed by setting of IPR register.
6. The pending bit is cleared by hardware when CPU reads the IIR register value.

H/W (S/W)

H/W (S/W)

H/W (S/W)

H/W (S/W)

Ext INT 0

Ext INT 1

Ext INT 2

Ext INT 3

BT

SIO INT

IIC INT

UART Rx/Error/Tx INT

H/W (S/W)

H/W (S/W)

H/W (S/W)

H/W (S/W)

H/W (S/W)

H/W (S/W)

H/W

USB/PPIC INT

Ext INT 9

Stack Full Exception0004HSF_EXCEP

Figure 6-1. Interrupt Structure

EXCEPTIONS S3FB42F

6-4

IPR0
Logic

IIR0

CPU

IVEC0

IPR0

IMR0
Logic

IMR0

STOP & IDLE

Release

IMR1
Logic

IMR1 IRP1

IPR1
Logic

IVEC1

IIR1

IRQ0.0

IRQ0.1

IRQ0.2

IRQ0.3
IRQ0.4

IRQ0.5

IRQ0.6

IRQ0.7

IRQ1.0

IRQ1.1

IRQ1.2

IRQ1.3

IRQ1.4

IRQ1.5

IRQ1.6

IRQ1.7

Ext INT9
USB INT

PPIC INT
UART_Rx INT
UART_Err INT
UART_Tx INT

IIC INT
SIO INT
BT INT

Ext INT0
Ext INT1
Ext INT2
Ext INT3
Ext INT4
Ext INT5

 NOTE: The IRQ register value is cleared by H/W when the IIR register is read by the programmer in
an interrupt service routine. However, if you want to clear by S/W, then write the proper value
to the IIR register like above examples. For clear all the bits of IRQx register at one time write
"#08h" to the IIRx register.

IIS0 INT

IIS1 INT

Ext INT8

TA INT

TB INT

NT INT

Clear (when writing clear bit value to bit .2 .1 .0)
exmp) LD R0, #05H

Clear (when writing clear bit value to bit .2 .1 .0)
exmp) LD R0, #02H

LD IIR0, R0 IRQ.5 is cleared

LD IIR1, R0 IRQ1.2 is cleared

Figure 6-2. Interrupt Structure

S3FB42F EXCEPTIONS

6-5

INTERRUPT MASK REGISTERS

.7 .6 .5 .4 .3 .2 .1 .0

Interrupt Mask Register0 (IMR0)
05H, R/W

IRQ0.0

IRQ0.1

IRQ0.2

IRQ0.3

IRQ0.4

IRQ0.5

IRQ0.6

IRQ0.7

Interrupt request enable bits:
0 = Disable interrupt request
1 = Enable interrupt request

NOTE: If you want to change the value of the IMR register, then you first
make disable global INT by DI instruction, and change the value
of the IMR register.

.7 .6 .5 .4 .3 .2 .1 .0

Interrupt Mask Register1 (IMR1)
09H, R/W

IRQ1.0

IRQ1.1

IRQ1.2

IRQ1.3

IRQ1.4

IRQ1.5

IRQ1.6

IRQ1.7

Figure 6-3. Interrupt Mask Register

EXCEPTIONS S3FB42F

6-6

INTERRUPT PRIORITY REGISTER

GROUP A
0 = IRQ0 > IRQ1
1 = IRQ1 > IRQ0

Interrupt Priority Registers
(IPR0:06H,IPR1:0AH, R/W)

IPR
GROUP A

NOTE: If you want to change the value of the IPR register, then you first
make disable global INT by DI instruction, and change the value
of the IPR register.

IPR
GROUP B

IPR
GROUP C

IRQ0 IRQ1 IRQ2 IRQ3 IRQ4 IRQ5 IRQ6 IRQ7

GROUP B
0 = IRQ2 > (IRQ3,IRQ4)
1 = (IRQ3,IRQ4) > IRQ2

SUBGROUP B
0 = IRQ3 > IRQ4
1 = IRQ4 > IRQ3

GROUP C
0 = IRQ5 > (IRQ6,IRQ7)
1 = (IRQ6,IRQ7) > IRQ5

SUBGROUP C
0 = IRQ6 > IRQ7
1 = IRQ7 > IRQ6

.7 .6 .5 .4 .3 .2 .1 .0

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Not used
B>C>A
A>B>C
B>A>C
C>A>B
C>B>A
A>C>B
Not used

.7 .4 .1

Group priority:

Figure 6-4. Interrupt Priority Register

S3FB42F EXCEPTIONS

6-7

FF PROGRAMMING TIP — Interrupt Programming Tip 1

Jumped from vector 2

PUSH SR1
PUSH R0
AND SR0, #0FEh
LD R0, IIR0
CP R0, #03h
JR ULE, LTE03
CP R0, #05h
JR ULE, LTE05
CP R0, #06h
JP EQ, IRQ6_srv
JP IRQ7_srv

LTE05 CP R0, #04h
JP EQ, IRQ4_srv
JP IRQ5_srv

LTE03 CP R0, #01h
JR ULE, LTE01
CP R0, #02h
JP EQ, IRQ2_srv
JP IRQ3_srv

LTE01 CP R0, #00h
JP EQ, IRQ0_srv
JP IRQ1_srv

IRQ0_srv → service for IRQ0
•
•
POP R0
POP SR1
IRET

IRQ1_srv → service for IRQ1
•
•
POP R0
POP SR1
IRET
•
•

IRQ7_srv → service for IRQ7
•
•
POP R0
POP SR1
IRET

NOTE: If the SR0 register is changed in the interrupt service routine, then the SR0 register must be pushed and poped in
the interrupt service routine.

EXCEPTIONS S3FB42F

6-8

FF PROGRAMMING TIP — Interrupt Programming Tip 2

Jumped from vector 2

PUSH SR1
PUSH R0
PUSH R1
LD R0, IIR0
SL R0
LD R1, # < TBL_INTx
ADD R0, # > TBL_INTx
PUSH R0
PUSH R1
RET

TBL_INTx LJP IRQ0_svr
LJP IRQ1_svr
LJP IRQ2_svr
LJP IRQ3_svr
LJP IRQ4_svr
LJP IRQ5_svr
LJP IRQ6_svr
LJP IRQ7_svr

IRQ0_srv → service for IRQ0
•
•
POP R1
POP R0
POP SR1
IRET

IRQ1_srv → service for IRQ1
•
•
POP R1
POP R0
POP SR1
IRET
•
•

IRQ7_srv → service for IRQ7
•
•
POP R1
POP R0
POP SR1
IRET

NOTES:
1. If the SR0 register is changed in the interrupt service routine, then the SR0 register must be pushed and poped in

the interrupt service routine.
2. Above example is assumed that the ROM size is less than 64Kword and all the LJP instructions which is in the jump

table (TBL-INTx) is in the same page.

S3FB42F COPROCESSOR INTERFACE

7-1

7 COPROCESSOR INTERFACE

OVERVIEW

CalmRISC supports an efficient and seamless interface with coprocessors. By integrating a MAC (multiply and
accumulate) DSP coprocessor engine with the CalmRISC core, not only the microcontroller functions but also
complex digital signal processing algorithms can be implemented in a single development platform (or MDS).
CalmRISC has a set of dedicated signal pins, through which data/command/status are exchanged to and from a
coprocessor. Figure 7-1 depicts the coprocessor signal pins and the interface between two processors.

Data Bus [7:0]

SYSCP [11:0]

nCOPID

nCLDID

CLDWR

EC[2:0]

CoprocessorCalmRISCProgram
ROM

[2
3:

0]

Data
RAM

[2
3:

0]

[7
:0

]

Figure 7-1. Coprocessor Interface Diagram

COPROCESSOR INTERFACE S3FB42F

7-2

As shown in the coprocessor interface diagram above, the coprocessor interface signals of CalmRISC are:
SYSCP[11:0], nCOPID, nCLDID, nCLDWR, and EC[2:0]. The data are exchanged through data buses, DI[7:0] and
DO[7:0]. A command is issued from CalmRISC to a coprocessor through SYSCP[11:0] in COP instructions. The
status of a coprocessor can be sent back to CalmRISC through EC[2:0] and these flags can be checked in the
condition codes of branch instructions. The coprocessor instructions are listed in the following table

Table 7-1. Coprocessor instructions

Mnemonic Op 1 Op 2 Description

COP #imm:12 – Coprocessor operation

CLD GPR imm:8 Data transfer from coprocessor into GPR

CLD imm:8 GPR Data transfer of GPR to coprocessor

JP(or JR)
CALL
LNK

EC2–EC0 label Conditional branch with coprocessor status flags

The coprocessor of CalmRISC does not have its own program memory (i.e., it is a passive coprocessor) as shown in
Figure 7 -1. In fact, the coprocessor instructions are fetched and decoded by CalmRISC, and CalmRISC issues the
command to the coprocessor through the interface signals. For example, if “COP #imm:12” instruction is fetched,
then the 12-bit immediate value (imm:12) is loaded on SYSCP[11:0] signal with nCOPID active in ID/MEM stage, to
request the coprocessor to perform the designated operation. The interpretation of the 12-bit immediate value is
totally up to the coprocessor. By arranging the 12-bit immediate field, the instruction set of the coprocessor is
determined. In other words, CalmRISC only provides a set of generic coprocessor instructions, and its installation to
a specific coprocessor instruction set can differ from one coprocessor to another. CLD Write instructions (“CLD
imm:8, GPR”) put the content of a GPR register of CalmRISC on the data bus (DO[7:0]) and issue the
address(imm:8) of the coprocessor internal register on SYSCP[7:0] with nCLDID active and CLDWR active. CLD
Read instructions (“CLD GPR, imm:8” in Table 7-1) work similarly, except that the content of the coprocessor
internal register addressed by the 8-bit immediate value is read into a GPR register through DI[7:0] with nCLDID
active and CLDWR deactivated.

The timing diagram given below is a coprocessor instruction pipeline and shows when the coprocessor performs the
required operations. Suppose I2 is a coprocessor instruction. First, it is fetched and decoded by CalmRISC (at t = T(i-
1)). Once it is identified as a coprocessor instruction, CalmRISC indicates to the coprocessor the appropriate
command through the coprocessor interface signals (at t = T(i)). Then the coprocessor performs the designated
tasks at t = T(i) and t = T(i+1). Hence IF from CalmRISC and then ID/MEM and EX from the coprocessor constitute
the pipeline for I2. Similarly, if I3 is a coprocessor instruction, the coprocessor’s ID/MEM and EX stages replace the
corresponding stages of CalmRISC.

S3FB42F COPROCESSOR INTERFACE

7-3

CalmRISC

IF ID/MEM EX

IF ID/MEM

IF

EX

ID/MEM EX

I2: Coprocessor Instruction

T (i -1) T (i) T (i +1)

I1: Normal Instruction

I3: Coprocessor Instruction

For I3For I2

ID/MEM EX

ID/MEM EX

Coprocessor

I2:

I3:

Coprocessor
Interface Signals

Figure 7-2. Coprocessor Instruction Pipeline

In a multi-processor system, the data transfer between processors is an important factor to determine the efficiency
of the overall system. Suppose an input data stream is accepted by a processor, in order for the data to be shared
by another processors. There should be some efficient mechanism to transfer the data to the processors. In
CalmRISC, data transfers are accomplished through a single shared data memory. The shared data memory in a
multi-processor has some inherent problems such as data hazards and deadlocks. However, the coprocessor in
CalmRISC accesses the shared data memory only at the designated time by CalmRISC at which time CalmRISC is
guaranteed not to access the data memory, and therefore there is no contention over the shared data memory.
Another advantage of the scheme is that the coprocessor can access the data memory in its own bandwidth.

COPROCESSOR INTERFACE S3FB42F

7-4

NOTES

S3FB42F INSTRUCTION SET

8-1

8 INSTRUCTION SET

OVERVIEW

GLOSSARY

This chapter describes the CalmRISC instruction set and the details of each instruction are listed in alphabetical
order. The following notations are used for the description.

Table 8-1. Instruction Notation Conventions

Notation Interpretation

<opN> Operand N. N can be omitted if there is only one operand. Typically, <op1> is the
destination (and source) operand and <op2> is a source operand.

GPR General Purpose Register

SPR Special Purpose Register (IDL0, IDL1, IDH, SR0, ILX, ILH, ILL, SR1)

adr:N N-bit address specifier

@idm Content of memory location pointed by ID0 or ID1

(adr:N) Content of memory location specified by adr:N

cc:4 4-bit condition code. Table 8-6 describes cc:4.

imm:N N-bit immediate number

& Bit-wise AND

| Bit-wise OR

~ Bit-wise NOT

^ Bit-wise XOR

N**M Mth power of N

(N)M M-based number N

As additional note, only the affected flags are described in the tables in this section. That is, if a flag is not affected
by an operation, it is NOT specified.

INSTRUCTION SET S3FB42F

8-2

INSTRUCTION SET MAP

Table 8-2. Overall Instruction Set Map

IR [12:10]000 001 010 011 100 101 110 111

[15:13,7:2]

000 xxxxxx

ADD GPR,
#imm:8

SUB
GPR,

#imm:8

CP GPR,
#imm8

LD GPR,
#imm:8

TM GPR,
#imm:8

AND
GPR,

#imm:8

OR GPR,
#imm:8

XOR GPR,
#imm:8

001 xxxxxx ADD GPR,
@idm

SUB
GPR,
@idm

CP GPR,
@idm

LD GPR,
@idm

LD @idm,
GPR

AND
GPR,
@idm

OR GPR,
@idm

XOR GPR,
@idm

010 xxxxxx ADD GPR,
adr:8

SUB
GPR,
adr:8

CP GPR,
adr:8

LD GPR,
adr:8

BITT adr:8.bs BITS adr:8.bs

011 xxxxxx ADC GPR,
adr:8

SBC
GPR,
adr:8

CPC
GPR,
adr:8

LD adr:8,
GPR

BITR adr:8.bs BITC adr:8.bs

100 000000 ADD GPR,
GPR

SUB
GPR,
GPR

CP GPR,
GPR

BMS/BMC LD SPR0,
#imm:8

AND
GPR,
adr:8

OR GPR,
adr:8

XOR GPR,
adr:8

100 000001 ADC GPR,
GPR

SBC
GPR,
GPR

CPC
GPR,
GPR

invalid

100 000010 invalid invalid invalid invalid

100 000011 AND GPR,
GPR

OR GPR,
GPR

XOR
GPR,
GPR

invalid

100 00010x SLA/SL/
RLC/RL/
SRA/SR/
RRC/RR/

GPR

INC/INCC/
DEC/

DECC/
COM/
COM2/
COMC
GPR

invalid invalid

100 00011x LD SPR,
GPR

LD GPR,
SPR

SWAP
GPR,
SPR

LD
TBH/TBL,

GPR

100 00100x PUSH SPR POP SPR invalid invalid

100 001010 PUSH GPR POP GPR LD GPR,
GPR

LD GPR,

TBH/TBL

S3FB42F INSTRUCTION SET

8-3

Table 8-2. Overall Instruction Set Map (Continued)

IR [12:10]000 001 010 011 100 101 110 111

100 001011 POP invalid LDC invalid LD SPR0,
#imm:8

AND
GPR,
adr:8

OR GPR,
adr:8

XOR
GPR,
adr:8

100 00110x RET/LRET/I
RET/NOP/

BREAK

invalid invalid invalid

100 00111x invalid invalid invalid invalid

100 01xxxx LD
GPR:bank,
GPR:bank

AND SR0,
#imm:8

OR SR0,
#imm:8

BANK
#imm:2

100 100000

100 110011

invalid invalid invalid invalid

100 1101xx LCALL cc:4, imm:20 (2-word instruction)

100 1110xx LLNK cc:4, imm:20 (2-word instruction)

100 1111xx LJP cc:4, imm:20 (2-word instruction)

[15:10]
101 xxx

JR cc:4, imm:9

110 0xx CALLS imm:12

110 1xx LNKS imm:12

111 xxx CLD GPR, imm:8 / CLD imm:8, GPR / JNZD GPR, imm:8 / SYS #imm:8 / COP #imm:12

NOTE: “invalid” - invalid instruction.

INSTRUCTION SET S3FB42F

8-4

Table 8-3. Instruction Encoding

Instruction 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADD GPR, #imm:8 000 000 GPR imm[7:0]

SUB GPR, #imm:8 001

CP GPR, #imm:8 010

LD GPR, #imm:8 011

TM GPR, #imm:8 100

AND GPR, #imm:8 101

OR GPR, #imm:8 110

XOR GPR, #imm:8 111

ADD GPR, @idm 001 000 GPR idx mod offset[4:0]

SUB GPR, @idm 001

CP GPR, @idm 010

LD GPR, @idm 011

LD @idm, GPR 100

AND GPR, @idm 101

OR GPR, @idm 110

XOR GPR, @idm 111

ADD GPR, adr:8 010 000 GPR adr[7:0]

SUB GPR, adr:8 001

CP GPR, adr:8 010

LD GPR, adr:8 011

BITT adr:8.bs 10 bs

BITS adr:8.bs 11

ADC GPR, adr:8 011 000 GPR adr[7:0]

SBC GPR, adr:8 001

CPC GPR, adr:8 010

LD adr:8, GPR 011

BITR adr:8.bs 10 bs

BITC adr:8.bs 11

S3FB42F INSTRUCTION SET

8-5

 Table 8-3. Instruction Encoding (Continued)

Instruction 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADD GPRd, GPRs 100 000 GPRd 000000 GPRs

SUB GPRd, GPRs 001

CP GPRd, GPRs 010

BMS/BMC 011

ADC GPRd, GPRs 000 000001

SBC GPRd, GPRs 001

CPC GPRd, GPRs 010

invalid 011

invalid ddd 000010

AND GPRd, GPRs 000 000011

OR GPRd, GPRs 001

XOR GPRd, GPRs 010

invalid 011

ALUop1 000 GPR 00010 ALUop1

ALUop2 001 GPR ALUop2

invalid 010–011 xx xxx

LD SPR, GPR 000 GPR 00011 SPR

LD GPR, SPR 001 GPR SPR

SWAP GPR, SPR 010 GPR SPR

LD TBL, GPR 011 GPR x 0 x

LD TBH, GPR x 1 x

PUSH SPR 000 xx 00100 SPR

POP SPR 001 xx SPR

invalid 010–011 xx xxx

PUSH GPR 000 GPR 001010 GPR

POP GPR 001 GPR GPR

LD GPRd, GPRs 010 GPRd GPRs

LD GPR, TBL 011 GPR 0 x

LD GPR, TBH 1 x

POP 000 xx 001011 xx

LDC @IL 010 0 x

LDC @IL+ 1 x

Invalid 001, 011 xx

NOTE: "x" means not applicable.

INSTRUCTION SET S3FB42F

8-6

Table 8-3. Instruction Encoding (Concluded)

Instruction 15-13 12 11 10 9 8 7 6 5 4 3 2 1 0 2nd word

MODop1 100 000 xx 00110 MODop1 –

Invalid 001–011 xx xxx

Invalid 000 xx 01 xxxxxx

AND SR0, #imm:8 001 imm[7:6] imm[5:0]

OR SR0, #imm:8 010 imm[7:6]

BANK #imm:2 011 xx x imm

[1:0]

xxx

Invalid 0 xxxx 10000000-11001111

LCALL cc, imm:20 cc 1101 imm[19:16] imm[15:0]

LLNK cc, imm:20

LJP cc, imm:20

LD SPR0, #imm:8 1 00 SPR0 IMM[7:0] –

AND GPR, adr:8 01 GPR ADR[7:0]

OR GPR, adr:8 10

XOR GPR, adr:8 11

JR cc, imm:9 101 imm

[8]

cc imm[7:0]

CALLS imm:12 110 0 imm[11:0]

LNKS imm:12 1

CLD GPR, imm:8 111 0 00 GPR imm[7:0]

CLD imm:8, GPR 01 GPR

JNZD GPR, imm:8 10 GPR

SYS #imm:8 11 xx

COP #imm:12 1 imm[11:0]

NOTES:
1. "x" means not applicable.
2. There are several MODop1 codes that can be used, as described in table 8-9.
3. The operand 1(GPR) of the instruction JNZD is Bank 3’s register.

S3FB42F INSTRUCTION SET

8-7

Table 8-4. Index Code Information (“idx”)

Symbol Code Description

ID0 0 Index 0 IDH:IDL0

ID1 1 Index 1 IDH:IDL1

Table 8-5. Index Modification Code Information (“mod”)

Symbol Code Function

@IDx + offset:5 00 DM[IDx], IDx ← IDx + offset

@[IDx - offset:5] 01 DM[IDx + (2’s complement of offset:5)],

IDx ← IDx + (2’s complement of offset:5)

@[IDx + offset:5]! 10 DM[IDx + offset], IDx ← IDx

@[IDx - offset:5]! 11 DM[IDx + (2’s complement of offset:5)], IDx ← IDx

NOTE: Carry from IDL is propagated to IDH. In case of @[IDx - offset:5] or @[IDx - offset:5]!, the assembler should convert
offset:5 to the 2’s complement format to fill the operand field (offset[4:0]).
Furthermore, @[IDx - 0] and @[IDx - 0]! are converted to @[IDx + 0] and @[IDx + 0]!, respectively.

Table 8-6. Condition Code Information (“cc”)

Symbol (cc:4) Code Function

Blank 0000 always

NC or ULT 0001 C = 0, unsigned less than

C or UGE 0010 C = 1, unsigned greater than or equal to

Z or EQ 0011 Z = 1, equal to

NZ or NE 0100 Z = 0, not equal to

OV 0101 V = 1, overflow - signed value

ULE 0110 ~C | Z, unsigned less than or equal to

UGT 0111 C & ~Z, unsigned greater than

ZP 1000 N = 0, signed zero or positive

MI 1001 N = 1, signed negative

PL 1010 ~N & ~Z, signed positive

ZN 1011 Z | N, signed zero or negative

SF 1100 Stack Full

EC0-EC2 1101-1111 EC[0] = 1/EC[1] = 1/EC[2] = 1

NOTE: EC[2:0] is an external input (CalmRISC core’s point of view) and used as a condition.

INSTRUCTION SET S3FB42F

8-8

Table 8-7. “ALUop1” Code Information

Symbol Code Function

SLA 000 arithmetic shift left

SL 001 shift left

RLC 010 rotate left with carry

RL 011 rotate left

SRA 100 arithmetic shift right

SR 101 shift right

RRC 110 rotate right with carry

RR 111 rotate right

 Table 8-8. “ALUop2” Code Information

Symbol Code Function

INC 000 increment

INCC 001 increment with carry

DEC 010 decrement

DECC 011 decrement with carry

COM 100 1’s complement

COM2 101 2’s complement

COMC 110 1’s complement with carry

– 111 reserved

Table 8-9. “MODop1” Code Information

Symbol Code Function

LRET 000 return by IL

RET 001 return by HS

IRET 010 return from interrupt (by HS)

NOP 011 no operation

BREAK 100 reserved for debugger use only

– 101 reserved

– 110 reserved

– 111 reserved

S3FB42F INSTRUCTION SET

8-9

QUICK REFERENCE

Operation op1 op2 Function Flag # of word / cycle

AND
OR
XOR
ADD
SUB
CP

GPR adr:8

#imm:8

GPR

@idm

op1 ← op1 & op2
op1 ← op1 | op2
op1 ← op1 ^ op2
op1 ← op1 + op2
op1 ← op1 + ~op2 + 1
op1 + ~op2 + 1

z,n
z,n
z,n

c,z,v,n
c,z,v,n
c,z,v,n

1W1C

ADC
SBC
CPC

GPR GPR

adr:8

op1 ← op1 + op2 + c
op1 ← op1 + ~op2 + c
op1 + ~op2 + c

c,z,v,n
c,z,v,n
c,z,v,n

TM GPR #imm:8 op1 & op2 z,n

BITS
BITR
BITC
BITT

R3 adr:8.bs op1 ← (op2[bit] ← 1)
op1 ← (op2[bit] ← 0)
op1 ← ~(op2[bit])
z ← ~(op2[bit])

z
z
z
z

BMS/BMC – – TF ← 1 / 0 –

PUSH
POP

GPR – HS[sptr] ← GPR, (sptr ← sptr + 1)
GPR ← HS[sptr - 1], (sptr ← sptr - 1)

–
z,n

PUSH
POP

SPR – HS[sptr] ← SPR, (sptr ← sptr + 1)
SPR ← HS[sptr - 1], (sptr ← sptr - 1)

–

POP – – sptr ← sptr – 2 –

SLA
SL
RLC
RL
SRA
SR
RRC
RR
INC
INCC
DEC
DECC
COM
COM2
COMC

GPR – c ← op1[7], op1 ← {op1[6:0], 0}
c ← op1[7], op1 ← {op1[6:0], 0}
c ← op1[7], op1 ← {op1[6:0], c}
c ← op[7], op1 ← {op1[6:0], op1[7]}
c ← op[0], op1 ← {op1[7],op1[7:1]}
c ← op1[0], op1 ← {0, op1[7:1]}
c ← op1[0], op1 ← {c, op1[7:1]}
c ← op1[0], op1 ← {op1[0], op1[7:1]}
p1 ← op1 + 1
op1 ← op1 + c
op1 ← op1 + 0FFh
op1 ← op1 + 0FFh + c
op1 ← ~op1
op1 ← ~op1 + 1
op1 ← ~op1 + c

c,z,v,n
c,z,n
c,z,n
c,z,n
c,z,n
c,z,n
c,z,n
c,z,n

c,z,v,n
c,z,v,n
c,z,v,n
c,z,v,n

z,n
c,z,v,n
c,z,v,n

INSTRUCTION SET S3FB42F

8-10

QUICK REFERENCE (Continued)

Operation op1 op2 Function Flag # of word / cycle

LD GPR
:bank

GPR
:bank

op1 ← op2 z,n 1W1C

LD SPR0 #imm:8 op1 ← op2 –

LD GPR GPR
SPR
adr:8
@idm

#imm:8
TBH/TBL

op1 ← op2 z,n

LD SPR
TBH/TBL

GPR op1 ← op2 –

LD adr:8 GPR op1 ← op2 –

LD @idm GPR op1 ← op2 –

LDC @IL @IL+ – (TBH:TBL) ← PM[(ILX:ILH:ILL)],
ILL++ if @IL+

– 1W2C

AND

OR

SR0 #imm:8 SR0 ← SR0 & op2
SR0 ← SR0 | op2

– 1W1C

BANK #imm:2 – SR0[4:3] ← op2 –

SWAP GPR SPR op1 ← op2, op2 ← op1 (excluding SR0/SR1) –

LCALL cc imm:20 – If branch taken, push XSTACK,
HS[15:0] ← {PC[15:12],PC[11:0] + 2} and
PC ← op1
else PC[11:0] ← PC[11:0] + 2

– 2W2C

LLNK cc imm:20 – If branch taken, IL[19:0] ← {PC[19:12],
PC[11:0] + 2} and PC ← op1
else PC[11:0] ← PC[11:0] + 2

–

CALLS imm:12 – push XSTACK, HS[15:0] ← {PC[15:12],
PC[11:0] + 1} and PC[11:0] ← op1

– 1W2C

LNKS imm:12 – IL[19:0] ← {PC[19:12], PC[11:0] + 1} and
PC[11:0] ← op1

–

JNZD Rn imm:8 if (Rn == 0) PC ← PC[delay slot] - 2’s
complement of imm:8, Rn--
else PC ← PC[delay slot]++, Rn--

–

LJP cc imm:20 – If branch taken, PC ← op1

else PC[11:0] < PC[11:0] + 2

– 2W2C

JR cc imm:9 – If branch taken, PC[11:0] ← PC[11:0] + op1

else PC[11:0] ← PC[11:0] + 1

– 1W2C

NOTE: op1 - operand1, op2 - operand2, 1W1C - 1-Word 1-Cycle instruction, 1W2C - 1-Word 2-Cycle instruction, 2W2C -
2-Word 2-Cycle instruction. The Rn of instruction JNZD is Bank 3’s GPR.

S3FB42F INSTRUCTION SET

8-11

QUICK REFERENCE (Concluded)

Operation op1 op2 Function Flag # of word / cycle

LRET
RET
IRET
NOP
BREAK

– – PC ← IL[19:0]
PC ← HS[sptr - 2], (sptr ← sptr - 2)
PC ← HS[sptr - 2], (sptr ← sptr - 2)
no operation
no operation and hold PC

– 1W2C
1W2C
1W2C
1W1C
1W1C

SYS #imm:8 – no operation but generates SYSCP[7:0] and
nSYSID

– 1W1C

CLD imm:8 GPR op1 ← op2, generates SYSCP[7:0], nCLDID,
and CLDWR

–

CLD GPR imm:8 op1 ← op2, generates SYSCP[7:0], nCLDID,
and CLDWR

z,n

COP #imm:12 – generates SYSCP[11:0] and nCOPID –

NOTES:
1. op1 - operand1, op2 - operand2, sptr - stack pointer register, 1W1C - 1-Word 1-Cycle instruction, 1W2C - 1-Word

2-Cycle instruction
2. Pseudo instructions

— SCF/RCF
 Carry flag set or reset instruction

— STOP/IDLE
 MCU power saving instructions

— EI/DI
 Exception enable and disable instructions

— JP/LNK/CALL
 If JR/LNKS/CALLS commands (1 word instructions) can access the target address, there is no conditional code
 in the case of CALL/LNK, and the JP/LNK/CALL commands are assembled to JR/LNKS/CALLS in linking time, or
 else the JP/LNK/CALL commands are assembled to LJP/LLNK/LCALL (2 word instructions) instructions.

INSTRUCTION SET S3FB42F

8-12

INSTRUCTION GROUP SUMMARY

ALU INSTRUCTIONS

“ALU instructions” refer to the operations that use ALU to generate results. ALU instructions update the values in
Status Register 1 (SR1), namely carry (C), zero (Z), overflow (V), and negative (N), depending on the operation type
and the result.

ALUop GPR, adr:8

Performs an ALU operation on the value in GPR and the value in DM[adr:8] and stores the result into GPR.
ALUop = ADD, SUB, CP, AND, OR, XOR
For SUB and CP, GPR+(not DM[adr:8])+1 is performed.
adr:8 is the offset in a specific data memory page.

The data memory page is 0 or the value of IDH (Index of Data Memory Higher Byte Register), depending on the value
of eid in Status Register 0 (SR0).

Operation

GPR ← GPR ALUop DM[00h:adr:8] if eid = 0
GPR ← GPR ALUop DM[IDH:adr8] if eid = 1
Note that this is an 8-bit operation.

Example

ADD R0, 80h // Assume eid = 1 and IDH = 01H
// R0 ← R0 + DM[0180h]

ALUop GPR, #imm:8

Stores the result of an ALU operation on GPR and an 8-bit immediate value into GPR.
ALUop = ADD, SUB, CP, AND, OR, XOR
For SUB and CP, GPR+(not #imm:8)+1 is performed.
#imm:8 is an 8-bit immediate value.

Operation

GPR ← GPR ALUop #imm:8

Example

ADD R0, #7Ah // R0 ← R0 + 7Ah

S3FB42F INSTRUCTION SET

8-13

ALUop GPRd, GPRs

Store the result of ALUop on GPRs and GPRd into GPRd.
ALUop = ADD, SUB, CP, AND, OR, XOR
For SUB and CP, GPRd + (not GPRs) + 1 is performed.
GPRs and GPRd need not be distinct.

Operation

GPRd ← GPRd ALUop GPRs
GPRd - GPRs when ALUop = CP (comparison only)

Example

ADD R0, R1 // R0 ← R0 + R1

ALUop GPR, @idm

Performs ALUop on the value in GPR and DM[ID] and stores the result into GPR. Index register ID is IDH:IDL
(IDH:IDL0 or IDH:IDL1).
ALUop = ADD, SUB, CP, AND, OR, XOR
For SUB and CP, GPR+(not DM[idm])+1 is performed.
idm = IDx+off:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]!
(IDx = ID0 or ID1)

Operation

GPR - DM[idm] when ALUop = CP (comparison only)
GPR ← GPR ALUop DM[IDx], IDx ← IDx + offset:5 when idm = IDx + offset:5
GPR ← GPR ALUop DM[IDx - offset:5], IDx ← IDx - offset:5 when idm = [IDx - offset:5]
GPR ← GPR ALUop DM[IDx + offset:5] when idm = [IDx + offset:5]!
GPR ← GPR ALUop DM[IDx - offset:5] when idm = [IDx - offset:5]!

When carry is generated from IDL (on a post-increment or pre-decrement), it is propagated to IDH.

Example

ADD R0, @ID0+2 // assume ID0 = 02FFh
// R0 ← R0 + DM[02FFh], IDH ← 03h and IDL0 ← 01h

ADD R0, @[ID0-2] // assume ID0 = 0201h
// R0 ← R0 + DM[01FFh], IDH ← 01h and IDL0 ← FFh

ADD R0, @[ID1+2]! // assume ID1 = 02FFh
// R0 ← R0 + DM[0301], IDH ← 02h and IDL1 ← FFh

ADD R0, @[ID1-2]! // assume ID1 = 0200h
// R0 ← R0 + DM[01FEh], IDH ← 02h and IDL1 ← 00h

INSTRUCTION SET S3FB42F

8-14

ALUopc GPRd, GPRs

Performs ALUop with carry on GPRd and GPRs and stores the result into GPRd.
ALUopc = ADC, SBC, CPC
GPRd and GPRs need not be distinct.

Operation

GPRd ← GPRd + GPRs + C when ALUopc = ADC
GPRd ← GPRd + (not GPRs) + C when ALUopc = SBC
GPRd + (not GPRs) + C when ALUopc = CPC (comparison only)

Example

ADD R0, R2 // assume R1:R0 and R3:R2 are 16-bit signed or unsigned numbers.
ADC R1, R3 // to add two 16-bit numbers, use ADD and ADC.

SUB R0, R2 // assume R1:R0 and R3:R2 are 16-bit signed or unsigned numbers.
SBC R1, R3 // to subtract two 16-bit numbers, use SUB and SBC.

CP R0, R2 // assume both R1:R0 and R3:R2 are 16-bit unsigned numbers.
CPC R1, R3 // to compare two 16-bit unsigned numbers, use CP and CPC.

ALUopc GPR, adr:8

Performs ALUop with carry on GPR and DM[adr:8].

Operation

GPR ← GPR + DM[adr:8] + C when ALUopc = ADC
GPR ← GPR + (not DM[adr:8]) + C when ALUopc = SBC
GPR + (not DM[adr:8]) + C when ALUopc = CPC (comparison only)

CPLop GPR (Complement Operations)

CPLop = COM, COM2, COMC

Operation

COM GPR not GPR (logical complement)
COM2 GPR not GPR + 1 (2’s complement of GPR)
COMC GPR not GPR + C (logical complement of GPR with carry)

Example

COM2 R0 // assume R1:R0 is a 16-bit signed number.
COMC R1 // COM2 and COMC can be used to get the 2’s complement of it.

S3FB42F INSTRUCTION SET

8-15

IncDec GPR (Increment/Decrement Operations)

IncDec = INC, INCC, DEC, DECC

Operation

INC GPR Increase GPR, i.e., GPR ← GPR + 1
INCC GPR Increase GPR if carry = 1, i.e., GPR ← GPR + C

DEC GPR Decrease GPR, i.e., GPR ← GPR + FFh
DECC GPR Decrease GPR if carry = 0, i.e., GPR ← GPR + FFh + C

Example

INC R0 // assume R1:R0 is a 16-bit number
INCC R1 // to increase R1:R0, use INC and INCC.

DEC R0 // assume R1:R0 is a 16-bit number
DECC R1 // to decrease R1:R0, use DEC and DECC.

INSTRUCTION SET S3FB42F

8-16

SHIFT/ROTATE INSTRUCTIONS

Shift (Rotate) instructions shift (rotate) the given operand by 1 bit. Depending on the operation performed, a number
of Status Register 1 (SR1) bits, namely Carry (C), Zero (Z), Overflow (V), and Negative (N), are set.

SL GPR

Operation

C

7 0

0

GPR

Carry (C) is the MSB of GPR before shifting, Negative (N) is the MSB of GPR after shifting.
Overflow (V) is not affected. Zero (Z) will be 1 if the result is 0.

SLA GPR

Operation

C

7 0

0

GPR

Carry (C) is the MSB of GPR before shifting, Negative (N) is the MSB of GPR after shifting.
Overflow (V) will be 1 if the MSB of the result is different from C. Z will be 1 if the result is 0.

RL GPR

Operation

C

7 0

GPR

Carry (C) is the MSB of GPR before rotating. Negative (N) is the MSB of GPR after rotatin/g.
Overflow (V) is not affected. Zero (Z) will be 1 if the result is 0.

RLC GPR

Operation

C

7 0

GPR

Carry (C) is the MSB of GPR before rotating, Negative (N) is the MSB of GPR after rotating.
Overflow (V) is not affected. Zero (Z) will be 1 if the result is 0.

S3FB42F INSTRUCTION SET

8-17

SR GPR

Operation

C

7 0

0

GPR

Carry (C) is the LSB of GPR before shifting, Negative (N) is the MSB of GPR after shifting.
Overflow (V) is not affected. Zero (Z) will be 1 if the result is 0.

SRA GPR

Operation

C

7 0

GPR

Carry (C) is the LSB of GPR before shifting, Negative (N) is the MSB of GPR after shifting.
Overflow (V) is not affected. Z will be 1 if the result is 0.

RR GPR

Operation

C

7 0

GPR

Carry (C) is the LSB of GPR before rotating. Negative (N) is the MSB of GPR after rotating.
Overflow (V) is not affected. Zero (Z) will be 1 if the result is 0.

RRC GPR

Operation

C

7 0

GPR

Carry (C) is the LSB of GPR before rotating, Negative (N) is the MSB of GPR after rotating.
Overflow (V) is not affected. Zero (Z) will be 1 if the result is 0.

INSTRUCTION SET S3FB42F

8-18

LOAD INSTRUCTIONS

Load instructions transfer data from data memory to a register or from a register to data memory, or assigns an
immediate value into a register. As a side effect, a load instruction placing a value into a register sets the Zero (Z)
and Negative (N) bits in Status Register 1 (SR1), if the placed data is 00h and the MSB of the data is 1, respectively.

LD GPR, adr:8

Loads the value of DM[adr:8] into GPR. Adr:8 is offset in the page specified by the value of eid in Status Register 0
(SR0).

Operation

GPR ← DM[00h:adr:8] if eid = 0
GPR ← DM[IDH:adr:8] if eid = 1

Note that this is an 8-bit operation.

Example

LD R0, 80h // assume eid = 1 and IDH= 01H
// R0 ← DM[0180h]

LD GPR, @idm

Loads a value from the data memory location specified by @idm into GPR.
idm = IDx+off:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]!
(IDx = ID0 or ID1)

Operation

GPR ← DM[IDx], IDx ← IDx + offset:5 when idm = IDx + offset:5
GPR ← DM[IDx - offset:5], IDx ← IDx - offset:5 when idm = [IDx - offset:5]
GPR ← DM[IDx + offset:5] when idm = [IDx + offset:5]!
GPR ← DM[IDx - offset:5] when idm = [IDx - offset:5]!

When carry is generated from IDL (on a post-increment or pre-decrement), it is propagated to IDH.

Example

LD R0, @[ID0 + 03h]! // assume IDH:IDL0 = 0270h
// R0 ← DM[0273h], IDH:IDL0 ← 0270h

S3FB42F INSTRUCTION SET

8-19

LD REG, #imm:8

Loads an 8-bit immediate value into REG. REG can be either GPR or an SPR0 group register - IDH (Index of Data
Memory Higher Byte Register), IDL0 (Index of Data Memory Lower Byte Register)/ IDL1, and Status Register 0
(SR0). #imm:8 is an 8-bit immediate value.

Operation

REG ← #imm:8

Example

LD R0 #7Ah // R0 ← 7Ah
LD IDH, #03h // IDH ← 03h

LD GPR:bs:2, GPR:bs:2

Loads a value of a register from a specified bank into another register in a specified bank.

Example

LD R0:1, R2:3 // R0 in bank 1, R2 in bank 3

LD GPR, TBH/TBL

Loads the value of TBH or TBL into GPR. TBH and TBL are 8-bit long registers used exclusively for LDC instructions
that access program memory. Therefore, after an LDC instruction, LD GPR, TBH/TBL instruction will usually move
the data into GPRs, to be used for other operations.

Operation

GPR ← TBH (or TBL)

Example

LDC @IL // gets a program memory item residing @ ILX:ILH:ILL
LD R0, TBH
LD R1, TBL

LD TBH/TBL, GPR

Loads the value of GPR into TBH or TBL. These instructions are used in pair in interrupt service routines to save and
restore the values in TBH/TBL as needed.

Operation

TBH (or TBL) ← GPR

LD GPR, SPR

Loads the value of SPR into GPR.

Operation

GPR ← SPR

Example

LD R0, IDH // R0 ← IDH

INSTRUCTION SET S3FB42F

8-20

LD SPR, GPR

Loads the value of GPR into SPR.

Operation

SPR ← GPR

Example

LD IDH, R0 // IDH ← R0

LD adr:8, GPR

Stores the value of GPR into data memory (DM). adr:8 is offset in the page specified by the value of eid in Status
Register 0 (SR0).

Operation

DM[00h:adr:8] ← GPR if eid = 0
DM[IDH:adr:8] ← GPR if eid = 1

Note that this is an 8-bit operation.

Example

LD 7Ah, R0 // assume eid = 1 and IDH = 02h.
// DM[027Ah] ← R0

LD @idm, GPR

Loads a value into the data memory location specified by @idm from GPR.
idm = IDx+off:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]!
(IDx = ID0 or ID1)

Operation

DM[IDx] ← GPR, IDx ← IDx + offset:5 when idm = IDx + offset:5
DM[IDx - offset:5] ← GPR, IDx ← IDx - offset:5 when idm = [IDx - offset:5]
DM[IDx + offset:5] ← GPR when idm = [IDx + offset:5]!
DM[IDx - offset:5] ← GPR when idm = [IDx - offset:5]!

When carry is generated from IDL (on a post-increment or pre-decrement), it is propagated to IDH.

Example

LD @[ID0 + 03h]!, R0 // assume IDH:IDL0 = 0170h
// DM[0173h] ← R0, IDH:IDL0 ← 0170h

S3FB42F INSTRUCTION SET

8-21

BRANCH INSTRUCTIONS

Branch instructions can be categorized into jump instruction, link instruction, and call instruction. A jump instruction
does not save the current PC, whereas a call instruction saves (“pushes”) the current PC onto the stack and a link
instruction saves the PC in the link register IL. Status registers are not affected. Each instruction type has a 2-word
format that supports a 20-bit long jump.

JR cc:4, imm:9

imm:9 is a signed number (2’s complement), an offset to be added to the current PC to compute the target
(PC[19:12]:(PC[11:0] + imm:9)).

Operation

PC[11:0] ← PC[11:0] + imm:9 if branch taken (i.e., cc:4 resolves to be true)
PC[11:0] ← PC[11:0] + 1 otherwise

Example

L18411: // assume current PC = 18411h.
JR Z, 107h // next PC is 18518 (18411h + 107h) if Zero (Z) bit is set.

LJP cc:4, imm:20

Jumps to the program address specified by imm:20. If program size is less than 64K word, PC[19:16] is not affected.

Operation

PC[15:0] ← imm[15:0] if branch taken and program size is less than 64K word
PC[19:0] ← imm[19:0] if branch taken and program size is equal to 64K word or more
PC [11:0] ← PC[11:0] + 1 otherwise

Example

L18411: // assume current PC = 18411h.
LJP Z, 10107h // next instruction’s PC is 10107h If Zero (Z) bit is set

JNZD Rn, imm:8

Jumps to the program address specified by imm:8 if the value of the bank 3 register Rn is not zero. JNZD performs
only backward jumps, with the value of Rn automatically decreased. There is one delay slot following the JNZD
instruction that is always executed, regardless of whether JNZD is taken or not.

 Operation

If (Rn == 0) PC ← PC[delay slot] (-) 2’s complement of imm:8, Rn ← Rn - 1
else PC ← PC[delay slot] + 1, Rn ← Rn - 1.

INSTRUCTION SET S3FB42F

8-22

Example

LOOP_A: // start of loop body
•
•
•
JNZD R0, LOOP_A // jump back to LOOP_A if R0 is not zero
ADD R1, #2 // delay slot, always executed (you must use one cycle instruction only)

CALLS imm:12

Saves the current PC on the stack (“pushes” PC) and jumps to the program address specified by imm:12. The
current page number PC[19:12] is not changed. Since this is a 1-word instruction, the return address pushed onto
the stack is (PC + 1). If nP64KW is low when PC is saved, PC[19:16] is not saved in the stack.

Operation

HS[sptr][15:0] ← current PC + 1 and sptr ← sptr + 2 (push stack) if nP64KW = 0
HS[sptr][19:0] ← current PC + 1 and sptr ← sptr + 2 (push stack) if nP64KW = 1
PC[11:0] ← imm:12

Example

L18411: // assume current PC = 18411h.
CALLS 107h // call the subroutine at 18107h, with the current PC pushed

// onto the stack (HS ← 18412h) if nP64KW = 1.

LCALL cc:4, imm:20

Saves the current PC onto the stack (pushes PC) and jumps to the program address specified by imm:20. Since this
is a 2-word instruction, the return address saved in the stack is (PC + 2). If nP64KW, a core input signal is low when
PC is saved, 0000111111PC[19:16] is not saved in the stack and PC[19:16] is not set to imm[19:16].

Operation

HS[sptr][15:0] ← current PC + 2 and sptr + 2 (push stack) if branch taken and nP64KW = 0
HS[sptr][19:0] ← current PC + 2 and sptr + 2 (push stack) if branch taken and nP64KW = 1
PC[15:0] ← imm[15:0] if branch taken and nP64KW = 0
PC[19:0] ← imm[19:0] if branch taken and nP64KW = 1
PC[11:0] ← PC[11:0] + 2 otherwise

Example

L18411: // assume current PC = 18411h.
LCALL NZ, 10h:107h // call the subroutine at 10107h with the current PC pushed

// onto the stack (HS ← 18413h)

S3FB42F INSTRUCTION SET

8-23

LNKS imm:12

Saves the current PC in IL and jumps to the program address specified by imm:12. The current page number
PC[19:12] is not changed. Since this is a 1-word instruction, the return address saved in IL is (PC + 1). If the
program size is less than 64K word when PC is saved, PC[19:16] is not saved in ILX.

Operation

IL[15:0] ← current PC + 1 if program size is less than 64K word
IL[19:0] ← current PC + 1 if program size is equal to 64K word or more
PC[11:0] ← imm:12

Example

L18411: // assume current PC = 18411h.
LNKS 107h // call the subroutine at 18107h, with the current PC saved

// in IL (IL[19:0] ← 18412h) if program size is 64K word or more.

LLNK cc:4, imm:20

Saves the current PC in IL and jumps to the program address specified by imm:20. Since this is a 2-word instruction,
the return address saved in IL is (PC + 2). If the program size is less than 64K word when PC is saved, PC[19:16] is
not saved in ILX.

Operation

IL[15:0] ← current PC + 2 if branch taken and program size is less than 64K word
IL[19:0] ← current PC + 2 if branch taken and program size is 64K word or more
PC[15:0] ← imm[15:0] if branch taken and program size is less than 64K word
PC[19:0] ← imm[19:0] if branch taken and program size is 64K word or more
PC[11:0] ← PC[11:0] + 2 otherwise

Example

L18411: // assume current PC = 18411h.
LLNK NZ, 10h:107h // call the subroutine at 10107h with the current PC saved

// in IL (IL[19:0] ← 18413h) if program size is 64K word or more

RET, IRET

Returns from the current subroutine. IRET sets ie (SR0[1]) in addition. If the program size is less than 64K word,
PC[19:16] is not loaded from HS[19:16].

Operation

PC[15:0] ← HS[sptr - 2] and sptr ← sptr - 2 (pop stack) if program size is less than 64K word
PC[19:0] ← HS[sptr - 2] and sptr ← sptr - 2 (pop stack) if program size is 64K word or more

Example

RET // assume sptr = 3h and HS[1] = 18407h.
// the next PC will be 18407h and sptr is set to 1h

INSTRUCTION SET S3FB42F

8-24

LRET

Returns from the current subroutine, using the link register IL. If the program size is less than 64K word, PC[19:16] is
not loaded from ILX.

Operation

PC[15:0] ← IL[15:0] if program size is less than 64K word
PC[19:0] ← IL[19:0] if program size is 64K word or more

Example

LRET // assume IL = 18407h.
// the next instruction to execute is at PC = 18407h

 // if program size is 64K word or more

JP/LNK/CALL

JP/LNK/CALL instructions are pseudo instructions. If JR/LNKS/CALLS commands (1 word instructions) can access
the target address, there is no conditional code in the case of CALL/LNK and the JP/LNK/CALL commands are
assembled to JR/LNKS/CALLS in linking time or else the JP/LNK/CALL commands are assembled to
LJP/LLNK/LCALL (2 word instructions) instructions.

S3FB42F INSTRUCTION SET

8-25

BIT MANIPULATION INSTRUCTIONS

BITop adr:8.bs

Performs a bit operation specified by op on the value in the data memory pointed by adr:8 and stores the result into
R3 of current GPR bank or back into memory depending on the value of TF bit.

BITop = BITS, BITR, BITC, BITT
BITS: bit set
BITR: bit reset
BITC: bit complement
BITT: bit test (R3 is not touched in this case)
bs: bit location specifier, 0 - 7.

Operation

R3 ← DM[00h:adr:8] BITop bs if eid = 0
R3 ← DM[IDH:adr:8] BITop bs if eid = 1 (no register transfer for BITT)
Set the Zero (Z) bit if the result is 0.

Example

BITS 25h.3 // assume eid = 0. set bit 3 of DM[00h:25h] and store the result in R3.
BITT 25h.3 // check bit 3 of DM[00h:25h] if eid = 0.

BMC/BMS

Clears or sets the TF bit, which is used to determine the destination of BITop instructions. When TF bit is clear, the
result of BITop instructions will be stored into R3 (fixed); if the TF bit is set, the result will be written back to memory.

 Operation

TF ← 0 (BMC)
TF ← 1 (BMS)

TM GPR, #imm:8

Performs AND operation on GPR and imm:8 and sets the Zero (Z) and Negative (N) bits. No change in GPR.

Operation

Z, N flag ← GPR & #imm:8

BITop GPR.bs

Performs a bit operation on GPR and stores the result in GPR.
Since the equivalent functionality can be achieved using OR GPR, #imm:8, AND GPR, #imm:8, and XOR GPR,
#imm:8, this instruction type doesn’t have separate op codes.

INSTRUCTION SET S3FB42F

8-26

AND SR0, #imm:8/OR SR0, #imm:8

Sets/resets bits in SR0 and stores the result back into SR0.

Operation

SR0 ← SR0 & #imm:8
SR0 ← SR0 | #imm:8

BANK #imm:2

Loads SR0[4:3] with #imm[1:0].

Operation

SR0[4:3] ← #imm[1:0]

MISCELLANEOUS INSTRUCTION

SWAP GPR, SPR

Swaps the values in GPR and SPR. SR0 and SR1 can NOT be used for this instruction.
No flag is updated, even though the destination is GPR.

Operation

temp ← SPR
SPR ← GPR
GPR ← temp

Example

SWAP R0, IDH // assume IDH = 00h and R0 = 08h.
// after this, IDH = 08h and R0 = 00h.

PUSH REG

Saves REG in the stack (Pushes REG into stack).
REG = GPR, SPR

Operation

HS[sptr][7:0] ← REG and sptr ← sptr + 1

Example

PUSH R0 // assume R0 = 08h and sptr = 2h
// then HS[2][7:0] ← 08h and sptr ← 3h

S3FB42F INSTRUCTION SET

8-27

POP REG

Pops stack into REG.
REG = GPR, SPR

Operation

REG ← HS[sptr-1][7:0] and sptr ← sptr – 1

Example

POP R0 // assume sptr = 3h and HS[2] = 18407h
// R0 ← 07h and sptr ← 2h

POP

Pops 2 bytes from the stack and discards the popped data.

NOP

Does no work but increase PC by 1.

BREAK

Does nothing and does NOT increment PC. This instruction is for the debugger only. When this instruction is
executed, the processor is locked since PC is not incremented. Therefore, this instruction should not be used under
any mode other than the debug mode.

SYS #imm:8

Does nothing but increase PC by 1 and generates SYSCP[7:0] and nSYSID signals.

CLD GPR, imm:8

GPR ← (imm:8) and generates SYSCP[7:0], nCLDID, and nCLDWR signals.

CLD imm:8, GPR

(imm:8) ← GPR and generates SYSCP[7:0], nCLDID, and nCLDWR signals.

COP #imm:12

Generates SYSCP[11:0] and nCOPID signals.

INSTRUCTION SET S3FB42F

8-28

LDC

Loads program memory item into register.

Operation

[TBH:TBL] ← PM[ILX:ILH:ILL] (LDC @IL)
[TBH:TBL] ← PM[ILX:ILH:ILL], ILL++ (LDC @IL+)

TBH and TBL are temporary registers to hold the transferred program memory items. These can be accessed only
by LD GPR and TBL/TBH instruction.

Example

LD ILX, R1 // assume R1:R2:R3 has the program address to access
LD ILH, R2
LD ILL, R3
LDC @IL // get the program data @(ILX:ILH:ILL) into TBH:TBL

S3FB42F INSTRUCTION SET

8-29

PSEUDO INSTRUCTIONS

EI/DI

Exceptions enable and disable instruction.

Operation

SR0 ← OR SR0,#00000010b (EI)
SR0 ← AND SR0,#11111101b (DI)

Exceptions are enabled or disabled through this instruction. If there is an EI instruction, the SR0.1 is set and reset,
when DI instruction.

Example

DI
•
•
•
EI

SCF/RCF

Carry flag set and reset instruction.

Operation

CP R0,R0 (SCF)
AND R0,R0 (RCF)

Carry flag is set or reset through this instruction. If there is an SCF instruction, the SR1.0 is set and reset, when
RCF instruction.

Example

SCF
RCF

STOP/IDLE

MCU power saving instruction.

Operation

SYS #0Ah (STOP)
SYS #05h (IDLE)

The STOP instruction stops the both CPU clock and system clock and causes the microcontroller to enter STOP
mode. The IDLE instruction stops the CPU clock while allowing system clock oscillation to continue.

Example

STOP(or IDLE)

NOP

NOP

NOP

•
•

INSTRUCTION SET S3FB42F

8-30

ADC — Add with Carry

Format: ADC <op1>, <op2>
<op1>: GPR
<op2>: adr:8, GPR

Operation: <op1> ← <op1> + <op2> + C
ADC adds the values of <op1> and <op2> and carry (C) and stores the result back into <op1>

Flags: C: set if carry is generated. Reset if not.
Z: set if result is zero. Reset if not.
V: set if overflow is generated. Reset if not.

. N: exclusive OR of V and MSB of result.

Example:
 ADC R0, 80h // If eid = 0, R0 ← R0 + DM[0080h] + C

// If eid = 1, R0 ← R0 + DM[IDH:80h] + C

ADC R0, R1 // R0 ← R0 + R1 + C

ADD R0, R2
ADC R1, R3

In the last two instructions, assuming that register pair R1:R0 and R3:R2 are 16-bit signed or
unsigned numbers. Even if the result of “ADD R0, R2” is not zero, Z flag can be set to ‘1’ if the result
of “ADC R1,R3” is zero. Note that zero (Z) flag do not exactly reflect result of 16-bit operation.
Therefore when programming 16-bit addition, take care of the change of Z flag.

S3FB42F INSTRUCTION SET

8-31

ADD — Add

Format: ADD <op1>, <op2>

<op1>: GPR
<op2>: adr:8, #imm:8, GPR, @idm

Operation: <op1> ← <op1> + <op2>

ADD adds the values of <op1> and <op2> and stores the result back into <op1>.

Flags: C: set if carry is generated. Reset if not.
Z: set if result is zero. Reset if not.
V: set if overflow is generated. Reset if not.

. N: exclusive OR of V and MSB of result.

Example: Given: IDH:IDL0 = 80FFh, eid = 1

ADD R0, 80h // R0 ← R0 + DM[8080h]

ADD R0, #12h // R0 ← R0 + 12h

ADD R1, R2 // R1 ← R1 + R2

ADD R0, @ID0 + 2 // R0 ← R0 + DM[80FFh], IDH ← 81h, IDL0 ← 01h
ADD R0, @[ID0 – 3] // R0 ← R0 + DM[80FCh], IDH ← 80h, IDL0 ← FCh
ADD R0, @[ID0 + 2]! // R0 ← R0 + DM[8101h], IDH ← 80h, IDL0 ← FFh
ADD R0, @[ID0 – 2]! // R0 ← R0 + DM[80FDh], IDH ← 80h, IDL0 ← FFh

In the last two instructions, the value of IDH:IDL0 is not changed. Refer to Table 8-5 for more
detailed explanation about this addressing mode.
idm = IDx+offset:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]! (IDx = ID0 or ID1)

INSTRUCTION SET S3FB42F

8-32

AND — Bit-wise AND

Format: AND <op1>, <op2>

<op1>: GPR
<op2>: adr:8, #imm:8, GPR, @idm

Operation: <op1> ← <op1> & <op2>

AND performs bit-wise AND on the values in <op1> and <op2> and stores the result in <op1>.

Flags: Z: set if result is zero. Reset if not.
N: set if the MSB of result is 1. Reset if not.

Example: Given: IDH:IDL0 = 01FFh, eid = 1

AND R0, 7Ah // R0 ← R0 & DM[017Ah]

AND R1, #40h // R1 ← R1 & 40h

AND R0, R1 // R0 ← R0 & R1

AND R1, @ID0 + 3 // R1 ← R1 & DM[01FFh], IDH:IDL0 ← 0202h
AND R1, @[ID0 – 5] // R1 ← R1 & DM[01FAh], IDH:IDL0 ← 01FAh
AND R1, @[ID0 + 7]! // R1 ← R1 & DM[0206h], IDH:IDL0 ← 01FFh
AND R1, @[ID0 – 2]! // R1 ← R1 & DM[01FDh], IDH:IDL0 ← 01FFh

In the first instruction, if eid bit in SR0 is zero, register R0 has garbage value because data memory
DM[0051h-007Fh] are not mapped in S3CB018/S3FB018. In the last two instructions, the value of
IDH:IDL0 is not changed. Refer to Table 8-5 for more detailed explanation about this addressing
mode.
idm = IDx+offset:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]! (IDx = ID0 or ID1)

S3FB42F INSTRUCTION SET

8-33

AND SR0 — Bit-wise AND with SR0

Format: AND SR0, #imm:8

Operation: SR0 ← SR0 & imm:8

AND SR0 performs the bit-wise AND operation on the value of SR0 and imm:8 and stores the
result in SR0.

Flags: –

Example: Given: SR0 = 11000010b

nIE EQU ~02h
nIE0 EQU ~40h
nIE1 EQU ~80h

AND SR0, #nIE | nIE0 | nIE1

AND SR0, #11111101b

In the first example, the statement “AND SR0, #nIE|nIE0|nIE1” clear all of bits of the global interrupt,
interrupt 0 and interrupt 1. On the contrary, cleared bits can be set to ‘1’ by instruction “OR SR0,
#imm:8”. Refer to instruction OR SR0 for more detailed explanation about enabling bit.

In the second example, the statement “AND SR0, #11111101b” is equal to instruction DI, which is
disabling interrupt globally.

INSTRUCTION SET S3FB42F

8-34

BANK — GPR Bank selection

Format: BANK #imm:2

Operation: SR0[4:3] ← imm:2

Flags: –

NOTE: For explanation of the CalmRISC banked register file and its usage, please refer to chapter 3.

Example:
 BANK #1 // Select register bank 1

LD R0, #11h // Bank1’s R0 ← 11h

BANK #2 // Select register bank 2
LD R1, #22h // Bank2’s R1 ← 22h

S3FB42F INSTRUCTION SET

8-35

BITC — Bit Complement

Format: BITC adr:8.bs

bs: 3-digit bit specifier

Operation: R3 ← ((adr:8) ^ (2**bs)) if (TF == 0)

(adr:8) ← ((adr:8) ^ (2**bs)) if (TF == 1)

BITC complements the specified bit of a value read from memory and stores the result in R3 or
back into memory, depending on the value of TF. TF is set or clear by BMS/BMC instruction.

Flags: Z: set if result is zero. Reset if not.

NOTE: Since the destination register R3 is fixed, it is not specified explicitly.

Example: Given: IDH = 01, DM[0180h] = FFh, eid = 1

BMC // TF ← 0
BITC 80h.0 // R3 ← FEh, DM[0180h] = FFh

BMS // TF ← 1
BITC 80h.1 // DM[0180h] ← FDh

INSTRUCTION SET S3FB42F

8-36

BITR — Bit Reset

Format: BITR adr:8.bs

bs: 3-digit bit specifier

Operation: R3 ← ((adr:8) & ((11111111)2 - (2**bs))) if (TF == 0)

(adr:8) ← ((adr:8) & ((11111111)2 - (2**bs))) if (TF == 1)

BITR resets the specified bit of a value read from memory and stores the result in R3 or back
into memory, depending on the value of TF. TF is set or clear by BMS/BMC instruction.

Flags: Z: set if result is zero. Reset if not.

NOTE: Since the destination register R3 is fixed, it is not specified explicitly.

Example: Given: IDH = 01, DM[0180h] = FFh, eid = 1

BMC // TF ← 0
BITR 80h.1 // R3 ← FDh, DM[0180h] = FFh

BMS // TF ← 1
BITR 80h.2 // DM[0180h] ← FBh

S3FB42F INSTRUCTION SET

8-37

BITS — Bit Set

Format: BITS adr:8.bs

bs: 3-digit bit specifier.

Operation: R3 ← ((adr:8) | (2**bs)) if (TF == 0)

(adr:8) ← ((adr:8) | (2**bs)) if (TF == 1)

BITS sets the specified bit of a value read from memory and stores the result in R3 or back into
memory, depending on the value of TF. TF is set or clear by BMS/BMC instruction.

Flags: Z: set if result is zero. Reset if not.

NOTE: Since the destination register R3 is fixed, it is not specified explicitly.

Example: Given: IDH = 01, DM[0180h] = F0h, eid = 1

BMC // TF ← 0
BITS 80h.1 // R3 ← 0F2h, DM[0180h] = F0h

BMS // TF ← 1
BITS 80h.2 // DM[0180h] ← F4h

INSTRUCTION SET S3FB42F

8-38

BITT — Bit Test

Format: BITT adr:8.bs

bs: 3-digit bit specifier.

Operation: Z ← ~((adr:8) & (2**bs))

BITT tests the specified bit of a value read from memory.

Flags: Z: set if result is zero. Reset if not.

Example: Given: DM[0080h] = F7h, eid = 0

BITT 80h.3 // Z flag is set to ‘1’
JR Z, %1 // Jump to label %1 because condition is true.
•
•
•

%1 BITS 80h.3
NOP
•
•
•

S3FB42F INSTRUCTION SET

8-39

BMC/BMS – TF bit clear/set

Format: BMS/BMC

Operation: BMC/BMS clears (sets) the TF bit.

TF ← 0 if BMC

TF ← 1 if BMS

TF is a single bit flag which determines the destination of bit operations, such as BITC, BITR, and
BITS.

Flags: –

NOTE: BMC/BMS are the only instructions that modify the content of the TF bit.

Example:
 BMS // TF ← 1

BITS 81h.1

BMC // TF ← 0
BITR 81h.2
LD R0, R3

INSTRUCTION SET S3FB42F

8-40

CALL — Conditional Subroutine Call (Pseudo Instruction)

Format: CALL cc:4, imm:20
CALL imm:12

Operation: If CALLS can access the target address and there is no conditional code (cc:4), CALL command is
assembled to CALLS (1-word instruction) in linking time, else the CALL is assembled to LCALL (2-word
instruction).

Example:
CALL C, Wait // HS[sptr][15:0] ← current PC + 2, sptr ← sptr + 2
• // 2-word instruction
•
•

 CALL 0088h // HS[sptr][15:0] ← current PC + 1, sptr ← sptr + 2
• // 1-word instruction
•
•

Wait: NOP // Address at 0088h
NOP

 NOP
 NOP
 NOP

RET

S3FB42F INSTRUCTION SET

8-41

CALLS — Call Subroutine

Format: CALLS imm:12

Operation: HS[sptr][15:0] ← current PC + 1, sptr ← sptr + 2 if the program size is less than 64K word.

HS[sptr][19:0] ← current PC + 1, sptr ← sptr + 2 if the program size is equal to or over 64K word.

PC[11:0] ← imm:12
CALLS unconditionally calls a subroutine residing at the address specified by imm:12.

Flags: –

Example:
CALLS Wait
•
•
•

Wait: NOP
NOP
NOP
RET

Because this is a 1-word instruction, the saved returning address on stack is (PC + 1).

INSTRUCTION SET S3FB42F

8-42

CLD — Load into Coprocessor

Format: CLD imm:8, <op>

<op>: GPR

Operation: (imm:8) ← <op>

CLD loads the value of <op> into (imm:8), where imm:8 is used to access the external
coprocessor's address space.

Flags: –

Example:
AH EQU 00h
AL EQU 01h
BH EQU 02h
BL EQU 03h

•
•
•
CLD AH, R0 // A[15:8] ← R0
CLD AL, R1 // A[7:0] ← R1

CLD BH, R2 // B[15:8] ← R2
CLD BL, R3 // B[7:0] ← R3

The registers A[15:0] and B[15:0] are Arithmetic Unit (AU) registers of MAC816.
 Above instructions generate SYSCP[7:0], nCLDID and CLDWR signals to access MAC816.

S3FB42F INSTRUCTION SET

8-43

CLD — Load from Coprocessor

Format: CLD <op>, imm:8

<op>: GPR

Operation: <op> ← (imm:8)

CLD loads a value from the coprocessor, whose address is specified by imm:8.

Flags: Z: set if the loaded value in <op1> is zero. Reset if not.
N: set if the MSB of the loaded value in <op1> is 1. Reset if not.

Example:
AH EQU 00h
AL EQU 01h
BH EQU 02h
BL EQU 03h

•
•
•
CLD R0, AH // R0 ← A[15:8]
CLD R1, AL // R1 ← A[7:0]

CLD R2, BH // R2 ← B[15:8]
CLD R3, BL // R3 ← B[7:0]

 The registers A[15:0] and B[15:0] are Arithmetic Unit (AU) registers of MAC816.
 Above instructions generate SYSCP[7:0], nCLDID and CLDWR signals to access MAC816.

INSTRUCTION SET S3FB42F

8-44

COM — 1's or Bit-wise Complement

Format: COM <op>

<op>: GPR

Operation: <op> ← ~<op>

COM takes the bit-wise complement operation on <op> and stores the result in <op>.

Flags: Z: set if result is zero. Reset if not.
N: set if the MSB of result is 1. Reset if not.

Example: Given: R1 = 5Ah

 COM R1 // R1 ← A5h, N flag is set to ‘1’

S3FB42F INSTRUCTION SET

8-45

COM2 — 2's Complement

Format: COM2 <op>

<op>: GPR

Operation: <op> ← ~<op> + 1

COM2 computes the 2's complement of <op> and stores the result in <op>.

Flags: C: set if carry is generated. Reset if not.
Z: set if result is zero. Reset if not.
V: set if overflow is generated. Reset if not.
N: set if result is negative.

Example: Given: R0 = 00h, R1 = 5Ah

COM2 R0 // R0 ← 00h, Z and C flags are set to ‘1’.

COM2 R1 // R1 ← A6h, N flag is set to ‘1’.

INSTRUCTION SET S3FB42F

8-46

COMC — Bit-wise Complement with Carry

Format: COMC <op>

<op>: GPR

Operation: <op> ← ~<op> + C

COMC takes the bit-wise complement of <op>, adds carry and stores the result in <op>.

Flags: C: set if carry is generated. Reset if not.
Z: set if result is zero. Reset if not.
V: set if overflow is generated. Reset if not.
N: set if result is negative. Reset if not.

Example: If register pair R1:R0 is a 16-bit number, then the 2’s complement of R1:R0 can be obtained by
 COM2 and COMC as following.

 COM2 R0
COMC R1

Note that Z flag do not exactly reflect result of 16-bit operation. For example, if 16-bit register pair
R1: R0 has value of FF01h, then 2’s complement of R1: R0 is made of 00FFh by COM2 and COMC.
At this time, by instruction COMC, zero (Z) flag is set to ‘1’ as if the result of 2’s complement for 16-
bit number is zero. Therefore when programming 16-bit comparison, take care of the change of Z
flag.

S3FB42F INSTRUCTION SET

8-47

COP — Coprocessor

Format: COP #imm:12

Operation: COP passes imm:12 to the coprocessor by generating SYSCP[11:0] and nCOPID signals.

Flags: –

Example:
COP #0D01h // generate 1 word instruction code(FD01h)
COP #0234h // generate 1 word instruction code(F234h)

The above two instructions are equal to statement “ELD A, #1234h” for MAC816 operation. The
microcode of MAC instruction “ELD A, #1234h” is “FD01F234”, 2-word instruction. In this, code ‘F’
indicates ‘COP’ instruction.

INSTRUCTION SET S3FB42F

8-48

CP — Compare

Format: CP <op1>, <op2>

<op1>: GPR
<op2>: adr:8, #imm:8, GPR, @idm

Operation: <op1> + ~<op2> + 1

CP compares the values of <op1> and <op2> by subtracting <op2> from <op1>. Contents of <op1>
and <op2> are not changed.

Flags: C: set if carry is generated. Reset if not.
Z: set if result is zero (i.e., <op1> and <op2> are same). Reset if not.
V: set if overflow is generated. Reset if not.
N: set if result is negative. Reset if not.

Example: Given: R0 = 73h, R1 = A5h, IDH:IDL0 = 0123h, DM[0123h] = A5, eid = 1

CP R0, 80h // C flag is set to ‘1’

CP R0, #73h // Z and C flags are set to ‘1’

CP R0, R1 // V flag is set to ‘1’

CP R1, @ID0 // Z and C flags are set to ‘1’
CP R1, @[ID0 – 5]
CP R2, @[ID0 + 7]!
CP R2, @[ID0 – 2]!

In the last two instructions, the value of IDH:IDL0 is not changed. Refer to Table 8-5 for more
detailed explanation about this addressing mode.
idm = IDx+offset:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]! (IDx = ID0 or ID1)

S3FB42F INSTRUCTION SET

8-49

CPC — Compare with Carry

Format: CPC <op1>, <op2>

<op1>: GPR
<op2>: adr:8, GPR

Operation: <op1> ← <op1> + ~<op2> + C

CPC compares <op1> and <op2> by subtracting <op2> from <op1>. Unlike CP, however, CPC
adds (C - 1) to the result. Contents of <op1> and <op2> are not changed.

Flags: C: set if carry is generated. Reset if not.
Z: set if result is zero. Reset if not.
V: set if overflow is generated. Reset if not.

 N: set if result is negative. Reset if not.

Example: If register pair R1:R0 and R3:R2 are 16-bit signed or unsigned numbers, then use CP and CPC
 to compare two 16-bit numbers as follows.

CP R0, R1
CPC R2, R3

Because CPC considers C when comparing <op1> and <op2>, CP and CPC can be used in pair to
compare 16-bit operands. But note that zero (Z) flag do not exactly reflect result of 16-bit operation.
Therefore when programming 16-bit comparison, take care of the change of Z flag.

INSTRUCTION SET S3FB42F

8-50

DEC — Decrement

Format: DEC <op>

<op>: GPR

Operation: <op> ← <op> + 0FFh

DEC decrease the value in <op> by adding 0FFh to <op>.

Flags: C: set if carry is generated. Reset if not.
Z: set if result is zero. Reset if not.
V: set if overflow is generated. Reset if not.
N: set if result is negative. Reset if not.

Example: Given: R0 = 80h, R1 = 00h

DEC R0 // R0 ← 7Fh, C, V and N flags are set to ‘1’

DEC R1 // R1 ← FFh, N flags is set to ‘1’

S3FB42F INSTRUCTION SET

8-51

DECC — Decrement with Carry

Format: DECC <op>

<op>: GPR

Operation: <op> ← <op> + 0FFh + C

DECC decrease the value in <op> when carry is not set. When there is a carry, there is no
change in the value of <op>.

Flags: C: set if carry is generated. Reset if not.
Z: set if result is zero. Reset if not.
V: set if overflow is generated. Reset if not.
N: set if result is negative. Reset if not.

Example: If register pair R1:R0 is 16-bit signed or unsigned number, then use DEC and DECC to
decrement 16-bit number as follows.

DEC R0
DECC R1

Note that zero (Z) flag do not exactly reflect result of 16-bit operation. Therefore when programming
16-bit decrement, take care of the change of Z flag.

INSTRUCTION SET S3FB42F

8-52

DI — Disable Interrupt (Pseudo Instruction)

Format: DI

Operation: Disables interrupt globally. It is same as “AND SR0, #0FDh” .
DI instruction sets bit1 (ie: global interrupt enable) of SR0 register to “0”

Flags: –

Example: Given: SR0 = 03h

DI // SR0 ← SR0 & 11111101b

DI instruction clears SR0[1] to ‘0’, disabling interrupt processing.

S3FB42F INSTRUCTION SET

8-53

EI — Enable Interrupt (Pseudo Instruction)

Format: EI

Operation: Enables interrupt globally. It is same as “OR SR0, #02h” .
EI instruction sets the bit1 (ie: global interrupt enable) of SR0 register to “1”

Flags: –

Example: Given: SR0 = 01h

EI // SR0 ← SR0 | 00000010b

The statement “EI” sets the SR0[1] to ‘1’, enabling all interrupts.

INSTRUCTION SET S3FB42F

8-54

IDLE — Idle Operation (Pseudo Instruction)

Format: IDLE

Operation: The IDLE instruction stops the CPU clock while allowing system clock oscillation to continue.
Idle mode can be released by an interrupt or reset operation.
The IDLE instruction is a pseudo instruction. It is assembled as “SYS #05H”, and this generates the
SYSCP[7-0] signals. Then these signals are decoded and the decoded signals execute the idle
operation.

Flags: –

NOTE: The next instruction of IDLE instruction is executed, so please use the NOP instruction after the IDLE
instruction.

Example:
 IDLE
 NOP
 NOP
 NOP
 •
 •
 •

The IDLE instruction stops the CPU clock but not the system clock.

S3FB42F INSTRUCTION SET

8-55

INC — Increment

Format: INC <op>

<op>: GPR

Operation: <op> ← <op> + 1

INC increase the value in <op>.

Flags: C: set if carry is generated. Reset if not.
Z: set if result is zero. Reset if not.
V: set if overflow is generated. Reset if not.
N: set if result is negative. Reset if not.

Example: Given: R0 = 7Fh, R1 = FFh

INC R0 // R0 ← 80h, V flag is set to ‘1’

INC R1 // R1 ← 00h, Z and C flags are set to ‘1’

INSTRUCTION SET S3FB42F

8-56

INCC — Increment with Carry

Format: INCC <op>

<op>: GPR

Operation: <op> ← <op> + C

INCC increase the value of <op> only if there is carry. When there is no carry, the value of
<op> is not changed.

Flags: C: set if carry is generated. Reset if not.
Z: set if result is zero. Reset if not.
V: set if overflow is generated. Reset if not.
N: exclusive OR of V and MSB of result.

Example: If register pair R1:R0 is 16-bit signed or unsigned number, then use INC and INCC to increment
16-bit number as following.

INC R0
INCC R1

Assume R1:R0 is 0010h, statement “INC R0” increase R0 by one without carry and statement
“INCC R1” set zero (Z) flag to ‘1’ as if the result of 16-bit increment is zero. Note that zero (Z) flag do
not exactly reflect result of 16-bit operation. Therefore when programming 16-bit increment, take
care of the change of Z flag.

S3FB42F INSTRUCTION SET

8-57

IRET — Return from Interrupt Handling

Format: IRET

Operation: PC ← HS[sptr - 2], sptr ← sptr - 2

IRET pops the return address (after interrupt handling) from the hardware stack and assigns it to
PC. The ie (i.e., SR0[1]) bit is set to allow further interrupt generation.

Flags: –

NOTE: The program size (indicated by the nP64KW signal) determines which portion of PC is updated.
When the program size is less than 64K word, only the lower 16 bits of PC are updated
(i.e., PC[15:0] ← HS[sptr – 2]).
When the program size is 64K word or more, the action taken is PC[19:0] ← HS[sptr - 2].

Example:

 SF_EXCEP: NOP // Stack full exception service routine
 •

•
•
IRET

INSTRUCTION SET S3FB42F

8-58

JNZD — Jump Not Zero with Delay slot

Format: JNZD <op>, imm:8

<op>: GPR (bank 3’s GPR only)

imm:8 is an signed number

Operation: PC ← PC[delay slot] - 2’s complement of imm:8

<op> ← <op> - 1

JNZD performs a backward PC-relative jump if <op> evaluates to be non-zero. Furthermore, JNZD
decrease the value of <op>. The instruction immediately following JNZD (i.e., in delay slot) is always
executed, and this instruction must be 1 cycle instruction.

Flags: –

NOTE: Typically, the delay slot will be filled with an instruction from the loop body. It is noted, however, that
the chosen instruction should be “dead” outside the loop for it executes even when the loop is exited
(i.e., JNZD is not taken).

Example: Given: IDH = 03h, eid = 1

BANK #3
 LD R0, #0FFh // R0 is used to loop counter

 LD R1, #0
%1 LD IDL0, R0

JNZD R0, %B1 // If R0 of bank3 is not zero, jump to %1.
 LD @ID0, R1 // Clear register pointed by ID0
 •

•
•

This example can be used for RAM clear routine. The last instruction is executed even if the loop is
exited.

S3FB42F INSTRUCTION SET

8-59

JP — Conditional Jump (Pseudo Instruction)

Format: JP cc:4 imm:20
JP cc:4 imm:9

Operation: If JR can access the target address, JP command is assembled to JR (1 word instruction) in linking
time, else the JP is assembled to LJP (2 word instruction) instruction.
There are 16 different conditions that can be used, as described in table 8-6.

Example:
%1 LD R0, #10h // Assume address of label %1 is 020Dh

•
•
•
JP Z, %B1 // Address at 0264h

JP C, %F2 // Address at 0265h
•
•
•

%2 LD R1, #20h // Assume address of label %2 is 089Ch
 •

•
•

In the above example, the statement “JP Z, %B1” is assembled to JR instruction. Assuming that
current PC is 0264h and condition is true, next PC is made by PC[11:0] ← PC[11:0] + offset, offset
value is “64h + A9h” without carry. ‘A9’ means 2’s complement of offset value to jump backward.
Therefore next PC is 020Dh. On the other hand, statement “JP C, %F2” is assembled to LJP
instruction because offset address exceeds the range of imm:9.

INSTRUCTION SET S3FB42F

8-60

 JR — Conditional Jump Relative

Format: JR cc:4 imm:9

cc:4: 4-bit condition code

Operation: PC[11:0] ← PC[11:0] + imm:9 if condition is true. imm:9 is a signed number, which is sign-
extended to 12 bits when added to PC.
There are 16 different conditions that can be used, as described in table 8-6.

Flags: –

NOTE: Unlike LJP, the target address of JR is PC-relative. In the case of JR, imm:9 is added to PC to
compute the actual jump address, while LJP directly jumps to imm:20, the target.

Example:
JR Z, %1 // Assume current PC = 1000h
•
•
•

%1 LD R0, R1 // Address at 10A5h
•
•
•

After the first instruction is executed, next PC has become 10A5h if Z flag bit is set to ‘1’. The range
of the relative address is from +255 to –256 because imm:9 is signed number.

S3FB42F INSTRUCTION SET

8-61

LCALL — Conditional Subroutine Call

Format: LCALL cc:4, imm:20

Operation: HS[sptr][15:0] ← current PC + 2, sptr ← sptr + 2, PC[15:0] ← imm[15:0] if the condition holds
and the program size is less than 64K word.

HS[sptr][19:0] ← current PC + 2, sptr ← sptr + 2, PC[19:0] ← imm:20 if the condition holds and
the program size is equal to or over 64K word.

PC[11:0] ← PC[11:0] + 2 otherwise.
LCALL instruction is used to call a subroutine whose starting address is specified by imm:20.

Flags: –

Example:
LCALL L1

LCALL C, L2

Label L1 and L2 can be allocated to the same or other section. Because this is a 2-word instruction,
the saved returning address on stack is (PC + 2).

INSTRUCTION SET S3FB42F

8-62

LD adr:8 — Load into Memory

Format: LD adr:8, <op>

<op>: GPR

Operation: DM[00h:adr:8] ← <op> if eid = 0
DM[IDH:adr:8] ← <op> if eid = 1

LD adr:8 loads the value of <op> into a memory location. The memory location is determined by
the eid bit and adr:8.

Flags: –

Example: Given: IDH = 01h

LD 80h, R0

If eid bit of SR0 is zero, the statement “LD 80h, R0” load value of R0 into DM[0080h], else eid bit
was set to ‘1’, the statement “LD 80h, R0” load value of R0 into DM[0180h]

S3FB42F INSTRUCTION SET

8-63

LD @idm — Load into Memory Indexed

Format: LD @idm, <op>

<op>: GPR

Operation: (@idm) ← <op>

LD @idm loads the value of <op> into the memory location determined by @idm. Details of the
@idm format and how the actual address is calculated can be found in chapter 2.

Flags: –

Example: Given R0 = 5Ah, IDH:IDL0 = 8023h, eid = 1

LD @ID0, R0 // DM[8023h] ← 5Ah
LD @ID0 + 3, R0 // DM[8023h] ← 5Ah, IDL0 ← 26h
LD @[ID0-5], R0 // DM[801Eh] ← 5Ah, IDL0 ← 1Eh
LD @[ID0+4]!, R0 // DM[8027h] ← 5Ah, IDL0 ← 23h
LD @[ID0-2]!, R0 // DM[8021h] ← 5Ah, IDL0 ← 23h

In the last two instructions, the value of IDH:IDL0 is not changed. Refer to Table 8-5 for more
detailed explanation about this addressing mode.
idm = IDx+offset:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]! (IDx = ID0 or ID1)

INSTRUCTION SET S3FB42F

8-64

LD — Load Register

Format: LD <op1>, <op2>

<op1>: GPR
<op2>: GPR, SPR, adr:8, @idm, #imm:8

Operation: <op1> ← <op2>

LD loads a value specified by <op2> into the register designated by <op1>.

Flags: Z: set if result is zero. Reset if not.
N: exclusive OR of V and MSB of result.

Example: Given: R0 = 5Ah, R1 = AAh, IDH:IDL0 = 8023h, eid = 1

LD R0, R1 // R0 ← AAh

 LD R1, IDH // R1 ← 80h

 LD R2, 80h // R2 ← DM[8080h]

 LD R0, #11h // R0 ← 11h

LD R0, @ID0+1 // R0 ← DM[8023h], IDL0 ← 24h
LD R1, @[ID0-2] // R1 ← DM[8021h], IDL0 ← 21h
LD R2, @[ID0+3]! // R2 ← DM[8026h], IDL0 ← 23h
LD R3, @[ID0-5]! // R3 ← DM[801Eh], IDL0 ← 23h

In the last two instructions, the value of IDH:IDL0 is not changed. Refer to Table 8-5 for more
detailed explanation about this addressing mode.
idm = IDx+offset:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]! (IDx = ID0 or ID1)

S3FB42F INSTRUCTION SET

8-65

LD — Load GPR:bankd, GPR:banks

Format: LD <op1>, <op2>

<op1>: GPR: bankd
<op2>: GPR: banks

Operation: <op1> ← <op2>

LD loads a value of a register in a specified bank (banks) into another register in a specified bank
(bankd).

Flags: Z: set if result is zero. Reset if not.
N: exclusive OR of V and MSB of result.

Example:
 LD R2:1, R0:3 // Bank1’s R2 ← bank3’s R0

LD R0:0, R0:2 // Bank0’s R0 ← bank2’s R0

INSTRUCTION SET S3FB42F

8-66

LD — Load GPR, TBH/TBL

Format: LD <op1>, <op2>

<op1>: GPR
<op2>: TBH/TBL

Operation: <op1> ← <op2>

LD loads a value specified by <op2> into the register designated by <op1>.

Flags: Z: set if result is zero. Reset if not.
N: exclusive OR of V and MSB of result.

Example: Given: register pair R1:R0 is 16-bit unsigned data.

 LDC @IL // TBH:TBL ← PM[ILX:ILH:ILL]
LD R1, TBH // R1 ← TBH
LD R0, TBL // R0 ← TBL

S3FB42F INSTRUCTION SET

8-67

LD — Load TBH/TBL, GPR

Format: LD <op1>, <op2>

<op1>: TBH/TBL
<op2>: GPR

Operation: <op1> ← <op2>

LD loads a value specified by <op2> into the register designated by <op1>.

Flags: –

Example: Given: register pair R1:R0 is 16-bit unsigned data.

 LD TBH, R1 // TBH ← R1
LD TBL, R0 // TBL ← R0

INSTRUCTION SET S3FB42F

8-68

LD SPR — Load SPR

Format: LD <op1>, <op2>

<op1>: SPR
<op2>: GPR

Operation: <op1> ← <op2>

LD SPR loads the value of a GPR into an SPR.
 Refer to Table 3-1 for more detailed explanation about kind of SPR.

Flags: –

Example: Given: register pair R1:R0 = 1020h

 LD ILH, R1 // ILH ← 10h
LD ILL, R0 // ILL ← 20h

S3FB42F INSTRUCTION SET

8-69

LD SPR0 — Load SPR0 Immediate

Format: LD SPR0, #imm:8

Operation: SPR0 ← imm:8

LD SPR0 loads an 8-bit immediate value into SPR0.

Flags: –

Example: Given: eid = 1, idb = 0 (index register bank 0 selection)

LD IDH, #80h // IDH point to page 80h
LD IDL1, #44h
LD IDL0, #55h
LD SR0, #02h

The last instruction set ie (global interrupt enable) bit to ‘1’.
 Special register group 1 (SPR1) registers are not supported in this addressing mode.

INSTRUCTION SET S3FB42F

8-70

LDC — Load Code

Format: LDC <op1>

<op1>: @IL, @IL+

Operation: TBH:TBL ← PM[ILX:ILH:ILL]

ILL ← ILL + 1 (@IL+ only)

LDC loads a data item from program memory and stores it in the TBH:TBL register pair.

@IL+ increase the value of ILL, efficiently implementing table lookup operations.

Flags: –

Example:
 LD ILX, R1

LD ILH, R2
LD ILL, R3
LDC @IL // Loads value of PM[ILX:ILH:ILL] into TBH:TBL

LD R1, TBH // Move data in TBH:TBL to GPRs for further processing
LD R0, TBL

 The statement “LDC @IL” do not increase, but if you use statement “LDC @IL+”, ILL register is
 increased by one after instruction execution.

S3FB42F INSTRUCTION SET

8-71

LJP — Conditional Jump

Format: LJP cc:4, imm:20

cc:4: 4-bit condition code

Operation: PC[15:0] ← imm[15:0] if condition is true and the program size is less than 64K word. If the program
is equal to or larger than 64K word, PC[19:0] ← imm[19:0] as long as the condition is true. There
are 16 different conditions that can be used, as described in table 8-6.

Flags: –

NOTE: LJP cc:4 imm:20 is a 2-word instruction whose immediate field directly specifies the target address
of the jump.

Example:
 LJP C, %1 // Assume current PC = 0812h

•
•
•

 %1 LD R0, R1 // Address at 10A5h
•
•
•

After the first instruction is executed, LJP directly jumps to address 10A5h if condition is true.

INSTRUCTION SET S3FB42F

8-72

LLNK — Linked Subroutine Call Conditional

Format: LLNK cc:4, imm:20

cc:4: 4-bit condition code

Operation: If condition is true, IL[19:0] ← {PC[19:12], PC[11:0] + 2}.

Further, when the program is equal to or larger than 64K word, PC[19:0] ← imm[19:0] as long as the
condition is true. If the program is smaller than 64K word, PC[15:0] ← imm[15:0].
There are 16 different conditions that can be used, as described in table 8-6.

Flags: –

NOTE: LLNK is used to conditionally to call a subroutine with the return address saved in the link register
(IL) without stack operation. This is a 2-word instruction.

Example:
 LLNK Z, %1 // Address at 005Ch, ILX:ILH:ILL ← 00:00:5Eh

NOP // Address at 005Eh
•
•
•

%1 LD R0, R1
•
•
•
LRET

S3FB42F INSTRUCTION SET

8-73

LNK — Linked Subroutine Call (Pseudo Instruction)

Format: LNK cc:4, imm:20
LNK imm:12

Operation: If LNKS can access the target address and there is no conditional code (cc:4), LNK command is
assembled to LNKS (1 word instruction) in linking time, else the LNK is assembled to LLNK (2
word instruction).

Example:
 LNK Z, Link1 // Equal to “LLNK Z, Link1”

LNK Link2 // Equal to “LNKS Link2”
NOP
•
•
•

Link2: NOP
•
•
•

 LRET

Subroutines section CODE, ABS 0A00h
Subroutines

Link1: NOP
•
•
•
LRET

INSTRUCTION SET S3FB42F

8-74

LNKS — Linked Subroutine Call

Format: LNKS imm:12

Operation: IL[19:0] ← {PC[19:12], PC[11:0] + 1} and PC[11:0] ← imm:12
LNKS saves the current PC in the link register and jumps to the address specified by imm:12.

Flags: –

NOTE: LNKS is used to call a subroutine with the return address saved in the link register (IL) without stack
operation.

Example:
 LNKS Link1 // Address at 005Ch, ILX:ILH:ILL ← 00:00:5Dh

NOP // Address at 005Dh
•
•
•

Link1: NOP
•
•
•
LRET

S3FB42F INSTRUCTION SET

8-75

LRET — Return from Linked Subroutine Call

Format: LRET

Operation: PC ← IL[19:0]
LRET returns from a subroutine by assigning the saved return address in IL to PC.

Flags: –

Example:
LNK Link1

Link1: NOP
•
•
•
LRET ; PC[19:0] ← ILX:ILH:ILL

INSTRUCTION SET S3FB42F

8-76

NOP — No Operation

Format: NOP

Operation: No operation.

 When the instruction NOP is executed in a program, no operation occurs. Instead, the instruction
 time is delayed by approximately one machine cycle per each NOP instruction encountered.

Flags: –

Example:
NOP

S3FB42F INSTRUCTION SET

8-77

OR — Bit-wise OR

Format: OR <op1>, <op2>

<op1>: GPR
<op2>: adr:8, #imm:8, GPR, @idm

Operation: <op1> ← <op1> | <op2>
OR performs the bit-wise OR operation on <op1> and <op2> and stores the result in <op1>.

Flags: Z: set if result is zero. Reset if not.
N: exclusive OR of V and MSB of result.

Example: Given: IDH:IDL0 = 031Eh, eid = 1

 OR R0, 80h // R0 ← R0 | DM[0380h]

OR R1, #40h // Mask bit6 of R1

 OR R1, R0 // R1 ← R1 | R0

 OR R0, @ID0 // R0 ← R0 | DM[031Eh], IDL0 ← 1Eh
 OR R1, @[ID0-1] // R1 ← R1 | DM[031Dh], IDL0 ← 1Dh
 OR R2, @[ID0+1]! // R2 ← R2 | DM[031Fh], IDL0 ← 1Eh
 OR R3, @[ID0-1]! // R3 ← R3 | DM[031Dh], IDL0 ← 1Eh

In the last two instructions, the value of IDH:IDL0 is not changed. Refer to Table 8-5 for more
detailed explanation about this addressing mode.
idm = IDx+offset:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]! (IDx = ID0 or ID1)

INSTRUCTION SET S3FB42F

8-78

OR SR0 — Bit-wise OR with SR0

Format: OR SR0, #imm:8

Operation: SR0 ← SR0 | imm:8

OR SR0 performs the bit-wise OR operation on SR0 and imm:8 and stores the result in SR0.

Flags: –

Example: Given: SR0 = 00000000b

 EID EQU 01h
IE EQU 02h
IDB1 EQU 04h
IE0 EQU 40h
IE1 EQU 80h

OR SR0, #IE | IE0 | IE1

OR SR0, #00000010b

In the first example, the statement “OR SR0, #EID|IE|IE0” set global interrupt(ie), interrupt 0(ie0) and
interrupt 1(ie1) to ‘1’ in SR0. On the contrary, enabled bits can be cleared with instruction “AND
SR0, #imm:8”. Refer to instruction AND SR0 for more detailed explanation about disabling bit.

In the second example, the statement “OR SR0, #00000010b” is equal to instruction EI, which is
enabling interrupt globally.

S3FB42F INSTRUCTION SET

8-79

POP — POP

Format: POP

Operation: sptr ← sptr – 2

POP decrease sptr by 2. The top two bytes of the hardware stack are therefore invalidated.

Flags: –

Example: Given: sptr[5:0] = 001010b

POP

This POP instruction decrease sptr[5:0] by 2. Therefore sptr[5:0] is 001000b.

INSTRUCTION SET S3FB42F

8-80

POP — POP to Register

Format: POP <op>

<op>: GPR, SPR

Operation: <op> ← HS[sptr - 1], sptr ← sptr - 1

POP copies the value on top of the stack to <op> and decrease sptr by 1.

Flags: Z: set if the value copied to <op> is zero. Reset if not.
N: set if the value copied to <op> is negative. Reset if not.

 When <op> is SPR, no flags are affected, including Z and N.

Example:
POP R0 // R0 ← HS[sptr-1], sptr ← sptr-1

POP IDH // IDH ← HS[sptr-1], sptr ← sptr-1

In the first instruction, value of HS[sptr-1] is loaded to R0 and the second instruction “POP IDH” load
value of HS[sptr-1] to register IDH. Refer to chapter 5 for more detailed explanation about POP
operations for hardware stack.

S3FB42F INSTRUCTION SET

8-81

PUSH — Push Register

Format: PUSH <op>

<op>: GPR, SPR

Operation: HS[sptr] ← <op>, sptr ← sptr + 1

PUSH stores the value of <op> on top of the stack and increase sptr by 1.

Flags: –

Example:
 PUSH R0 // HS[sptr] ← R0, sptr ← sptr + 1

PUSH IDH // HS[sptr] ← IDH, sptr ← sptr + 1

In the first instruction, value of register R0 is loaded to HS[sptr-1] and the second instruction “PUSH
IDH” load value of register IDH to HS[sptr-1]. Current HS pointed by stack point sptr[5:0] be emptied.
Refer to chapter 5 for more detailed explanation about PUSH operations for hardware stack.

INSTRUCTION SET S3FB42F

8-82

RET — Return from Subroutine

Format: RET

Operation: PC ← HS[sptr - 2], sptr ← sptr – 2

RET pops an address on the hardware stack into PC so that control returns to the subroutine call
site.

Flags: –

Example: Given: sptr[5:0] = 001010b

 CALLS Wait // Address at 00120h
 •

•
•

 Wait: NOP // Address at 01000h
NOP

 NOP
 NOP

NOP
RET

After the first instruction CALLS execution, “PC+1”, 0121h is loaded to HS[5] and hardware stack
pointer sptr[5:0] have 001100b and next PC became 01000h. The instruction RET pops value 0121h
on the hardware stack HS[sptr-2] and load to PC then stack pointer sptr[[5:0] became 001010b.

S3FB42F INSTRUCTION SET

8-83

RL — Rotate Left

Format: RL <op>

<op>: GPR

Operation: C ← <op>[7], <op> ← {<op>[6:0], <op>[7]}

RL rotates the value of <op> to the left and stores the result back into <op>.
The original MSB of <op> is copied into carry (C).

Flags: C: set if the MSB of <op> (before rotating) is 1. Reset if not.
Z: set if result is zero. Reset if not.
N: set if the MSB of <op> (after rotating) is 1. Reset if not.

Example: Given: R0 = 01001010b, R1 = 10100101b

RL R0 // N flag is set to ‘1’, R0 ← 10010100b

RL R1 // C flag is set to ‘1’, R1 ← 01001011b

INSTRUCTION SET S3FB42F

8-84

RLC — Rotate Left with Carry

Format: RLC <op>

<op>: GPR

Operation: C ← <op>[7], <op> ← {<op>[6:0], C}

RLC rotates the value of <op> to the left and stores the result back into <op>.
The original MSB of <op> is copied into carry (C), and the original C bit is copied into <op>[0].

Flags: C: set if the MSB of <op> (before rotating) is 1. Reset if not.
Z: set if result is zero. Reset if not.
N: set if the MSB of <op> (after rotating) is 1. Reset if not.

Example: Given: R2 = A5h, if C = 0

RLC R2 // R2 ← 4Ah, C flag is set to ‘1’

RL R0
RLC R1

In the second example, assuming that register pair R1:R0 is 16-bit number, then RL and RLC are
used for 16-bit rotate left operation. But note that zero (Z) flag do not exactly reflect result of 16-bit
operation. Therefore when programming 16-bit decrement, take care of the change of Z flag.

S3FB42F INSTRUCTION SET

8-85

RR — Rotate Right

Format: RR <op>

<op>: GPR

Operation: C ← <op>[0], <op> ← {<op>[0], <op>[7:1]}

RR rotates the value of <op> to the right and stores the result back into <op>. The original LSB of
<op> is copied into carry (C).

Flags: C: set if the LSB of <op> (before rotating) is 1. Reset if not.
Z: set if result is zero. Reset if not.
N: set if the MSB of <op> (after rotating) is 1. Reset if not.

Example: Given: R0 = 01011010b, R1 = 10100101b

RR R0 // No change of flag, R0 ← 00101101b

RR R1 // C and N flags are set to ‘1’, R1 ← 11010010b

INSTRUCTION SET S3FB42F

8-86

RRC — Rotate Right with Carry

Format: RRC <op>

<op>: GPR

Operation: C ← <op>[0], <op> ← {C, <op>[7:1]}

RRC rotates the value of <op> to the right and stores the result back into <op>. The original LSB of
<op> is copied into carry (C), and C is copied to the MSB.

Flags: C: set if the LSB of <op> (before rotating) is 1. Reset if not.
Z: set if result is zero. Reset if not.
N: set if the MSB of <op> (after rotating) is 1. Reset if not.

Example: Given: R2 = A5h, if C = 0

RRC R2 // R2 ← 52h, C flag is set to ‘1’

RR R0
RRC R1

In the second example, assuming that register pair R1:R0 is 16-bit number, then RR and RRC are
used for 16-bit rotate right operation. But note that zero (Z) flag do not exactly reflect result of 16-bit
operation. Therefore when programming 16-bit decrement, take care of the change of Z flag.

S3FB42F INSTRUCTION SET

8-87

SBC — Subtract with Carry

Format: SBC <op1>, <op2>

<op1>: GPR
<op2>: adr:8, GPR

Operation: <op1> ← <op1> + ~<op2> + C

SBC computes (<op1> - <op2>) when there is carry and (<op1> - <op2> - 1) when there is no
carry.

Flags: C: set if carry is generated. Reset if not.
Z: set if result is zero. Reset if not.
V: set if overflow is generated.
N: set if result is negative. Reset if not.

Example:
 SBC R0, 80h // If eid = 0, R0 ← R0 + ~DM[0080h] + C

// If eid = 1, R0 ← R0 + ~DM[IDH:80h] + C

SBC R0, R1 // R0 ← R0 + ~R1 + C

SUB R0, R2
SBC R1, R3

In the last two instructions, assuming that register pair R1:R0 and R3:R2 are 16-bit signed or
unsigned numbers. Even if the result of “ADD R0, R2” is not zero, zero (Z) flag can be set to ‘1’ if the
result of “SBC R1,R3” is zero. Note that zero (Z) flag do not exactly reflect result of 16-bit operation.
Therefore when programming 16-bit addition, take care of the change of Z flag.

INSTRUCTION SET S3FB42F

8-88

SL — Shift Left

Format: SL <op>

<op>: GPR

Operation: C ← <op>[7], <op> ← {<op>[6:0], 0}

SL shifts <op> to the left by 1 bit. The MSB of the original <op> is copied into carry (C).

Flags: C: set if the MSB of <op> (before shifting) is 1. Reset if not.
Z: set if result is zero. Reset if not.
N: set if the MSB of <op> (after shifting) is 1. Reset if not.

Example: Given: R0 = 01001010b, R1 = 10100101b

SL R0 // N flag is set to ‘1’, R0 ← 10010100b

SL R1 // C flag is set to ‘1’, R1 ← 01001010b

S3FB42F INSTRUCTION SET

8-89

SLA — Shift Left Arithmetic

Format: SLA <op>

<op>: GPR

Operation: C ← <op>[7], <op> ← {<op>[6:0], 0}

SLA shifts <op> to the left by 1 bit. The MSB of the original <op> is copied into carry (C).

Flags: C: set if the MSB of <op> (before shifting) is 1. Reset if not.
Z: set if result is zero. Reset if not.
V: set if the MSB of the result is different from C. Reset if not.
N: set if the MSB of <op> (after shifting) is 1. Reset if not.

Example: Given: R0 = AAh

SLA R0 // C, V, N flags are set to ‘1’, R0 ← 54h

INSTRUCTION SET S3FB42F

8-90

SR — Shift Right

Format: SR <op>

<op>: GPR

Operation: C ← <op>[0], <op> ← {0, <op>[7:1]}

SR shifts <op> to the right by 1 bit. The LSB of the original <op> (i.e., <op>[0]) is copied into carry
(C).

Flags: C: set if the LSB of <op> (before shifting) is 1. Reset if not.
Z: set if result is zero. Reset if not.
N: set if the MSB of <op> (after shifting) is 1. Reset if not.

Example: Given: R0 = 01011010b, R1 = 10100101b

SR R0 // No change of flags, R0 ← 00101101b

SR R1 // C flag is set to ‘1’, R1 ← 01010010b

S3FB42F INSTRUCTION SET

8-91

SRA — Shift Right Arithmetic

Format: SRA <op>

<op>: GPR

Operation: C ← <op>[0], <op> ← {<op>[7], <op>[7:1]}

SRA shifts <op> to the right by 1 bit while keeping the sign of <op>. The LSB of the original <op>
(i.e., <op>[0]) is copied into carry (C).

Flags: C: set if the LSB of <op> (before shifting) is 1. Reset if not.
Z: set if result is zero. Reset if not.
N: set if the MSB of <op> (after shifting) is 1. Reset if not.

NOTE: SRA keeps the sign bit or the MSB (<op>[7]) in its original position. If SRA is executed ‘N’ times, N
significant bits will be set, followed by the shifted bits.

Example: Given: R0 = 10100101b

SRA R0 // C, N flags are set to ‘1’, R0 ← 11010010b
SRA R0 // N flag is set to ‘1’, R0 ← 11101001b
SRA R0 // C, N flags are set to ‘1’, R0 ← 11110100b
SRA R0 // N flags are set to ‘1’, R0 ← 11111010b

INSTRUCTION SET S3FB42F

8-92

STOP — Stop Operation (pseudo instruction)

Format: STOP

Operation: The STOP instruction stops the both the CPU clock and system clock and causes the
microcontroller to enter the STOP mode. In the STOP mode, the contents of the on-chip CPU
registers, peripheral registers, and I/O port control and data register are retained. A reset operation
or external or internal interrupts can release stop mode. The STOP instruction is a pseudo
instruction. It is assembled as “SYS #0Ah”, which generates the SYSCP[7-0] signals. These
signals are decoded and stop the operation.

NOTE: The next instruction of STOP instruction is executed, so please use the NOP instruction after the
STOP instruction.

Example:
STOP
NOP
NOP
NOP
•
•
•

In this example, the NOP instructions provide the necessary timing delay for oscillation stabilization
before the next instruction in the program sequence is executed. Refer to the timing diagrams of
oscillation stabilization, as described in Figure 18-3, 18-4

S3FB42F INSTRUCTION SET

8-93

SUB — Subtract

Format: SUB <op1>, <op2>

<op1>: GPR
<op2>: adr:8, #imm:8, GPR, @idm

Operation: <op1> ← <op1> + ~<op2> + 1

SUB adds the value of <op1> with the 2's complement of <op2> to perform subtraction on
<op1> and <op2>

Flags: C: set if carry is generated. Reset if not.
Z: set if result is zero. Reset if not.
V: set if overflow is generated. Reset if not.
N: set if result is negative. Reset if not.

Example: Given: IDH:IDL0 = 0150h, DM[0143h] = 26h, R0 = 52h, R1 = 14h, eid = 1

SUB R0, 43h // R0 ← R0 + ~DM[0143h] + 1 = 2Ch

SUB R1, #16h // R1 ← FEh, N flag is set to ‘1’

SUB R0, R1 // R0 ← R0 + ~R1 + 1 = 3Eh

SUB R0, @ID0+1 // R0 ← R0 + ~DM[0150h] + 1, IDL0 ← 51h
SUB R0, @[ID0-2] // R0 ← R0 + ~DM[014Eh] + 1, IDL0 ← 4Eh
SUB R0, @[ID0+3]! // R0 ← R0 + ~DM[0153h] + 1, IDL0 ← 50h
SUB R0, @[ID0-2]! // R0 ← R0 + ~DM[014Eh] + 1, IDL0 ← 50h

In the last two instructions, the value of IDH:IDL0 is not changed. Refer to Table 8-5 for more detailed
explanation about this addressing mode. The example in the SBC description shows how SUB and
SBC can be used in pair to subtract a 16-bit number from another.
idm = IDx+offset:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]! (IDx = ID0 or ID1)

INSTRUCTION SET S3FB42F

8-94

SWAP — Swap

Format: SWAP <op1>, <op2>

<op1>: GPR
<op2>: SPR

Operation: <op1> ← <op2>, <op2> ← <op1>

SWAP swaps the values of the two operands.

Flags: –

NOTE: Among the SPRs, SR0 and SR1 can not be used as <op2>.

Example: Given: IDH:IDL0 = 8023h, R0 = 56h, R1 = 01h

SWAP R1, IDH // R1 ← 80h, IDH ← 01h
SWAP R0, IDL0 // R0 ← 23h, IDL0 ← 56h

After execution of instructions, index registers IDH:IDL0 (ID0) have address 0156h.

S3FB42F INSTRUCTION SET

8-95

SYS — System

Format: SYS #imm:8

Operation: SYS generates SYSCP[7:0] and nSYSID signals.

Flags: –

NOTE: Mainly used for system peripheral interfacing.

Example:
SYS #0Ah

SYS #05h

In the first example, statement “SYS #0Ah” is equal to STOP instruction and second example “SYS
#05h” is equal to IDLE instruction. This instruction does nothing but increase PC by one and
generates SYSCP[7:0] and nSYSID signals.

INSTRUCTION SET S3FB42F

8-96

TM — Test Multiple Bits

Format: TM <op>, #imm:8

<op>: GPR

Operation: TM performs the bit-wise AND operation on <op> and imm:8 and sets the flags. The content of
<op> is not changed.

Flags: Z: set if result is zero. Reset if not.
N: set if result is negative. Reset if not.

Example: Given: R0 = 01001101b

TM R0, #00100010b // Z flag is set to ‘1’

S3FB42F INSTRUCTION SET

8-97

XOR — Exclusive OR

Format: XOR <op1>, <op2>

<op1>: GPR
<op2>: adr:8, #imm:8, GPR, @idm

Operation: <op1> ← <op1> ^ <op2>

XOR performs the bit-wise exclusive-OR operation on <op1> and <op2> and stores the result in
<op1>.

Flags: Z: set if result is zero. Reset if not.
N: set if result is negative. Reset if not.

Example: Given: IDH:IDL0 = 8080h, DM[8043h] = 26h, R0 = 52h, R1 = 14h, eid = 1

XOR R0, 43h // R0 ← 74h

XOR R1, #00101100b // R1 ← 38h

XOR R0, R1 // R0 ← 46h

XOR R0, @ID0 // R0 ← R0 ^ DM[8080h], IDL0 ← 81h
XOR R0, @[ID0-2] // R0 ← R0 ^ DM[807Eh], IDL0 ← 7Eh
XOR R0, @[ID0+3]! // R0 ← R0 ^ DM[8083h], IDL0 ← 80h
XOR R0, @[ID0-5]! // R0 ← R0 ^ DM[807Bh], IDL0 ← 80h

In the last two instructions, the value of IDH:IDL0 is not changed. Refer to Table 8-5 for more detailed
explanation about this addressing mode.
idm = IDx+offset:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]! (IDx = ID0 or ID1)

INSTRUCTION SET S3FB42F

8-98

NOTES

S3FB42F PLL (PHASE LOCKED LOOP)

9-1

9 PLL (PHASE LOCKED LOOP)

OVERVIEW

S3FB42F builds clock synthesizer for system clock generation, which can operate external crystal (32.768 kHz) for
reference, using internal phase-locked loop (PLL) and voltage-controlled oscillator (VCO). For real-time clock, 32.768
kHz crystal is recommended to use.

System clock circuit

The system clock circuit has the following component:

• External crystal oscillator, 32.768 kHz.

• Phase comparator, noise filter and frequency divider.

• PLL control circuit: Control register, PLLCON and PLL frequency divider data register.

X-TAL
Oscillator Low-Pass

Filter
VCO

Phase
Comparator

Frequency
Divider

Clock Control
Circuit

To CPU Clock, RTC
I2C, Other Peripheral

fxm

fxm

PLLCON.2

fx

I2S, USB

CZCP

PLLCON.0

1/2

fvco

Figure 9-1. Simple Circuit Diagram

PLL (PHASE LOCKED LOOP) S3FB42F

9-2

PLL REGISTER

Table 9-1. PLL Register Description

Register Address R/W/C Description

PLLCON AEH R/W PLL control register

PLLDATA, H AC, ADH R/W PLL frequency divider data register

PLL CONTROL REGISTER (PLLCON)

Register Address R/W Description Reset Value

PLLCON 0xAE R/W PLL control register 00h

Bit Bit Name Description

[0] Enable This bit control the operation of PLL block. When this bit is set
as "1", phase comparater, filter and VCO are activated.

[1] fVCO output This bit enable or disable the fVCO output through P8.1 pin.

[2] Clock source selection This bit control the selection of fxm or fVCO clock.
When this bit is set as "1", fVCO, PLL output frequency is
selected as main clock oscillator.

[7:3] – –

PLL FREQUENCY DIVIDER DATA REGISTER (PLLDATA)

Register Address R/W Description Reset Value

PLLDATAH,L 0xAD, 0xAC R/W PLL frequency divider data register –

Bit Bit Name Description

[15:14] Postscaler div Post-scaler divider value

[13:12] Data PLL Frequency Divider Data (bit 11 to bit 10)
These bits have the bit 11 to bit10 of the frequency divider data
register setting value.

[11:10] – Always "11"

[9:0] Data PLL Frequency Divider Data (bit 9 to bit 0)
These bits have the bit 11 to bit10 of the frequency divider data
register setting value.

This frequency divider circuit divide the VCO frequency,
fVCO, down to reference frequency for phase comparator.
The frequency divider data register setting value is like below.

0x1D60: fPLL, fUSB = 45.158 MHz for 44.1 kHz
0x1DB6: fPLL, fUSB = 48 MHz
0x1DDA: fPLL, fUSB = 49.152 MHz for 48 kHz

S3FB42F PLL (PHASE LOCKED LOOP)

9-3

The PLL frequency divider data is

N =
fVCO

fxm
 – 2

where fVCO is the frequency that user wants to obtain and fxm is the main oscillation frequency (Typ. 32.768 KHz).

LSBMSB

PLL Frequency Divider Data Register (PLLDATA)
ADH, R/W

Post-scaler
divider value

Always
"11"

.15 .14 .13 .12 .11 .10 .9 .8

D11 D10 D9 D8

LSBMSB

ACH, R/W

.7 .6 .5 .4 .3 .2 .1 .0

D5 D4 D1 D0D7 D6 D3 D2

Figure 9-2. PLL Frequency Divider Data Register (PLLDATA)

PLL (PHASE LOCKED LOOP) S3FB42F

9-4

SYSTEM CONTROL CIRCUIT

Table 9-2. System Control Circuit Register Description

Register Address R/W Description

OSCCON 03H R/W Oscillator control register

PCON 02H R/W Power control register

OSCILLATOR CONTROL REGISTER (OSCCON)

Register Address R/W Description Reset Value

OSCCON 0x03 R/W Oscillator control register 00h

Bit Bit Name Description

[0] System clock source selection System (fxx) clock source selection bit:
0 = main system clock oscillator (fx) select
 (PLL system oscillator or Xout)
1 = subsystem clock oscillator (fxt or fxm) select.

[1] – –

[2] Sub-clock control Sub-clock control bit:
0 = Sub oscillator RUN. (fxt)
1 = sub oscillator STOP.

[3] Main-clock control Main-clock control bit:
0 = Main-clock oscillator RUN.(fxm)
1 = Main-clock oscillator STOP.

[7:4] – –

NOTE: After setting wanted clock selection, FMCON must be set to proper value.

S3FB42F PLL (PHASE LOCKED LOOP)

9-5

POWER CONTROL REGISTER (PCON)

Register Address R/W Description Reset Value

PCON 0x02 R/W Power control register 04h

Bit Bit Name Description

[7:6] USB wait selection USB stretch cycle selection bits:
00 = 15 cycle stretch
10 = 14 cycle stretch
01 = 13 cycle stretch
11 = 12 cycle stretch

[5] USB High-Low selection USB High or Low width stretch select.
0 = Low width stretch
1 = High width stretch

[4:3] – –

[2:0] System clock selection System clock selection bits:
000 = fxx/128 001 = fxx/64
010 = fxx/32 011 = fxx/16
100 = fxx/8 101 = fxx/4
110 = fxx/2 111 = fxx/1

PLL (PHASE LOCKED LOOP) S3FB42F

9-6

INT
Stop Release Stop Release

INT

Main-System
Oscillator

Circuit

Selector 1

fx fxt
Sub-System

Oscillator & PLL
Circuit

OSCCON.2
Stop

fxx

Selector 2

Idle/Stop
Control
Circuit

CPU stop signal
by idle or stop

CPU

PCON.2-.0

SYSCP [7-0]

Idle or stop instruction
makes SYSCP [7-0] signal

NOTE: The main-oscillator of S3FB41D.

OSCCON.3

OSCCON.0

Basic Timer
Timer/Counters
Watch Timer (fxx/128)
SIO
UART
A/D Converter

Stop

1/1-1/4096

Frequency Dividing Circuit

1/1 1/16 1/32 1/64 1/1281/2 1/4 1/8

Oscillation Stop Signal

Watch Timer
USB
IIC

Main STOP

Sub/Main

Figure 9-3. System Clock Circuit Diagram

S3FB42F RESET AND POWER-DOWN

10-1

10 RESET AND POWER-DOWN

OVERVIEW

During a power-on reset, the voltage at VDD goes to High level and the RESET pin is forced to Low level. The RESET
signal is input through a Schmitt trigger circuit where it is then synchronized with the CPU clock. This procedure
brings S3FB42F into a known operating status.

For the time for CPU clock oscillation to stabilize, the RESET pin must be held to low level for a minimum time
interval after the power supply comes within tolerance. For the minimum time interval, see the electrical
characteristic.

In summary, the following sequence of events occurs during a reset operation:

— All interrupts are disabled.

— The watchdog function (basic timer) is enabled.

— Ports are set to input mode except port 1 which is set to output mode.

— Peripheral control and data registers are disabled and reset to their default hardware values.

— The program counter (PC) is loaded with the program reset address in the ROM, 00000H.

— When the programmed oscillation stabilization time interval has elapsed, the instruction stored in ROM
location 00000H is fetched and executed.

NOTE

To program the duration of the oscillation stabilization interval, you make the appropriate settings to the
basic timer control register, BTCON, before entering STOP mode. Also, if you do not want to use the basic
timer watchdog function (which causes a system reset if a basic timer counter overflow occurs), you can
disable it by writing ‘1010 0101b’ to the WDTEN register.

RESET AND POWER-DOWN S3FB42F

10-2

NOTES

S3FB42F I/O PORTS

11-1

11 I/O PORTS

PORT DATA REGISTERS

All thirteen port data registers have the identical structure shown in Figure 11-1 below.:

Table 11-1. Port Data Register Summary

Register Name Mnemonic Address Reset Value R/W

Port 0 Data Register P0 10h 00h R/W

Port 1 Data Register P1 11h 00h R/W

Port 2 Data Register P2 12h 00h R/W

Port 3 Data Register P3 13h 00h R/W

Port 4 Data Register P4 14h 00h R/W

Port 5 Data Register P5 15h xxh R

Port 6 Data Register P6 16h 00h R/W

Port 7 Data Register P7 17h 00h R/W

Port 8 Data Register P8 18h 00h R/W

Port 9 Data Register P9 19h 00h R/W

.7 .6 .5 .4 .3 .2 .1 .0 LSBMSB

I/O Port n Data Register (n = 0-9)
n = 0-4, 6-9: R/W n = 5: R

Pn.0
Pn.1Pn.2

Pn.4 Pn.3
Pn.5Pn.6

Pn.7

Figure 11-1. Port Data Register Structure

I/O PORTS S3FB42F

11-2

PORT CONTROL REGISTERS

PORT 0 CONTROL REGISTER (P0CON)

Register Address R/W Description Reset Value

P0CON 0x20 R/W Port 0 control register 00h

Bit Setting Description

[7:0] 0 or 1 Port 0 Setting
0: Normal C-MOS input mode
1: Normal C-MOS output mode

NOTE: The parallel port control (PPCONL.1) register can assign port 0 to parallel printer port's data bus mode,
which is not effected by P0CON setting.

PORT 1 CONTROL REGISTER (P1CON)

Register Address R/W Description Reset Value

P1CON 0x21 R/W Port 1 control register 00h

Bit Setting Description

[4:0] 0 or 1 P1.0, P1.1, P1.2, P1.3 or P1.4 Setting
0: Normal C-MOS input mode
1: Normal C-MOS output mode

NOTE: The parallel port control (PPCONL.1) register can assign port 1 to parallel printer port's control bus mode,
which is not effected by P1CON.0-5 setting.

S3FB42F I/O PORTS

11-3

PORT 2 CONTROL LOW REGISTER (P2CONL)

Register Address R/W Description Reset Value

P2CONL 0x22 R/W Port 2 control low register 00h

Bit Setting Description

[0] 0 or 1 P2.0 Setting
0: Schmitt trigger input mode or TACLK input mode
1: Normal C-MOS output mode

[1] 0 or 1 P2.1 Setting
0: Schmitt trigger input mode or TBCLK input mode
1: Normal C-MOS output mode

[3:2] 0 or 1 P2.2 Setting
00: Schmitt trigger input mode
01: Normal C-MOS output mode
10: Serial data output (SO) for SIO (SP1) (C-MOS output mode)
11: Serial data output (SO) for SIO (SP1) (N-channel open drain output mode)

[5:4] 0 or 1 P2.3 Setting
00: Schmitt trigger input mode
01: Normal C-MOS output mode
10: Serial data output (SCK) for SIO (SP1) (C-MOS output mode)
11: Serial data output (SCK) for SIO (SP1) (N-channel open drain output mode)

[6] 0 or 1 P2.4 Setting
0: Schmitt trigger input mode or Rx input mode in UART
1: Normal C-MOS output mode

[7] – –

I/O PORTS S3FB42F

11-4

PORT 2 CONTROL HIGH REGISTER (P2CONH)

Register Address R/W Description Reset Value

P2CONH 0x23 R/W Port 2 control high register 30h

Bit Setting Description

[1:0] 0 or 1 P2.5 Setting
00: Schmitt trigger input mode
01: Normal C-MOS output mode
10: Tx output mode in UART
11: Invalid

[2] 0 or 1 P2.6 Setting
0: Schmitt trigger input mode
1: Normal C-MOS output mode

[3] 0 or 1 P2.7 Setting
0: Schmitt trigger input mode
1: Normal C-MOS output mode

[4] 0 or 1 P6.6 pull-up resistor Setting
0: Disable Pull-up resistor
1: Enable Pull-up resistor (Reset value)

[5] 0 or 1 P6.7 pull-up resistor Setting
0: Disable Pull-up resistor
1: Enable Pull-up resistor (Reset value)

NOTE: The pull-up resistors of P6.6 and P6.7can be assigned by P2CONH.4, 5.

S3FB42F I/O PORTS

11-5

PORT 3 CONTROL LOW REGISTER (P3CONL)

Register Address R/W Description Reset Value

P3CONL 0x24 R/W Port 3 control low register 00h

Bit Setting Description

[1:0] 0 or 1 P3.0 Setting
00: Schmitt trigger input mode, serial data input (SI) for SIO (SPI)
01: Normal C-MOS output mode
10: N-Ch Open drain output mode
11: N-Ch Open drain output mode

[3:2] 0 or 1 P3.1 Setting
00: Schmitt trigger input mode
01: Normal C-MOS output mode
10: Serial data output (SO) for SIO(SP1) (CMOS output mode)
11: Serial data output (SO) for SIO(SP1) (N-channel open-drain output mode)

[5:4] 0 or 1 P3.2 Setting
00: Schmitt trigger input mode, serial clock input mode (SCK) for SIO (SPI)
01: Normal C-MOS output mode
10: Serial data output (SCK) for SIO(SP1) (CMOS output mode)
11: Serial data output (SCK) for SIO(SP1) (N-channel open-drain output mode)

[7:6] 0 or 1 P3.3 Setting
00: Schmitt trigger input mode
01: Normal C-MOS output mode
10: Serial clock port (SCL) for I2C (schmitt trigger input or output mode)
11: Serial clock port (SCL) for I2C (schmitt trigger input or N-ch open drain output
mode)

I/O PORTS S3FB42F

11-6

PORT 3 CONTROL HIGH REGISTER (P3CONH)

Register Address R/W Description Reset Value

P3CONH 0x25 R/W Port 3 control high register 00h

Bit Setting Description

[1:0] 0 or 1 P3.4 Setting
00: Schmitt trigger input mode
01: Normal C-MOS output mode
10: Serial data port (SDA) for I2C (Schmitt trigger input/ C-MOS output mode)
11: Serial data port (SDA) for I2C (Schmitt trigger input and N-ch Open drain
output mode)

[3:2] 0 or 1 P3.5 Setting
00: Schmitt trigger input mode
01: Normal C-MOS output mode
10: N-Ch Open drain output mode
11: N-Ch Open drain output mode

[5:4] 0 or 1 P3.6 Setting
00: Schmitt trigger input mode
01: Normal C-MOS output mode
10: N-Ch Open drain output mode
11: N-Ch Open drain output mode

[7:6] 0 or 1 P3.7 Setting
00: Schmitt trigger input mode
01: Normal C-MOS output mode
10: N-Ch Open drain output mode
11: N-Ch Open drain output mode

PORT 3 PULL-UP REGISTER (P3PUR)

Register Address R/W Description Reset Value

P3PUR 0x26 R/W Port 3 pull-up resistor enable register 00h

Bit Setting Description

[7:0] 0 or 1 P3.0-3.7 Pull-up Resistor Setting
0: Disable pull-up resistor
1: Enable pull-up resistor

S3FB42F I/O PORTS

11-7

PORT 4 CONTROL REGISTER (P4CON)

Register Address R/W Description Reset Value

P4CON 0x30 R/W Port 4 control register 00h

Bit Setting Description

[1:0] 0 or 1 P4.0 Setting
00: Schmitt trigger input mode or external interrupt 9 input
01: Schmitt trigger input mode or external interrupt 9 input with pull-up resistor
10: Normal C-MOS output mode
11: Normal C-MOS output mode

[3:2] 0 or 1 P4.1 Setting
00: Schmitt trigger input mode or external interrupt 8 input
01: Schmitt trigger input mode or external interrupt 8 input with pull-up resistor
10: Normal C-MOS output mode
11: Normal C-MOS output mode

[5:4] 0 or 1 P4.2 Setting
00: Schmitt trigger input mode
01: Schmitt trigger input mode with pull-up resistor
10: Normal C-MOS output mode
11: Normal C-MOS output mode

PORT 4 INTERRUPT CONTROL REGISTER (P4INTCON)

Register Address R/W Description Reset Value

P4INTCON 0x31 R/W Port 4 interrupt control register 00h

Bit Setting Description

[1:0] 0 or 1 Setting the external interrupt enable of P4.1, P4.0 (INT8-9)
0: Disable external interrupt
1: Enable external interrupt

I/O PORTS S3FB42F

11-8

PORT 4 INTERRUPT MODE REGISTER (P4INTMOD)

Register Address R/W Description Reset Value

P4INTMOD 0x32 R/W Port 4 interrupt mode register 00h

Bit Setting Description

[1:0] [3:2] 0 or 1 Setting the external interrupt mode of P4.0 (INT9) and P4.1 (INT8)
00: Falling edge interrupt enable
01: Rising edge interrupt enable
10: High level interrupt enable
11: Low level interrupt enable

PORT 5 CONTROL REGISTER (P5CON)

Register Address R/W Description Reset Value

P5CON 0x28 R/W Port 5 control register 00h

Bit Setting Description

[0] 0 or 1 P5.0 Setting
0: Normal C-MOS input mode or external interrupt 0 input
1: ADC0 input mode

[1] 0 or 1 P5.1 Setting
0: Normal C-MOS input mode or external interrupt 1 input
1: ADC1 input mode

[2] 0 or 1 P5.2 Setting
0: Normal C-MOS input mode or external interrupt 2 input
1: ADC2 input mode

[3] 0 or 1 P5.3 Setting
0: Normal C-MOS input mode or external interrupt 3 input
1: ADC3 input mode

[4] 0 or 1 P5.4 Setting
0: Normal C-MOS input mode or external interrupt 4 input
1: ADC4 input mode

[5] 0 or 1 P5.5 Setting
0: Normal C-MOS input mode or external interrupt 5 input
1: ADC5 input mode

S3FB42F I/O PORTS

11-9

PORT 5 PULL-UP REGISTER (P5PUR)

Register Address R/W Description Reset Value

P5PUR 0x29 R/W Port 5 pull-up resistor enable register 00h

Bit Setting Description

[5:0] 0 or 1 P5.0-5.5 Pull-up Resistor Setting
0: Disable pull-up resistor
1: Enable pull-up resistor

PORT 5 INTERRUPT CONTROL REGISTER (P5INTCON)

Register Address R/W Description Reset Value

P5INTCON 0x2A R/W Port 5 interrupt control register 00h

Bit Setting Description

[5:0] 0 or 1 Setting the external interrupt enable of P5.0-P5.5 (INT0-5)
0: Disable External Interrupt
1: Enable External Interrupt

PORT 5 EXTERNAL INTERRUPT PENDING REGISTER (EINTPND)

Register Address R/W Description Reset Value

EINTPND 0x2D R/W Port 5 external interrupt pending register 00h

Bit Setting Description

[5:0] 0 or 1 Setting the external interrupt pending bit of P5.0-P5.5 (INT0-5)
0: Interrupt is not pending when read. (When write, pending bit is clear)
1: Interrupt is pending when read. (When write, pending bit is not effected)

I/O PORTS S3FB42F

11-10

PORT 5 INTERRUPT MODE LOW REGISTER (P5INTMODL)

Register Address R/W Description Reset Value

P5INTMODL 0x2B R/W Port 5 interrupt mode low register 00h

Bit Setting Description

[1:0] [3:2]
[5:4] [7:6]

0 or 1 Setting the external interrupt mode of
P5.0(INT0)/P5.1(INT1)/P5.2(INT2)/P5.3(INT3)
00: Falling edge interrupt enable
01: Rising edge interrupt enable
10: Falling or rising edge interrupt enable
11: Invalid value

PORT 5 INTERRUPT MODE HIGH REGISTER (P5INTMODH)

Register Address R/W Description Reset Value

P5INTMODH 0x2C R/W Port 5 interrupt mode high register 00h

Bit Setting Description

[1:0] [3:2] 0 or 1 Setting the external interrupt mode of P5.4(INT4)/P5.5(INT5)
00: Falling edge interrupt enable
01: Rising edge interrupt enable
10: Falling or rising edge interrupt enable
11: Invalid value

S3FB42F I/O PORTS

11-11

PORT 6 CONTROL REGISTER (P6CON)

Register Address R/W Description Reset Value

P6CON 0x34 R/W Port 6 control register 00h

Bit Setting Description

[0] 0 or 1 P6.0 Setting
0: Normal C-MOS input mode
1: Normal C-MOS output mode; Chip enable 1 (CE1) for SmartMedia

[1] 0 or 1 P6.1 Setting
0: Normal C-MOS input mode
1: Normal C-MOS output mode; Chip enable 0 (CE0) for SmartMedia

[2] 0 or 1 P6.2 Setting
0: Normal C-MOS input mode
1: Normal C-MOS output mode; Command latch enable (CLE) for SmartMedia

[3] 0 or 1 P6.3 Setting
0: Normal C-MOS input mode
1: Normal C-MOS output mode; Address latch enable (ALE) for SmartMedia

[4] 0 or 1 P6.4 Setting
0: Normal C-MOS input mode; Ready/Busy (R/B) for SmartMedia
1: Normal C-MOS output mode

[5] 0 or 1 P6.5 Setting
0: Normal C-MOS input mode
1: Normal C-MOS output mode; Write protect (WP) for SmartMedia

[6] 0 or 1 P6.6 Setting
0: Normal C-MOS input mode
1: Normal C-MOS output mode; Read enable (RE) for SmartMedia

[7] 0 or 1 P6.7 Setting
0: Normal C-MOS input mode
1: Normal C-MOS output mode; Write enable (WE) for SmartMedia

NOTES:
1. When the SmartMedia control (SMCON) register is enabled, the access of port 7 generate the read or write strobe
signal

to the SmartMedia memory. However, other pins for SmartMeida interface should set interface condition and generate
interface signal by CPU instruction. This provide the customer with the high speed memory access time, small chip

size and small power consumption together.
2. The pull-up resistors of P6.6 and P6.7can be assigned by P2CONH.4, 5.

I/O PORTS S3FB42F

11-12

PORT 2 CONTROL HIGH REGISTER OR P6PUR (P2CONH)

Register Address R/W Description Reset Value

P2CONH 0x23 R/W Port 2 control high register 30h

Bit Setting Description

[3:0] 0 or 1 P2.5, 6,7 Setting (release see the P2CONH register)

[4] 0 or 1 P6.6 Pull-up Resistor Setting
0: Disable Pull-up resistor
1: Enable Pull-up resistor (Reset value)

[5] 0 or 1 P6.7 Pull-up Resistor Setting
0: Disable Pull-up resistor
1: Enable Pull-up resistor (Reset value)

PORT 7 CONTROL REGISTER (P7CON)

Register Address R/W Description Reset Value

P7CON 0x35 R/W Port 7 control register 00h

Bit Setting Description

[7:0] 0 or 1 Port 7 Setting
0: Normal C-MOS input mode
1: Normal C-MOS output mode

NOTE: When the SmartMedia control (SMCON) register is enabled, the read or write operation for port 7 activate the
ECC block. The ECC block capture the data on port 7 access and execute ECC operation.

S3FB42F I/O PORTS

11-13

PORT 8 CONTROL REGISTER (P8CON)

Register Address R/W Description Reset Value

P8CON 0x36 R/W Port 8 control register 00h

Bit Setting Description

[0] 0 or 1 P8.0 Setting
0: Schmitt trigger level input mode
1: Normal C-MOS output mode

[1] 0 or 1 P8.1 Setting
0: Schmitt trigger level input mode
1: Normal C-MOS output mode

[2] 0 or 1 P8.2 Setting
0: Schmitt trigger level input mode
1: Normal C-MOS output mode

[3] 0 or 1 P8.3 Setting
0: Schmitt trigger level input mode
1: Normal C-MOS output mode

NOTE: The parallel port control (PPCONH.1) register can assign port 8 to parallel printer port's control bus mode,
which is not effected by P8CON.0-3 setting.

I/O PORTS S3FB42F

11-14

PORT 9 CONTROL REGISTER (P9CON)

Register Address R/W Description Reset Value

P9CON 0x37 R/W Port 9 control register 00h

Bit Setting Description

[0] 0 or 1 P9.0 Setting
0: Schmitt trigger input mode, word selection input mode (WS0)
1: Normal C-MOS output mode, word selection output mode (WS0)

[1] 0 or 1 P9.1 Setting
0: Schmitt trigger input mode, bit shift clock input mode (SCLK0)
1: Normal C-MOS output mode, bit shift clock output mode (SCLK0)

[2] 0 or 1 P9.2 Setting
0: Schmitt trigger input mode, shift data input mode (SD0)
1: Normal C-MOS output mode, shift data output mode (SD0)

[3] 0 or 1 P9.3 Setting
0: Schmitt trigger input mode, word selection input mode (WS1)
1: Normal C-MOS output mode, word selection output mode (WS1)

[4] 0 or 1 P9.4 Setting
0: Schmitt trigger input mode, bit shift clock input mode (SCLK1)
1: Normal C-MOS output mode, bit shift clock output mode (SCLK1)

[5] 0 or 1 P9.5 Setting
0: Schmitt trigger input mode, shift data input mode (SD1)
1: Normal C-MOS output mode, shift data output mode (SD1)

[6] 0 or 1 P9.6 Setting
0: Schmitt trigger input mode
1: Normal C-MOS output mode, Master clock output mode (MCLK) for IIS0

NOTE: The direction of WS and SCLK port is decided by IISCON.3, MASTER, where is the output mode in the master
mode or the input mode in the slave mode. Also, the direction of SD port is decided by IISCON.2, TRANS, where
is the output mode in the transmitter mode or the input mode in the receive mode.

S3FB42F BASIC TIMER

12-1

12 BASIC TIMER

OVERVIEW

LSBMSB

Basic Timer Control Register (BTCON)
0CH, R/W

Basic timer input clock
selection bits:
000 = fxx/2
001 = fxx/4
010 = fxx/16
011 = fxx/32
100 = fxx/128
101 = fxx/256
110 = fxx/1024
111 = fxx/2048

Basic timer counter clear bits
when basic timer interrupt is enabled:
0 = No effect
1 = Clear BTCNT when write.

Basic timer interrupt enable bit
0 = BTINT disable
1 = BTINT enable

 NOTE: After the reset, BTCON.2 is set to "0" and basic timer input clock is
fixed at fxx/2048. If you want to change the basic timer input clock,
you should set the BTCON.2 to "1", and then the BTCON .6 .5 .4 are
writable by S/W.

Not used

Basic timer input clock selection enable bit:
0 = Basic timer input clock is fixed at fxx/2048
1 = BTCON .6 .5 .4 are writable by S/W

.7 .6 .5 .4 .3 .2 .1 .0

Not used

Figure 12-1. Basic Timer Control Register (BTCON)

BASIC TIMER S3FB42F

12-2

WATCHDOG TIMER

LSBMSB

Watchdog Timer Control Register (WDTCON)
0FH, R/W

Not used Watchdong timer clear bit:
1010 = clear watchdog timer counter
other values = don't care

.7 .6 .5 .4 .3 .2 .1 .0

Figure 12-2. Watchdog Timer Control Register (WDTCON)

LSBMSB

Watchdog Timer Enable Register (WDTEN)
0EH, R/W

Watchdog timer enable bit:
10100101 = Disable watchdog timer
Other values = Enable watchdog timer

.7 .6 .5 .4 .3 .2 .1 .0

Figure 12-3. Watchdog Timer Enable Register (WDTEN)

S3FB42F BASIC TIMER

12-3

BLOCK DIAGRAM

8-BIt Basic Counter
(Read Only)

BT INT

Reset or Stop

Data BUS

WDT Enable

CPU start signal
(Power down release)

clear

BTCON.0

BTCON.1

BT OVF

BTCON .6 .5 .4

3-bit WatchDog
Timer Counter

clear

WDTCON .3 .2 .1 .0 Reset STOP IDLE

1/2048

1/1024

1/256

1/128

1/32

1/16

1/4

1/2

Bit6

Data BUS

RESET
OVF

M
U
X

MUX

1/2048

BTCON.2

Figure 12-4. Basic Timer & Watchdog Timer Functional Block Diagram

BASIC TIMER S3FB42F

12-4

NOTES

S3FB42F REAL TIMER (WATCH TIMER)

13-1

13 REAL TIMER (WATCH TIMER)

OVERVIEW

Real time clock functions include real-time and watch-time measurement and interval timing for the system clock. To
start real time clock operation, set bit 1 of the real time clock(watch timer) control register, WTCON.1 to "1". After
the real time clock starts and elapses a time, the real time clock interrupt is automatically set to "1", and interrupt
requests commence in 3.91ms, or, 0.5 and 1-second intervals.

The watch timer can generate a steady 0.5 kHz, 1 kHz, 2 khz or 4 kHz signal to the BUZZER output. By setting
WTCON.3 and WTCON.2 to "11b", the real time clock will function in high-speed mode, generating an interrupt every
3.91 ms. High-speed mode is useful for timing events for program debugging sequences.

— Real-Time and Watch-Time Measurement

— Using a Main Oscillator or Sub Oscillator Clock Source

— Buzzer Output Frequency Generator

— Timing Tests in High-Speed Mode

Table 13-1. Watch Timer Control Register (WTCON): 8-Bit R/W

Bit Name Values Function Address

WTCON.7 – Not used 4CH

WTCON.6 – Not used

WTCON .5-.4 0 0 0.5 kHz buzzer (BUZ) signal output (when WTCON.1 = "1")

0 1 1 kHz buzzer (BUZ) signal output (when WTCON.1 = "1")

1 0 2 kHz buzzer (BUZ) signal output (when WTCON.1 = "1")

1 1 4 kHz buzzer (BUZ) signal output (when WTCON.1 = "1")

WTCON .3-.2 0 0 Set watch timer interrupt to 1S (when WTCON.1 = "1")

0 1 Set watch timer interrupt to 0.5S (when WTCON.1 = "1")

1 0 Set watch timer interrupt to 0.25S (when WTCON.1 = "1")

1 1 Set watch timer interrupt to 3.91mS (when WTCON.1 = "1")

WTCON.1 0 Select fxx/128 as the watch timer clock

1 Select XOUT as the watch timer clock

WTCON.0 0 Stop watch timer counter; clear frequency dividing circuits

1 Run watch timer counter

REAL TIMER (WATCH TIMER) S3FB42F

13-2

WATCH TIMER CIRCUIT DIAGRAM

Frequency
Ddividing

Circuit

Clock
Selector

WTCON .1 WTCON .0 WTCON .2 .3

Enable/Disable

fw
(32768 Hz)

fw/27

fw/213

fw/214

fw/215 (1 HZ)

fw/23 (4 kHz)

fw/24 (2 kHz)

fw/25 (1 kHz)

fw/26 (0.5 kHz)

fx = Main system clock (f VCO or fxm)
fxx = Selected system clock (fx or fxt)
fxt = Sub system clock
fxm = Main osillator output
fvco = PLL Vco output

MUX

Selector
Circuit

WTCON .4 .5

Buzzer output

WT INT
Overflow

fxx/128

fxm

(P2.3)

Figure 13-1. Watch Timer Circuit Diagram

S3FB42F 16-BIT TIMER (8-BIT TIMER A & B)

14-1

14 16-BIT TIMER (8-BIT TIMER A & B)

OVERVIEW

This 16-bit timer has two modes. One is 16-bit timer mode and the other is two 8-bit timer mode. When Bit 2 of
TBCON is "1", it operates with the 16-bit timer. When it is "0", it operates with two 8-bit timers. When it operates
with the 16-bit timer, the TBCNT’s clock source can be selected by setting TBCON.3. If TBCON.3 is "0", the timer
A’s overflow would be TBCNT’s clock source. If it is "1", the timer A’s interval out would be TBCNT’s clock source.
The timer clock source can be selected by S/W.

LSBMSB

Timer A Control Register (TACON)
40H, R/W, Reset: 00H

Timer A counter clear bit:
0 = No effect
1 = Clear the timer A (when write)

Timer A input clock selection bits:
000 = fxx/1024
001 = fxx/256
010 = fxx/64
011 = fxx/8
1x0 = fxx/1
1x1 = TACLK

Not used Not used Timer A operation enable bit:
0 = Stop
1 = Run

.7 .6 .5 .4 .3 .2 .1 .0

Figure 14-1. Timer A Control Register (TACON)

16-BIT TIMER (8-BIT TIMER A & B) S3FB42F

14-2

LSBMSB

Timer B Control Register (TBCON)
44H, R/W, Reset: 00H

Timer B counter clear bit:
0 = No effect
1 = Clear the timer B (when write)

Timer B input clock selection bits:
000 = fxx/1024
001 = fxx/256
010 = fxx/64
011 = fxx/8
1x0 = fxx/4
1x1 = TBCLK

Not used Timer B operation enable bit:
0 = stop
1 = Run

Timer B mode selection bits:
0 = 8-bit operation mode
1 = 16-bit operation mode

16-bit operation Timer B clock input selection bit:
0 = Timer A overflow out
1 = Timer A interval out

 NOTE: At 16-bit operation mode 16-bit counter clock input is selected by TACON .6, .5, .4

.7 .6 .5 .4 .3 .2 .1 .0

Figure 14-2. Timer B Control Register (TBCON)

S3FB42F 16-BIT TIMER (8-BIT TIMER A & B)

14-3

M
U
X

1

fxx/1024
fxx/256

fxx/64
fxx/8
fxx/1

TACLK

TBCON 2 Timer A Data Register
(Read/Write)

MUX

0

TACON 0

TACON 6, 5, 4
Timer A Buffer Register

8-Bit Comparator

Data Bus

TACNT (8-Bit
Up-Counter, Read Only)

TACON 1 TBCON 1

MUX TBCON 2

TBCON 3

MUX

10

TBCON 6, 5, 4

8-Bit Comparator

TBCON 3

TBCNT (8-Bit
Up-Counter, Read Olny)

Timer B Buffer Register

Timer B Data Register
(Read/Write)

Data Bus

1

0 and 1 means
MUX control input

TBINT

TBCON 1

TBCON 0TBCON 2

0

MUX

TBCON 3TBCON 2

M
U
X

fxx/1024
fxx/256
fxx/64
fxx/8

fxx/4
TBCLK

MUX1

0

MUX0

1

8

8

TAOUTInterval
Output Gen.

TAINT

TBCON 2

Clear

Clear

TBCON 0

Figure 14-3. Timer A, B Function Block Diagram

16-BIT TIMER (8-BIT TIMER A & B) S3FB42F

14-4

NOTES

S3FB42F SERIAL I/O INTERFACE

15-1

15 SERIAL I/O INTERFACE

OVERVIEW

LSBMSB

Serial I/O Module Control Registers
SIOCON: 50H, R/W, Reset: 00H

SIO operation enable bit:
0 = Disable SIO
1 = Enable SIO

Not usedSIO shift clock select bit:
0 = Internal clock (P.S clock)
1 = External clock (SCK)

Data direction control bit:
0 = MSB-first
1 = LSB-first

SIO counter clear and shift start bit:
0 = No action
1 = Clear 3-bit counter and start shifting

SIO shift operation enable bit:
0 = Disable shifter and clock
1 = Enable shfter and clock

SIO mode selction bit:
0 = Rececive-only mode
1 = Transmit/receive mode

Shift clock edge selction bit:
0 = Tx falling edges, Rx at rising
1 = Tx rising edges, Rx at falling

.7 .6 .5 .4 .3 .2 .1 .0

NOTES:
1. SIOCON.2 and SIOCON.3 should not be set simultaneously. If it is done, the

data can be lost.
2. SIOCON.3 must be set separately when starting communication.

Figure 15-1. Serial I/O Module Control Registers (SIOCON)

NOTES:
1. Tx: 1) Set the bit 1 and 2 of SIOCON in advance.

2) Push data into SIODATA.
3) Set the bit 3 of SIOCON to start the transmission.

2. Rx: 1) Set the bit 1 and 2 of SIOCON in advance.
2) Set the bit 3 of SIOCON to receive the data.
3) Read the data from SIODATA.

SERIAL I/O INTERFACE S3FB42F

15-2

SIO PRE-SCALER REGISTER (SIOPS)

The control register for serial I/O interface module, SIOPS, is located at 49H. The value stored in the SIO
pre-scaler registers, SIOPS, lets you determine the SIO clock rate (baud rate) as follows:

Baud rate = Input clock (fxx/2) / (Pre-scaler value + 1), or, SCLK input clock

where the input clock is fxx.

LSBMSB

SIO Pre-scaler Register (SIOPS)
51H,R/W

Baud rate = (fxx /2)/(SIOPS + 1)

.7 .6 .5 .4 .3 .2 .1 .0

Figure 15-2. SIO Pre-scaler Register (SIOPS)

BLOCK DIAGRAM

3-Bit Counter

8-Bit SIO Shift Buffer
(SIODATA)8-Bit P.S 1/2fxx

SIOPS (51H)
SCK

SIOCON.7
(Shift Clock

Source Select)

Prescaler Value =1/(SIOPS + 1)

Clear

CLK

CLK

SI

SIOCON.3

SIOCON.4
(Edge Select)

SIOCON.5
(Mode Select)

SIOCON.2
(Shift Enable)

SIOCON.6
(LSB/MSB First
Mode Select)

Data Bus

8

SO

SIO INT

SIOCON.1
(Interrupt Enable)

Figure 15-3. SIO Function Block Diagram

S3FB42F SERIAL I/O INTERFACE

15-3

SERIAL I/O TIMING DIAGRAM

SO

Transmit
CompleteIRQS

Set SIOCON.3

DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0

D17 D16 D15 D14 D13 D12 D11 D10SI

SCK

Figure 15-4. Serial I/O Timing in Transmit/Receive Mode (Tx at falling, SIOCON.4=0)

IRQS

DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0

D17 D16 D15 D14 D13 D12 D11 D10

SCK

Transmit
Complete

Set SIOCON.3

SI

SO

Figure 15-5. Serial I/O Timing in Transmit/Receive Mode (Tx at rising, SIOCON.4=1)

SERIAL I/O INTERFACE S3FB42F

15-4

NOTES

S3FB42F UART

16-1

16 UART

OVERVIEW

An UART contains a programmable baud rate generator, Rx and Tx port for UART communication, Tx and Rx shift
registers, Tx and Rx buffer registers, Tx and Rx control blocks and control registers. Important features of the UART
block include programmable baud rates, transmit/receive (full duplex mode), one or two stop bit insertion, 5-bit, 6-bit,
7-bit, or 8-bit data transmit/receive, and parity checking.

The baud rate generator can be clocked by the internal oscillation clock. The transmitter cotains a Tx data buffer
register and a Tx shift register. Similary the receiver cotains a Rx data buffer register and a Rx shift register. Data to
be transmitted is written to the Tx buffer register, then copied to the Tx shift register, and shift out by the transmit
data pin (Tx). Data received is shifted in by the receive data pin (Rx), then copied from shift register to the Rx buffer
register whenever one data byte is received. The control unit provides control for mode selection and status/interrupt
generation.

UART Baud rate = fxx/(16 x (Divisor Value + 1))

Data Bus

Tx. Control

Rx. ControlRx. Shift Register

Rx. Buffer Register

Interrupt
Control

LCON/UCON/USSRTx. Buffer Register

Tx. Shift Register

CK

CK

Baud Rate Generator

Serial Clock
Generator

8-Bit Prescaler

Data Bus Data Bus

Status

Tx

Rx

fxx

Data Bus

UBRDR

Figure 16-1. UART Block Diagram

UART S3FB42F

16-2

UART SPECIAL REGISTERS

UART LINE CONTROL REGISTER

The UART line control register, LCON, is used to control the UART.

Register Address R/W Description Reset Value

LCON 0xB0 R/W UART line control register 00h

[1:0] Word length (WL). The two-bit word length value indicates the number of data bits to
be transmitted or received per frame. The options are 5-bit, 6-bit,
7-bit, and 8-bit.

[2] Number of stop bits LCON[2] specifies how many stop bits are used to signal end-of-
frame (EOF). When it is 0, one bit signals the EOF; when it is 1,
two bits signal EOF.

[5:3] Parity mode (PMD) The 3-bit parity mode value specifies how parity generation and
checking are to be performed during UART transmit and receive
operations. There are five options (see Figure 16-2).

[6] –

[7] –

[1:0] Word-length per frame (WL)
00 = 5-bit
01 = 6-bit
10 = 7-bit
11 = 8-bit

[2] Number of stop bit at end of frame
0 = One stop bit per frame
1 = Two stop bits per frame

[5:3] Parity mode (PMD)
0xx = No parity bit in frame
100 = Odd parity
101 = Even parity
110 = Parity forced/checked as 1
111 = Parity forced/checked as 0

WL

7 6 5 3 02 1

PMD

Figure 16-2. UART Line Control Register (LCON)

S3FB42F UART

16-3

UART CONTROL REGISTER

The UART control register, UCON, is used to control the single-channel UART.

Register Address R/W Description Reset Value

UCON 0xB1 R/W UART control register 00h

[0] Rx interrupt enable UART Rx interrupt control: 0 = Disable, 1 = Enable

[1] Rx enable UART Rx operation control: 0 = Disable, 1 = Enable

[2] Rx status interrupt enable This bit enables the UART to generate an interrupt if an exception
(break, frame error, parity error, or overrun error) occurs during
a receive operation. When UCON[2] is set to 1, a receive status
interrupt will be generated each time a Rx exception occurs.
When UCON[2] is 0, no receive status interrupt will be generated.

[3] Tx interrupt enable UART Tx interrupt control: 0 = Disable, 1 = Enable

[4] Tx enable

[5] -

[6] Send break Setting UCON[6] causes the UART to send a break. Break is defined
as a continuous Low level signal on the transmit data output with a
duration of more than one frame transmission time. By setting this bit
when the transmitter is empty (transmitter empty bit, SSR[7] = 1),
you can use the transmitter to time the frame. When SSR[7] is 1,
write the transmit buffer register, TBR, with the data to be transmitted.
Then poll the SSR[7] value. When it returns to 1, clear (reset) the send
break bit, UCON[6].

[7] Loopback bit Setting UCON[7] causes the UART to enter loopback mode. In loopback
mode, the transmit data output is sent High level and the transmit buffer
register (TBR) is internally connected to the receive buffer register
(RBR). This mode is provided for test purposes only.

UART S3FB42F

16-4

UART STATUS REGISTER

The UART status register, USSR, is a read-only register that is used to monitor the status of serial I/O operations in
the single-channel UART.

Register Address R/W Description Reset Value

USSR 0xB2 R UART status register c0h

[0] Overrun error USSR[0] is automatically set to 1 whenever an overrun error occurs
 during a serial data receive operation. If the receive status interrupt

enable bit, UCON[2] is 1, a receive status interrupt will be generated if
an overrun error occurs. This bit is automatically cleared to 0 whenever
the UART status register (USSR) is read.

[1] Parity error USSR[1] is automatically set to 1 whenever a parity error occurs during
a serial data receive operation. If the receive status interrupt enable bit,
UCON[2] is 1, a receive status interrupt will be generated if a parity
error occurs. This bit is automatically cleared to 0 whenever the UART
status register (USSR) is read.

[2] Frame error USSR[2] is automatically set to 1 whenever a frame error occurs during
a serial data receive operation. If the receive status interrupt enable bit,
UCON[2] is 1, a receive status interrupt will be generated if a frame
error occurs. The frame error bit is automatically cleared to 0 whenever
the UART status register (USSR) is read.

[3] Break interrupt USSR[3] is automatically set to 1 to indicate that a break signal has
been received. If the receive status interrupt enable bit, UCON[2], is 1,
a receive status interrupt will be generated if a break occurs.
The break interrupt bit is automatically cleared to 0 when you read
the UART status register.

[4] –

[5] Receive data ready USSR[5] is automatically set to 1 whenever the receive data buffer
register (RBR) contains valid data received over the serial port. The
receive data can then be read from the RBR. When this bit is 0, the RBR

does not contain valid data. Depending on the current setting of the SIO
receive mode bits, UCON[1:0], an interrupt or a DMA request is

generated when USSR[5] is 1.

[6] Tx buffer register empty USSR[6] is automatically set to 1 when the transmit buffer register (TBR)
does not contain valid data. In this case, the TBR can be written with the data to
be transmitted. When this bit is 0, the TBR contains valid Tx data that has
not yet been copied to the transmit shift register. In this case, the TBR
cannot be written with new Tx data. Depending on the current setting of the
UART transmit mode bits, UCON[4:3], an interrupt or a DMA request will be
generated whenever USSR[6] is 1.

[7] Transmitter empty (T) USSR[7] is automatically set to 1 when the transmit buffer register has
no valid data to transmit and when the Tx shift register is empty.
When the transmitter empty bit is 1, it indicates to software that it can
now disable the transmitter function block.

S3FB42F UART

16-5

UART TRANSMIT BUFFER REGISTER

The UART transmit holding register, TBR, contains an 8-bit data value to be transmitted over the single-channel
UART.

Register Address R/W Description Reset Value

TBR 0xB3 W Serial transmit buffer register xxh

[7:0] Transmit data This field contains the data to be transmitted over the single-channel
UART. When this register is written, the transmit buffer register empty
bit in the status register, USSR[6], should be 1. This prevents overwriting
transmit data that may already be present in the TBR. Whenever the
TBR is written with a new value, the transmit register empty bit, SSR[6],
is automatically cleared to 0.

UART RECEIVE BUFFER REGISTER

The receive buffer register, RBR, contains an 8-bit field for received serial data.

Register Address R/W Description Reset Value

RBR 0xB4 R Serial receive buffer register xxh

[7:0] Receive data This field contains the data received over the single-channel UART.
When this register is read, the receive data ready bit in the UART status
register, USSR[5], should be 1. This prevents reading invalid receive
data that may already be present in the RBR. Whenever the RBR is
written with a new value, the receive data ready bit, USSR[5], is
automatically cleared to 0.

UART S3FB42F

16-6

UART BAUD RATE PRESCALER REGISTERS

The value stored in the baud rate divisor register, UBRDR, is used to determine the serial Tx/Rx clock rate
(baud rate) as follows:

Baud rate = fxx/((Divisor value + 1) x 16)

Register Address R/W Description Reset Value

UBRDR 0xB5 R/W Baud rate divisor register 0000h

UART INTERRUPT PENDING REGISTER (UPEND)

Register Address R/W Description Reset Value

UPEND 0xB6 R/W UART interrupt pending register 00h

Bit Setting Description

[0] 0 or 1 UART Rx interrupt pending bit
0: When read, interrupt is not pending. (When write, pending bit is clear)
1: When read, interrupt is pending. (When write, pending bit is not affected)

[1] 0 or 1 UART Error interrupt pending bit
0: When read, interrupt is not pending. (When write, pending bit is clear)
1: When read, interrupt is pending. (When write, pending bit is not affected)

[2] 0 or 1 UART Tx interrupt pending bit
0: When read, interrupt is not pending. (When write, pending bit is clear)
1: When read, interrupt is pending. (When write, pending bit is not affected)

[7:3] – –

S3FB42F I2S BUS (INTER-IC SOUND)

17-1

17 I2S BUS (INTER-IC SOUND)

OVERVIEW

Many digital audio systems are being introduced into the consumer audio market, including compact disc, digital
audio tape, digital sound processors, and digital TV-sound. The digital audio signals in these systems are being
processed by a number of (V) LSI ICs, such as:

• A/D and D/A converters;

• Digital signal processors;

• Error correction for compact disc and digital recording;

• Digital filters;

• Digital input/output interfaces.

Standardized communication structures are vital for both the equipment and the IC manufacturer, because they
increase system flexibility. To this end, we have used the inter-IC sound (I2S) bus-a serial link especially for digital
audio.

The bus has only to handle audio data, while the other signals, such as sub-coding and control, are transferred
separately. To minimize the number of pins required and to keep wiring simple, a 3-line serial bus is used consisting
of a line for two time-multiplexed data channels, a word select line and a clock line. Since the transmitter and
receiver have the same clock signal for data transmission, the transmitter as the master, has to generate the bit
clock, word-select signal and data. In complex systems however, there may be several transmitters and receivers,
which makes it difficult to define the master. In such systems, there is usually a system master controlling digital
audio data-flow between the various ICs. Transmitters then, have to generate data under the control of an external
clock, and so act as a slave.

Figure 17-1 illustrates some simple system configurations and the basic interface timing. Note that the system
master can be combined with a transmitter or receiver, and it may be enabled or disabled under software control or
by pin programming.

MCU
SD

WS

SCLK
Digital
Sound

Interface

Figure 17-1. Simple System Configuration

I2S BUS (INTER-IC SOUND) S3FB42F

17-2

THE I2S BUS

As shown in Figure 17-1, the bus has three lines:

• Continuous serial clock (SCLK);

• Word select (WS);

• Serial data (SD);

and the device generating SCLK and WS is the master.

SD

Word n-1
Right Channel

WS

SCLK
~~

~~
~~

MSB LSB MSB~~

Word n
Left Channel

Word n+1
Right Channel

Dummy

Figure 17-2. I2S Basic Interface Format (Phillips)

SD

Word n-1
Right Channel

WS

SCLK

~~
~~

~~

MSB LSB MSB~~

Word n
Left Channel

Word n+1
Right Channel

Figure 17-3. LSI Interface Format (Sony)

S3FB42F I2S BUS (INTER-IC SOUND)

17-3

Serial Data

Serial data is transmitted in two's complement with the MSB first. The MSB is transmitted first because the
transmitter and receiver may have different word lengths. It isn't necessary for the transmitter to know how many bits
the receiver can handle, nor does the receiver need to know how many bits are being transmitted.

When the system word length is greater than the transmitter word length, the word is truncated (least significant
data bits are set to 0) for data transmission. If the receiver is sent more bits than its word length, the bits after the
LSB are ignored. On the other hand, if the receiver is sent fewer bits than its word length, the missing bits are set to
zero internally. And so, the MSB has a fixed position, whereas the position of the LSB depends on the word length.
The transmitter always sends the MSB of the next word one clock period after the WS changes.

Serial data sent by the transmitter may be synchronized with either the trailing (HIGH-to-LOW) or the leading (LOW-
to-HIGH) edge of the clock signal. However, the serial data must be latched into the receiver on the leading edge of
the serial clock signal, and so there are some restrictions when transmitting data that is synchronized with the
leading edge (see Figure 17-4 and Table 17-1).

Word Select

The word select line indicates the channel being transmitted:

• WS = 0; channel 1 (left);

• WS = 1; channel 2 (right).

WS may change either on a trailing or leading edge of the serial clock, but it does not need to be symmetrical. In
the slave, this signal is latched on the leading edge of the clock signal. The WS line changes one clock period
before the MSB is transmitted. This allows the slave transmitter to derive synchronous timing of the serial data that
will be set up for transmission. Furthermore, it enables the receiver to store the previous word and clear the input for
the next word (see Figure 17-2).

TIMING

In the I2S format, any device can act as the system master by providing the necessary clock signals. A slave will
usually derive its internal clock signal from an external clock input. This means, taking into account the propagation
delays between master clock and the data and/or word-select signals, that the total delay is simply the sum of:

• The delay between the external (master) clock and the slave's internal clock; and

• The delay between the internal clock and the data and/or word-select signals.

For data and word-select inputs, the external to internal clock delay is of no consequence because it only lengthens
the effective set-up time (see Figure 17-3). The major part of the time margin is to accommodate the difference
between the propagation delay of the transmitter, and the time required to set up the receiver.

All timing requirements are specified relative to the clock period or to the minimum allowed clock period of a device.
This means that higher data rates can be used in the future.

I2S BUS (INTER-IC SOUND) S3FB42F

17-4

SCLK

tLC => 0.35T tHC => 0.35T

T

WS and SD

VH = 2.0 V
VL = 0.8 V

tRC => 0

thtr => 0

tdtr =< 0.8T

T = clock period
Ttr = minimum allowed clock period for transmitter
T > T tr

tRC is only relevant for transmitters in slave mode.

Figure 17-4. Timing for I2S Transmitter

SCLK

tLC => 0.35T tHC => 0.35T

T

WS and SD

tsr => 0.2T thr => 0

VH = 2.0 V
VL = 0.8 V

T = clock period
Tr = minimum allowed clock period for transmitter
T > T tr

Figure 17-5. Timing for I2S Receiver

S3FB42F I2S BUS (INTER-IC SOUND)

17-5

Table 17-1. Master Transmitter with Data Rate of 2.5 MHz (10%) (Unit: ns)

Min Typ Max Condition

Clock period T 360 400 440 Ttr = 360

Clock HIGH tHC 160 min > 0.35T = 140 (at typical data rate)

Clock LOW tLC 160 min > 0.35T = 140 (at typical data rate)

Delay tdtr 300 max < 0.80T = 320 (at typical data rate)

Hold time thtr 100 min > 0

Clock rise-time tRC 60 max > 0.15T = 54 (atrelevent in slave mode)

Table 17-2. Slave Receiver with Data Rate of 2.5 MHz (10%) (Unit: ns)

Min Typ Max Condition

Clock period T 360 400 440 Ttr = 360

Clock HIGH tHC 110 min < 0.35T = 126

Clock LOW tLC 110 min < 0.35T = 126

Set-up time tsr 60 min < 0.20T = 72

Hold time thtr 0 min < 0

I2S BUS (INTER-IC SOUND) S3FB42F

17-6

I2S SPECIAL REGISTER DESCRIPTION

I2S CONTROL REGISTERS

Table 17-3. Function Register Description

Register Address R/W/C Description

IISCON0 0x58 R/W I2S0 Control register

IISCON1 0x5C R/W I2S1 Control register

IISMODE0 0x59 R/W I2S0 Mode register

IISMODE1 0x5D R/W I2S1 Mode register

IISPTR0 0x5A R/W I2S0 buffer pointer register

IISPTR1 0x5E R/W I2S1 buffer pointer register

IISBUF 0xC0-0xFF R/W I2S Buffer registers

I2S CONTROL REGISTERS (IISCON)

Register Address R/W Description Reset Value

IISCON0 0x58 R/W I2S control register 0 00h

IISCON1 0x5C R/W I2S control register 1 00h

IIS control register0 has the following control bit settings:

[0] I2S0 Enable I2S0 block when this bit is set as 1.
0: I2S0 block disable.
1: I2S0 block enable.

[1] MCLK Select normal or MCLK output mode
0: Normal output
1: MCLK output

[2] SD0_OUT Select the input or output mode for each I2S0 Serial Data pin.
Set SD0 pin as an input or an output.
0: Input
1: Output

[3] SLAVE MCU generate the SCLK0 and WS0 signal to transmit or receive the
serial data.
0: Master mode, SCLK0 and WS0 is output mode.
1: Slave mode, SCK0 and WS0 is input mode.

[4] SCKPOL Select the serial clock0 polarity.
0: Active low
1: Active high

[5] CHPOL Select the Left/Right channel polarity.
0: Left High
1: Left Low

[6] LSBFIRST Select MSB("0") first at or LSB("1") first in serial interface

S3FB42F I2S BUS (INTER-IC SOUND)

17-7

[7] PSMODE. Select the Phillips IIS0 interface format or Sony LSI interface format.
0: I2S, 1: LSI

IIS control register1 has the following control bit settings:

[0] I2S1 Enable Enable I2S1 block when this bit is set as 1.
0: I2S1 block is disabled.
1: I2S1 block is enabled.

[1] – –

[2] SD1_OUT Select the input or output mode for each I2S1 Serial Data pin.
Set SD1 pin as an input or an output.
0: Input
1: Output

[3] SLAVE MCU generate the SCLK1 and WS1 signal to transmit or receive the
serial data.
0: Master mode, SCLK1 and WS1 is output mode.
1: Slave mode, SCK1 and WS1 is input mode.

[4] SCKPOL Select the serial clock1 polarity.
0: Active low
1: Active high

[5] CHPOL Select the Left/Right channel polarity.
0: Left High
1: Left Low

[6] LSBFIRST Select MSB("0") first at or LSB("1") first in serial interface

[7] PSMODE. Select the Phillips IIS0 interface format or Sony LSI interface format.
0: I2S, 1: LSI

I2S BUS (INTER-IC SOUND) S3FB42F

17-8

I2S MODE REGISTERS (IISMODE)

Register Address R/W Description Reset Value

IISMODE0 0x59 R/W I2S mode register 0 00h

IISMODE1 0x5D R/W I2S model register 1 00h

I2S control register has the following control bit settings:

[1-0] BitPSlot: Set the bit number per slot
00: 8-bit
01: 16-bit
10: 24-bit
11: 32-bit

[5-2] SFREQ Set the Sampling frequency for Left/Right channel output
0100: Select an 11.025 kHz as audio sampling frequency
0101: Select an 22.05 kHz as audio sampling frequency
0110: Select an 44.1 kHz as audio sampling frequency
0111: Select an 88.2 kHz as audio sampling frequency
1000: Select an 8 kHz as audio sampling frequency
1001: Select an 16 kHz as audio sampling frequency
1010: Select an 32 kHz as audio sampling frequency
1100: Select an 12 kHz as audio sampling frequency
1101: Select an 24 kHz as audio sampling frequency
1110: Select an 48 kHz as audio sampling frequency
1111: Select an 96 kHz as audio sampling frequency

[7-6] BitPFs Set the bit number per sampling frequency

01: 32-bit
10: 48-bit (slave only)
11: 64-bit

When MCLK (Master Clock) is enabled, MCLK frequency is Fs x 256.

S3FB42F I2S BUS (INTER-IC SOUND)

17-9

I2S POINTER REGISTERS (IISPTR)

Register Address R/W Description Reset Value

IISPTR0 0x5A R/W I2S buffer pointer register 0 00h

IISPTR1 0x5E R/W I2S buffer pointer register 1 00h

[5-0] Pointer Buffer pointer register. The bit 5 is not incremented but bit4-0 are
automatically incremented whenever buffer operation is done.
After pointer value, IISPTR[4:0] reached to 0x1F, interrupt request
flag is active. IISPTR will increment from the initial value to
IISPTR[4:0] = 0x1f, IISPTR[4:0] is cleared to 0x00.
However IISPTR[5] is not changed.
If IISPTR[5] = 1, second half buffer (0xE0–0xEF) is accessible. Otherwise,
first half buffer (0xC0–0xDF) is accessible.

I2S BUFFER REGISTERS (IISBUF)

Register Address R/W Description Reset Value

IISBUF 0xC0-0xFF R/W I2S buffer registers 00h

[7-0] DATA I2S buffer registers hold the audio data for transmitting data to audio
DAC or receiving data from external I.C.

I2S BUS (INTER-IC SOUND) S3FB42F

17-10

NOTES

S3FB42F SSFDC (SOILD STATE FLOPPY DISK CARD)

18-1

18 SSFDC (SOLID STATE FLOPPY DISK CARD)

OVERVIEW

S3FB42F build a interface logic for SmartMedia™ card, called as SSFDC, solid state floppy disk card.
The SSFDC interface include the use of simple hardware together with software to generate a basic control signal or
ECC for SmartMedia™.

The built-in SSFDC interface logic consists of ECC block and the read/write strobe signal generation block.
The high speed RISC CPU core, CalmRisc support high speed control for other strobe signal generation and
detection. Therefore, ALE, CLE, CE and etc signal should be operated by CPU instruction. This mechanism provide
the balanced cost and power consumption without the de-graduation of SSFDC access speed.

Physical format is necessary to maintain wide compatibility. SmartMedia™ has a standard physical format. System
makers and controller manufacturers are requested to conform their products to such specifications.
For logical format, SmartMedia™ employs a DOS format on top of physical format. See PC Card Standard Vol.7 and
other references for more information. With all SmartMedia™ products, physical and logical formatting has been
completed at time of shipment.

SSFDC (SOILD STATE FLOPPY DISK CARD) S3FB42F

18-2

nCE (P6.0, 1)

CLE (P6.2)

R/B (P6.4)

ALE (P6.3)

nWE (Dedicated Pins)

nRE (Dedicated Pins)

SSFDC
Interface Control

I/O0-I/O7
(Dedicated Pins)

M
U

X

ECC
Processor

Port 7

VS

DB0-DB7

Figure 18-1. Simple System Configuration

S3FB42F SSFDC (SOILD STATE FLOPPY DISK CARD)

18-3

SSFDC REGISTER DESCRIPTION

Description of the register in the SSFDC, SmartMedia interface is listed the below table.

Table 18-1. Control Register Description

Register Address R/W/C Description

SMCON 70H R/W SmartMedia control register

ECCNT 71H R/W ECC count register

ECCL/H/X 72/73/74H R/W ECC data register low/high/extension

ECCRSTL/H 75/76H R/W ECC result data register low/high

ECCCLR 77H W ECC clear register

SMARTMEDIA CONTROL REGISTER (SMCON)

Register Address R/W Description Reset Value

SMCON 0x70 R/W SmartMedia control register 00h

[0] ECC Enable This bit enable or disable the ECC operation in the SmartMedia
block. When this bit is set as "1", ECC block is activated and
ECC operation is done whenever accessing the Port 7.
"1" : Enable "0" : Disable.

[1] Enable SmartMedia interface This bit control the operation of SmartMedia block. When this bit
is set as "1", Port 7 is activated as I/O data bus of SmartMedia
interface. SmartMedia control signal is generated whenever
accessing the Port 7.

[3:2] Wait cycle control These bit control the wait cycle insertion when access to
SmartMedia card.
00: No wait in nWE or nRD signal
01: 1 wait in nWE or nRD signal
10: 3 wait in nWE or nRD signal
11: Invalid setting.

SMARTMEDIA ECC COUNT REGISTER (ECCNT)

Register Address R/W Description Reset Value

ECCNT 0x71 R/W SmartMedia ECC count register 00h

[7:0] Count This field acts as the up-counter. You can know the ECC count
number by reading this register. This register is cleared by
setting the SMCON.0, Start bit or overflow of counter.

SSFDC (SOILD STATE FLOPPY DISK CARD) S3FB42F

18-4

SMARTMEDIA ECC DATA REGISTER (ECCDATA)

Register Address R/W Description Reset Value

ECCX 0x74 R/W SmartMedia ECC data extension register 00h

ECCH 0x73 R/W SmartMedia ECC data high register 00h

ECCL 0x72 R/W SmartMedia ECC data low register 00h

[7:0] Data Data field acts as ECC data register when SMCON.0, enable bit
is set. The access instruction to Port 7 execute an 1byte ECC
operation. The writing to ECCCLR register have all ECC data
registers clear to zero

SMARTMEDIA ECC RESULT DATA REGISTER (ECCRST)

Register Address R/W Description Reset Value

ECCRSTL 0x75 R/W SmartMedia ECC result data register low 00h

ECCRSTH 0x76 R/W SmartMedia ECC result data register high 00h

[7:0] Data After ECC compare operation is executed, ECC result out to
ECC result data register, ECCRST.
ECCRSTH[7:0] have the byte location with correctable error bit.
ECCRSTL[2:0] have the bit location where is correctable error
bit.
ECCRSTL[5:4] have the error information.
00: No error occurred.
01: detect 1 bit error but recoverable
10: detect the multiple bit error.
11: detect the multiple bit error.

S3FB42F SSFDC (SOILD STATE FLOPPY DISK CARD)

18-5

I/O0-I/O7

M
U

X

Port 7

VS

DB0-DB7

ECCCNT

X-OR

ECCDATA
(ECCX/H/L)

ECCRST
(ECCRST/H/L)

SSFDC
Interface Control

ECCRSTL[5:4]: Error Information
00: No error
01: 1 bit error in ECCRSTH.ECCRSTL[2:0]
 (Randge: 0x00.0-0xFF.7
 Byte address: ECCRSTH[7:0]
 Bit location: ECCRSTL[2:0])
10: Multi bit error
11: Multi bit error

Figure 18-2. ECC Processor Block Diagram

SSFDC (SOILD STATE FLOPPY DISK CARD) S3FB42F

18-6

NOTES

S3FB42F PARALLEL PORT INTERFACE

19-1

19 PARALLEL PORT INTERFACE

OVERVIEW

The S3FB42F's parallel port interface controller (PPIC) supports four IEEE Standard 1284 communication modes:

— Compatibility mode (CentronicsTM)

— Nibble mode

— Byte mode

— Enhanced Capabilities Port (ECP) mode

The PPIC also supports all variants of these communication modes, including device ID requests. The PPIC contains
specific hardware to support the following operations:

— Automatic hardware handshaking between host and peripheral in Compatibility and ECP modes

These features can substantially improve data transfer rates when S3FB42F operates the parallel port in the
Compatibility or ECP mode.

In addition, hardware handshaking over the parallel port can be enabled or disabled by software. This gives you the
direct control of PPIC signals as well as the eventual use of future protocols. Other operations defined in the IEEE
Standard 1284, such as negotiation, Nibble mode and Byte mode data transfers, and termination cycles, must be
carried out by software. The IEEE 1284 EPP communications mode is not supported.

NOTE

Here we assume that you are familiar with the parallel port communication protocols specified in the IEEE
1284 Parallel Port Standard. If you are not, we strongly recommend for you to read this standard
beforehand. It would be helpful for you in understanding the contents described in this section.

PARALLEL PORT INTERFACE S3FB42F

19-2

PPIC OPERATING MODES

The S3FB42F PPIC supports four kinds of handshaking modes for data transfers:

— Software handshaking mode to forward and reverse data transfers

— Compatibility hardware handshaking mode to forward data transfers

— ECP hardware handshaking mode to forward and reverse data transfers

Mode selection is specified in the PPIC control low register (PPCONL). By setting the PPCONL[6:4], one of these
four modes is enabled.

Software Handshaking Mode

This mode is enabled by setting the PPCONL's mode-selection bits, PPCONL[5:4], to "00."

In this mode, you can use PPIC interrupt event registers (PPINTCON and PPINTPND) and the read/write PPIC
status register (PPSTAT and PPSCON) to detect and control the logic levels on all parallel port signal pins. Software
can control all parallel port operations, including all four kinds of parallel port communications protocols supported by
the S3FB42F (refer to IEEE 1284 standard for operation control). In addition, it also gives software the flexibility of
adopting new and revised protocols.

Compatibility Hardware Handshaking Mode

Compatibility hardware handshaking mode is enabled by setting the PPCONL's mode-selection bits as "01", i.e.
PPCONL[5:4] = 01. In this mode, hardware generates all handshaking signals needed to implement compatibility
mode of the parallel port communication protocol.

When this mode is enabled, the PPIC automatically generates a BUSY signal to receive the leading edge of
nSTROBE from the host, and latches the logic levels on PPD7-PPD0 pins into the PPDATA register. The PPIC then
waits for nSTROBE to negate it and for the PPDATA's data field to be read. After the PPDATA is read, the PPIC
asserts nACK for the duration specified in the ACK Width Data Register (PPACKD), and then negates the nACK
and BUSY signal to conclude the data transfer, as shown in Figure 19-1.

NOTE

The BUSY-control bit initial value in the PPSCON register, PPSCON[3], which is "1" after a system reset,
results in the high logic level on BUSY output and handshaking disable. To enable hardware handshaking in
this mode, the BUSY-control bit PPSCON[3] must be cleared to "0" by software beforehand.

S3FB42F PARALLEL PORT INTERFACE

19-3

DataPPD[7:0]

nSTROBE

BUSY

nACK

Figure 19-1. Compatibility Hardware Handshaking Timing

ECP Mode

ECP hardware handshaking mode is enabled by setting the PPCONL's mode-selection bits to "10", i.e.
PPCONL[5:4] = 10. In this mode, hardware generates handshaking signals needed to implement ECP mode of the
parallel port communication protocol.

When receiving data from the host, the PPIC automatically responds to the high-to-low transition on the nSTROBE
by latching the logic levels on the PPD7-PPD0 to PPDATA(and PPCDATA). The nAUTOFD logic level, which is
latched to the PPINTPNDH[1] or [0], command or data received flags, indicates whether the current data on the
PPDATA[7:0] is a data-byte or a command-byte. When the PPDATA is read, the PPIC drives BUSY to high level
and waits for nSTROBE to go high level. It then drives BUSY to low level to conclude one forward data transfer
operation, as shown in Figure 19-2.

The reception of a command byte causes the command received-bit in the PPIC interrupt pending register,
PPINTPNDH[1], to be set to "1". By examining the PPDATA/PPCDATA[7], software will interpret the command byte
as a channel address if it is "1" and carry out the corresponding operation, or interpret the command byte as a run-
length count if it is "0" and then perform data decompression.

During reverse data transfers, software is responsible for data compression, and writing data or command byte in
PPDATA or PPCDATA to define the logic levels on PPD7-PPD0 and BUSY pins. The write to PPDATA or PPCDATA
indicates whether the current data on the PPD[7:0] is a data-byte or a command-byte. When some value is written
to PPDATA, that means data-byte type and is output through the BUSY pin to high. When some value is written to
PPCDATA, that means command-byte type and is output through the BUSY pin to low. In response to writing the
PPDATA or PPCDATA, the PPIC automatically drives the nACK to low level and waits for the nAUTOFD to go to
high level. It then drives nACK to high level to conclude one reverse data transfer operation, as shown in Figure 19-3.

PARALLEL PORT INTERFACE S3FB42F

19-4

PPD[7:0]

nAUTOFD
(HostACK)

nSTROBE
(HostCLK)

BUSY
(PeriphACK)

Byte 1Byte 0

Command byteData byte

Read PPDATA or PPCDATA Read PPDATA or PPCDATA

Figure 19-2. ECP Hardware Handshaking Timing (Forward)

PPD[7:0]

BUSY
(PeriphACK)

nACK
(PeriphACK)

nAUTOFD
(HostACK)

Byte 1Byte 0

Command byteData byte

Write to PPDATA Write to PPCDATA

Figure 19-3. ECP Hardware Handshaking Timing (Reverse)

S3FB42F PARALLEL PORT INTERFACE

19-5

Digital Filtering

The S3FB42F provides digital filtering function on host control signal inputs, nSELECTIN (P1284), nSTROBE
(HostCLK), nAUTOFD (H0TACK) and nINIT (nReverseRequest), to improve noise immunity and make the PPIC more
impervious to the inductive switching noise. The digital filtering function can be enabled regardless of hardware
handshaking or software handshaking.

If this function is enabled, the host control signal can be detected only when its input level keeps stable during three
sampling periods.

Digital filtering can be disabled to avoid signal missing in some specialized applications with high bandwidth
requirement. Otherwise, it is recommended that digital filtering be enabled.

PPIC SPECIAL REGISTERS

PARALLEL PORT DATA/COMMAND DATA REGISTER

The parallel port data/command data register, PPDATA/PPCDATA, contains an 8-bit data field,
PPDATA/PPCDATA[7:0], that defines the logic level on the parallel port data pins, PPD[7:0].

Register Address R/W Description Reset Value

PPDATA 0x60 R/W Parallel port data register 00h

PPCDATA 0x61 R/W Parallel port command data register 00h

[7:0] This is an 8-bit read/write field. When PPCONL[7] is zero and this field (PPDATA or PPCDATA) is
read, this field provides the logic level on the PPD[7:0], which is latched when the strobe input from
the host (nSTROBE) transits from high to low level. (The PPCONL[7] bit determines the forward or
reverse dataflow direction of the parallel port.) When PPCONL[7] is one and this field(PPDATA or
PPCDATA) is written, the value of this field determines the logic level on the PPD[7:0].

During the ECP forward data transfers, the logic level of the nAUTOFD is read from PPINTPNDH[1]
or [0], command-byte received or data-byte received. The nAUTOFD indicates whether the data in
the PPDATA/PPCDATA is a data-byte or a command-byte.

When read PPDATA or PPCDATA,
command-byte: PPINTPND[1:0] = '10b'
data-byte: PPINTPND[1:0] = '01b'

To read the nAUTOFD from the PPINTPNDH[1] or [0] the following two conditions are required:
1) nSTROBE has transited from high level to low level.
2) The data bus output enable bit in the PPCONL[7] is 0.

When the ECP data transfers are in reverse and the data bus output enable bit in the parallel port
control register, PPCONL[7] is 1, the logic level of BUSY pin is written from PPDATA or PPCDATA.
The BUSY pin indicates that the data written in the PPDATA is a data-byte, or the data written in the
PPCDATA is a command-byte.

BUSY pin
0 = Command-byte in the PPCDATA[7:0]
1 = Data-byte in the PPDATA[7:0]

PARALLEL PORT INTERFACE S3FB42F

19-6

PARALLEL PORT STATUS CONTROL AND STATUS REGISTER

The parallel port status control and status register, PPSCON, PPSTAT, contain eleven bits to control the parallel
port interface signals. These eleven bits consist of four read-only bits to read the logic level of the host input pins,
two read-only bits to read the logic level on the BUSY and nACK output pins, and five read/write bits to control the
logic levels on the printer output pins by software for handshaking control

Register Address R/W Description Reset Value

PPSCON 0x62 R/W Parallel port status control register 08h

[0] nFAULT control Setting this bit drives the nFAULT output to low level; clearing it drives
(nPeriphRequest) the signal high level on the external nFAULT pin. The nFAULT informs

the host of a fault condition in the printer engine.

[1] SELECT control Setting this bit to one drives the SELECT output to High level;
(Xflag) clearing it to zero drives the signal low on the external SELECT pin.

The SELECT informs the host of a response from the printer engine.

[2] PERROR control Setting this bit drives PERROR output to high level; clearing it drives the
(nACKReverse) signal low level on the external PERROR pin. The PERROR informs the

host that a paper error has occurred in the engine.

[3] BUSY control Setting this bit drives the external BUSY output to high level by force.
(PeriACK) This disables hardware handshaking. When this bit is zero, the external

BUSY output is the internal BUSY signal.

[4] nACK control Setting this bit drives the external nACK output to low level by force.
(PeriphCLK) This is generally done to disable hardware handshaking. When this bit

is zero, the external nACK is the internal nACK signal.

S3FB42F PARALLEL PORT INTERFACE

19-7

Register Address R/W Description Reset Value

PPSTAT 0x63 R/W Parallel port status register 3Fh

[0] BUSY status This read-only bit reflects the logic level on the external BUSY output
(PeriphACK) pin. After a system reset, the PPSCON[3] is "1", which results in one, the

value of PPSTAT[0] being "1". So, for compatibility mode operation,
you must clear the PPSCON[3] by software beforehand so as to enable
the hardware handshaking.

[1] nACK status This read-only bit reflects the level read on the external nACK output
(PeriphCLK) pin. After a system reset, PPSTAT[1] is "1". When the PPSCON[4] is set

to be high, this bit is forced to be low and then the internal nACK is
ignored.

[2] nSLCTIN status This read-only bit reflects the level read on the nSLCTIN input pin after
(P1284) synchronization and optional digital filtering when the digital filtering

enable bit, PPCONL[2:3], are not set to zero.

[3] nSTROBE status This read-only bit reflects the level read on the nSTROBE input pin after
(HostCLK) synchronization and optional digital filtering when the digital filtering

enable bit, PPCONL[2:3], are not set to zero.

[4] nAUTOFD status This read-only bit reflects the level read on the nAUTOFD input pin after
(HostACK) synchronization and optional digital filtering when the digital filtering

enable bit, PPCONL[2:3], are not set to zero.

[5] nINIT status This read-only bit reflects the level read on the nINIT input pin after
(nReverseRequest) synchronization and optional digital filtering when the digital filtering

enable bit, PPCONL[2:3], are not set to zero.

PARALLEL PORT INTERFACE S3FB42F

19-8

PARALLEL PORT CONTROL REGISTER

The parallel port control register, PPCON, is used to configure the PPI operations, such as handshaking, digital
filtering, operating mode, data bus output and abort operations. The PPCONH[6:4] bits are read-only.

Register Address R/W Description Reset Value

PPCONL 0x64 R/W Parallel port control low register 00h

[0] Software reset Setting the software reset bit causes the PPIC's handshaking control c to
immediately terminate the current operation and return to software Idle
state. When PPCONL[0] is set to "1", the full status bit, PPCONH[5],
is automatically cleared to "0".

[1] PPIC enable Setting this bit enables PPIC mode. Clearing this bit disable PPIC
operation and enter power saving mode.

[3:2] Digital filter enable Setting this bit enables digital filtering on all four host control signal
inputs: nSELECTIN, nSTROBE, nAUTOFD, and nINIT.
00: Disable
01: 2 Step filtering
10: 3 Step filtering
11: 3 Step filtering

[6:4] Mode selection This three-bit value selects the current operating mode of the parallel
port interface
x00:Software mode
x01:Compatibility mode
010: Forward ECP mode
110: Reverse ECP mode

Software mode : disables all hardware handshaking so that handshaking
 can be performed by software.

Compatibility mode : Compatibility mode hardware handshaking can be
enabled during a forward data transfer. You can change the mode
selection at any time, but if a Compatibility mode operation is currently
in-progress, it will be completed as a normal operation. Mode should be
changed from Compatibility mode to another mode only when BUSY is
high level. This ensures that there is no parallel port activity while the
parallel port is being re-configured.

ECP mode: ECP mode hardware handshaking support can be enabled
during forward or reverse data transfers. You can change the mode

selection at any time, but if an ECP cycle is currently in progress, it will be completed
as a normal operation.

S3FB42F PARALLEL PORT INTERFACE

19-9

[7] Data bus output enable The parallel port data bus output enable bit performs two functions:
1) It controls the state of the tri-state output drivers.
2) It qualifies the data latching from the output drivers into the parallel
 port data register's data field, PPDATA[7:0].

When PPCONL[7] is "0", the parallel port data bus lines, PPD[7:0] are
disabled. This allows data to be latched onto the PPDATA or
PPCDATA's data field. When PPCONL[7] is "1", the PPD[7:0] is enabled
and data is prevented from being latched onto the PPDATA or
PPCDATA's data field. In this frozen state, the data field is unaffected by
the transition of nSTROBE.

The setting of the abort bit, PPCONH[3], affects the operation of the
data bus output enable bit, PPCONL[7]. If PPCONH[3] is "1", the
nSELECTIN must remain high to allow PPCONL[7] to be set, or to
remain set. If PPCONL[7] is "1" and nSELECTIN goes low, the
PPCONL[7] is cleared and setting this bit will have no effect.

PARALLEL PORT INTERFACE S3FB42F

19-10

Register Address R/W Description Reset Value

PPCONH 0x65 R/W Parallel port control high register 00h

[0] –

[1] –

[2] Abort The abort bit causes the parallel port interface controller to use
nSELECTIN to detect the time when the host suddenly aborts a reverse
transfer and returns to compatibility mode; If PPCONH[2] is "1", the low
level on nSELECTIN causes the parallel port data bus output enable bit
PPCONL[7] to be cleared, and the output drivers for the data bus lines
PPD[7:0] to be tri-stated.

[3] Error cycle The error cycle bit is used to execute an error cycle in compatibility
mode. When PPCONH[3] is set to "1", the BUSY status bit in the parallel
port status register, PPSTAT[0], is set to "1". This immediately causes
the S3FB42F to drive the BUSY to high level. If you set the error
cycle bit while a compatibility mode handshaking sequence is in
progress, the PPSTAT[0] will remain to be set to one beyond the end of
the current cycle.

The error cycle bit does not affect the nACK pulse if it is already active,
but it will delay an nACK pulse if it is about to be generated.
When PPCONH[3] is "1", software can set or clear the parallel port
status register control bits: PPSCON[0] (nFAULT control), PPSCON[1]
(SELECT control), and PPSCON[2] (PERROR control).
When PPCONH[3] is cleared to "0", the parallel port interface controller
generates a delayed nACK pulse and makes BUSY low active to finish
the error cycle.

[4] –

[5] Data latch status If a data is latched to PPDATA, then this bit is set to '1'. It is
automatically cleared to zero when the PPDATA is read in software,
compatibility and forward ECP mode.

[6] Data empty In reverse ECP mode, this bit specifies the PPDATA is empty.
It is automatically cleared to zero while the PPDATA is written
with a new data.

S3FB42F PARALLEL PORT INTERFACE

19-11

PARALLEL PORT INTERRUPT EVENT REGISTERS

The two parallel port interrupt event registers, PPINTCON and PPINTPND, control interrupt-related events for the
input signal originating from the host, as well as data reception, command reception, and invalid events. The parallel
port interrupt control register, PPINTCON, contains the interrupt enable bits for each interrupt event that is indicated
by the PPINTPND status bits. If the PPINTCON enable bit is "1", the corresponding event causes the S3FB42F CPU
to generate an interrupt request. Otherwise, no interrupt request is issued.

NOTE

To clear the corresponding pending bit to zero after a interrupt service routine, write the pending bit to zero.
The value of the pending bit is changed from one to zero automatically.

Register Address R/W Description Reset Value

PPINTCONL 0x66 R/W Parallel port interrupt control low register 00h

PPINTPNDL 0x68 R/W Parallel port interrupt pending low register 00h

[0] nSLCTIN Low-to-High The bit of PPINTPND is set when a Low-to-High transition on Nslctin
(P1284) is detected. If the corresponding enable bit is set in the PPINTCON

register, an interrupt request is generated.

[1] nSLCTIN High-to-Low The bit of PPINTPND is set when a High-to-Low transition on nSLCTIN
is detected. If the corresponding enable bit is set in the PPINTCON
register, an interrupt request is generated.

[2] nSTROBE Low-to-High The bit of PPINTPND is set when a Low-to-High transition in the
(HostCLK) nSTROBE is detected. If the corresponding enable bit is set in the

PPINTCON register, an interrupt request is generated.

[3] nSTROBE High-to-Low The bit of PPINTPND is set when a High-to-Low transition in the
nSTROBE is detected. If the corresponding enable bit is set in the
PPINTCON register, an interrupt request is generated.

[4] nAUTOFD Low-to-High The bit of PPINTPND is set when a Low-to-High transition in the
(HostACK) nAUTOFD is detected. If the corresponding enable bit is set in the

PPINTCON register, an interrupt request is generated.

[5] nAUTOFD High-to-Low The bit of PPINTPND is set when a High-to-Low transition in the
nAUTOFD is detected. If the corresponding enable bit is set in the
PPINTCON register, an interrupt request is generated.

[6] nINIT Low-to-High The bit of PPINTPND is set when a Low-to-High transition in the nINIT
(nReverseRequest) is detected. If the corresponding enable bit is set in the PPINTCON

register, an interrupt request is generated.

[7] nINIT High-to-Low The bit of PPINTPND is set when a High-to-Low transition in the nINIT
is detected. If the corresponding enable bit is set in the PPINTCON
register, an interrupt request is generated.

PARALLEL PORT INTERFACE S3FB42F

19-12

Register Address R/W Description Reset Value

PPINTCONH 0x67 R/W Parallel port interrupt control high register 00h

PPINTPNDH 0x69 R/W Parallel port interrupt pending high register 00h

[0] Data received The bit of PPINTPND is set when data is latched into the PPDATA
register's data field. This occurs during every High-to-Low transition of
nSTROBE when the parallel port data bus enable bit, PPCONL[7], is "0".
An interrupt is also generated if the ECP-with-RLE mode is enabled,
and if a data decompression is in progress.

[1] Command received The bit of PPINTPND is set when a command byte is latched into the
PPDATA register data field. If ECP-without-RLE mode is enabled,
the command received interrupt is issued whenever a run-length or
channel address is received. If ECP-with-RLE mode is enabled, the
command received interrupt is issued only when a channel address is
received. This event can be posted only when ECP mode is enabled.
The corresponding enable bit in the PPINTCON register determines
whether or not an interrupt request will be generated when a command
byte is received.

[2] Invalid transition The bit of PPINTPND is set when nSLCTIN transitions high-to-low in the
middle of an ECP forward data transfer handshaking sequence.
This interrupt is issued if nSLCTIN is low when nSTROBE is low or when
BUSY is high. This event can be detected only when ECP mode is
enabled and should return to compatibility mode.

[3] Transmit Data Empty The bit of PPINTPND is set to one when the transmit data register
(=PPDATA) can be written during an ECP reverse data transfers

PARALLEL PORT ACK WIDTH REGISTER

This register contains the 8-bit nACK pulse width field. This value defines the nACK pulse width whenever the parallel
port interface controller enters Compatibility mode, that is, when the parallel port control register mode bits,
PPCONL[5:4], are set to "01". The nACK pulse width is selectable from 0 to 255 XIN periods.

The nACK pulse width can be modified at any time and with any PPIC operation mode selection, but it can only be
used during a compatibility handshaking cycle. If you change the nACK width near the end of a data transfer (when
nACK is already low), the new pulse width value does not affect the current cycle. The new pulse width value would
be used at the start of the next cycle.

Register Address R/W Description Reset Value

PPACKD 0x6A R/W Parallel port acknowledge width data register xxh

The value in the 8-bit field defines the nACK pulse width when Compatibility mode is enabled (PPCONL[5:4]=01).
The period of the nACK pulse can range from 0 to 255 XIN with 2 XIN steps.

S3FB42F 8-BIT ANALOG-TO DIGITAL CONVERTER

20-1

20 8-BIT ANALOG-TO-DIGITAL CONVERTER

OVERVIEW

The S3FB42F has six 8-bit resolution A/D converter input (ADC0 to ADC5). The 8-bit A/D converter (ADC) module
uses successive approximation logic to convert analog levels entering at one of the six input channels to equivalent
8-bit digital values (ADDATAH, ADDATAL). The analog input level must lie between the AVREF and AVSS values. The
A/D converter has the following components:

• Analog comparator with successive approximation logic

• D/A converter logic (resistor string type)

• ADC control register (ADCON)

• Six multiplexed analog data input pins (ADC0-ADC5)

• 8-bit A/D conversion data output register (ADDATAH, ADDATAL)

• 6-bit digital input port

• AVREF and AVSS pins

FUNCTION DESCRIPTION

To initiate an analog-to-digital conversion procedure, you write the channel selection data in the A/D converter control
register ADCON to select one of the six analog input pins (ADCn, n = 0-5) and set the conversion start or enable bit,
ADCON.0. The conversion result data load to ADDATA register.

During a normal conversion, A/D C logic initially sets the successive approximation register to 80H
(the approximate half-way point of an 8-bit register). This register is then updated automatically during each
conversion step. The successive approximation block performs 8-bit conversions for one input channel at a time.
You can dynamically select different channels by manipulating the channel selection bit value (ADCON.6-4) in the
ADCON register. To start the A/D conversion, you should set a the enable bit, ADCON.0. When a conversion is
completed, ADCON.3, the end-of-conversion (EOC) bit is automatically set to 1 and the result is dumped into the
ADDATA register where it can be read. The A/D converter then enters an idle state. Remember to read the contents
of ADDATA before another conversion starts. Otherwise, the previous result will be overwritten by the next conversion
result.

NOTE

Because the A/D converter has no sample-and-hold circuitry, it is very important that fluctuation in the
analog level at the ADC0-ADC5 input pins during a conversion procedure be kept to an absolute minimum.
Any change in the input level, perhaps due to noise, will invalidate the result. If the chip enters to STOP or
IDLE mode in conversion process, there will be a leakage current path in A/D block. You must use STOP or
IDLE mode after A/D C operation is finished.

8-BIT ANALOG-TO DIGITAL CONVERTER S3FB42F

20-2

CONVERSION TIMING

The A/D conversion process requires 4 steps (4, 16, 32 or 64 clock edges) to convert each bit and 2 steps to setup
the A/D Converter block. Therefore, a total of 14 steps are required to complete an 8-bit conversion. One step can be
1 clock, 4 clocks, 8 clocks or 16 clocks by software.

With an 20 MHz CPU clock frequency, one clock cycle is 50 ns. The conversion rate is calculated as follows:

Start 2 step + (1 step/bit × 10 bits) + EOC 2 step = 56 clocks, where 1 step = 4 clocks

To get the correct A/D conversion result data, A/D conversion time should be longer than 20µs whatever oscillation
frequency is used.

Conversion
Result (ADDATA)

-

+

AVREF

AVSS

Analog
Comparator

8-bit D/A
Converter

ADCON.0
(AD/C Enable)

ADCON.0
(AD/C Enable)

To Data Bus

Input Pins
ADC0-ADC5
(P5.0-P5.5)

M

U

X

ADCON.4-.6
(Input Pin Select)

To ADCON.3
(EOC Flag)

fxx/n
(n = 1, 4, 8, 16)

Clock Select

To ADCON.2 - .1

Successive
Approximation

Logic & Register

Figure 20-1. A/D C Block Diagram

S3FB42F 8-BIT ANALOG-TO DIGITAL CONVERTER

20-3

A/D C SPECIAL REGISTERS

A/D C CONTROL REGISTERS

The A/D C control registers, ADCON is used to control the operation of the six 8-bit A/D C channel.

Register Address R/W Description Reset Value

ADCON 0x54 R/W A/D C control register 00h

A/D Converter control register has the following control bit settings:

[0] ADSTR 0: A/D conversion is disabled.
1: A/D conversion begins and is cleared after conversion.

[2:1] Select the Conversion Speed 00: Step clock = fxx/16.
01: Step clock = fxx/8.
10: Step clock = fxx/4.
11: Step clock = fxx/1.

[3] EOC (read-only) 0: Conversion is not completed.
1: This flag is set after conversion.

[6:4] A/D C input select 000: select a ADC0
001: select a ADC1
010: select a ADC2
011: select a ADC3
100: select a ADC4
101: select a ADC5

[7] Not used.

A/D CONVERTER DATA REGISTERS

The A/D Conversion data high register, ADDATA, contains a conversion result value that specify analog input
channel.

Register Address R/W Description Reset Value

ADDATA 0x55 R A/DC Conversion Result data register xxh

A/D Converter data register has the following bits:

[7:0] A/D C Data This register has the bit 7 to bit 0 of an A/D conversion result value.

8-BIT ANALOG-TO DIGITAL CONVERTER S3FB42F

20-4

NOTES

S3FB42F I2C-BUS INTERFACE

21-1

21 I2C-BUS INTERFACE

OVERVIEW

The S3FB42F internal IIC bus (I2C-bus) controller has the following important features:

— It requires only two bus lines, a serial data line (SDA) and a serial clock line (SCL). When the I2C-bus is free,
both lines are High level.

— Each device that is connected to the bus is software-addressable by a multi master using a unique address.
Slave relationships on the bus are constant. The bus master can be either a master-transmitter or a master-
receiver. The I2C bus controller supports multi master mode.

— It supports 8-bit, bi-directional, serial data transfers.

— The number of ICs that you can connect to the same I2C-bus is limited only by the maximum bus capacitance of
400 pF.

Figure 21-1 shows a block diagram of the S3FB42F I2C-bus controller.

SDA

IICPS
(Prescaler Reg.)

Serial Clock
Prescaler

IIC-Bus
Control Logic

IICCON IICSR

IICDATA
(Shift Data Reg.)

IICADDR
(Address Reg.)

IntPend

fxx
SCL

Control

Data
Control

SCL

Figure 21-1. I2C-Bus Block Diagram

I2C-BUS INTERFACE S3FB42F

21-2

FUNCTIONAL DESCRIPTION

The S3FB42F I2C bus controller is the master or slave of the serial I2C-bus. Using a prescaler register, you can
program the serial clock frequency that is supplied to the I2C bus controller. The serial clock frequency is calculated
as follows:

fxx/(4 × (prescaler register (IICPS) value + 1)): IICPS must not be 00h.

In master Tx mode, to start a I2C-bus arbitration, the programmer writes a slave address to the data register,
IICDATA and “0x3D” to the control register, IICCON. The bus controller then generates Start condition and shifts the
7-bit slave address.

The receiver sends an acknowledge by pulling the SDA line from High to Low during a master SCL pulse. After
acknowledg3e cycle, the status register, IICSR, is updated corresponding arbitration result and interrupt request is
activated if interrupt is enable.

After sensing interrupt or polling the status register, the programmer can continue the data shift operation. For the
data arbitration, the programmer writes the data to the data register, IICDATA and writes “0x3E” to the control
register. For the consecutive read/write operations, you must set the ACK bit in the control status register.

For read operations, you can read the data after you have confirmed the pending bit in the interrupt pending register.
To signal the end of the read operation, you can reset the ACK bit to inform the receive/transmitter when the last
byte is to be written/read.

Following a read/write operation, you set IICCON[1:0] to “3” to generate a Stop code. If you want to complete another
data transfer before issuing the Stop code, you can send the Start code using the Repeat Start command (with
IICCON[1:0] = “1”). When the slave address and read/write control bit have been sent, and when the receive
acknowledge ahs been issued to control SCL timing, the data transfer is initiated.

S3FB42F I2C-BUS INTERFACE

21-3

I2C SPECIAL REGISTERS

MULTI-MASTER I2C-BUS CONTROL REGISTER

The I2C-bus control register, IIICCON, is used to control the I2C module.

Register Address R/W Description Reset Value

IICCON 0xB8 R/W I2C-Bus control register 00h

[1:0] I2C-bus arbitration control This two-bit value controls I2C operations.
00: No interrupt, pending

01: Generate start condition and shift address byte
10: Shift data byte

11: Generate Stop condition

[3:2] I2C-bus Tx/Rx mode selection This two-bit value determines which mode is currently able to
read/write data from/to IICDATA.
00: Slave Rx mode (default)
01: Slave Tx mode
10: Master Rx mode
11: Master Tx mode

[4] I2C-bus acknowledge (ACK) This bit value determines whether I2C-bus enables
enable bit or disables the ACK signal generation.

[5] I2C bus enable bit This bit specifies whether I2C-bus is enabled or disabled.
0: Disable serial Tx/Rx
1: Enable serial Tx/Rx

[6] – –

[7] Reset If '1' is written to this bit, the I2C bus controller is reset to its
initial state (It is not automatically cleared).

I2C-BUS INTERFACE S3FB42F

21-4

MULTI-MASTER I2C-BUS CONTROL/STATUS REGISTER (IICSR)

The multi-master I2C-bus control/status register, ICCSR, four bits, ICCSR.3–ICCSR.0, are read-only status flags.
ICCSR register settings are used to control or monitor the following I2C-bus functions (see Figure):

— I2C-bus busy status flag

— Failed bus arbitration procedure status flag

— Slave address/address register match or general call received status flag

— Slave address 00000000B (general call) received status flag

— Last received bit status flag (not ACK = "1", ACK = "0")

Register Address R/W Description Reset Value

IICSR 0xB9 R/W I2C-bus status register 00h

[0] Last-received bit (LRB) status flag IICSR[0] is automatically set to 1 whenever an ACK signal is
(read only) not received during a last bit receive operation. When the last

receive bit is zero, an ACK signal is detected and the
last-received bit status flag is cleared.

[1] General call status flag IICSR[1] is automatically set to 1 whenever '00000000B',
(read only) general call value is issued by the received slave address.

When the Start/stop condition was occurred, IICSR[1]
is cleared.

[2] Master address call status flag IICSR[2] is automatically set to 1 whenever the received slave
(read only) address matches the address value in IICADDR register.

This bit is cleared after Start/stop condition is occurred.

[3] Arbitration status flag IICSR[3] is automatically set to 1 to indicate that a bus
(read only) arbitration has been failed during I2C-bus interface.

The zero of IICSR[3] means okay status for the current
I2C-bus interface.

[4] IIC operation status flag (read) IICSR[4] is automatically set to 1 to indicate that the end of
shifting for byte or stop condition is occurred. This bit is cleared
when IIC operations are activated by writing IICCON.

IIC interrupt source enable (write) In write operation for this bit, this bit value determines that
interrupt is enable or not to indicate the end of shifting for byte
or stop condition is occurred.

0: No interrupt, pending 1: IIC interrupt

[5] IIC-bus busy status (read-only) IICSR[5] indicates that IIC-bus is not busy and the '1' status
means IIC-bus is busy. This bit is set after start condition is
detected and cleared after stop condition is occurred.

[7:6] SCL/SDA digital filter selection Setting this bit enables digital filtering on all two signal inputs:
SCL and SDA.

00: Disable 01: 1 clock period
10: 2 clock period filtering 11: 3 clock period filtering

S3FB42F I2C-BUS INTERFACE

21-5

MULTI-MASTER I2C-BUS TRANSMIT/RECEIVE DATA REGISTER (IICDATA)

In a transmit operation, data that is written to the IICDATA is transmitted serially, MSB first. (For receive operations,
the input data is written into the IICDATA register LSB first.)

The IICCON.5 setting enables or disables serial transmit/receive operations. When IICCON.5 = "1", data can be
written to the an I2C data register. The I2C-bus data register can, however, be read at any time, regardless of the
current IICCON.5 setting.

Register Address R/W Description Reset Value

IICDATA 0xBA R/W I2C-bus data register xxh

[7:0] Data This data field acts as serial shift register and read buffer for interfacing
to the I2C-bus. All read and write operations to/from the I2C-bus are

done via this register. The IICDATA register is a combination of a shift register and a data
buffer. 8-bit parallel data is always written to the shift register, and read from the data buffer. I2C-
bus data is always shifted in or out of the shift register.

LSBMSB

Multi-Master I 2C-Bus Tx/Rx Data Shift Register (IICDATA)
Offset Address: 0x, R/W

8-bit data shift register for I2C-bus Tx/Rx operations:
When IICCON .5 = "1", IICDATA is write-enabled.
You can read the IICDATA value at any time,
regardless of the current IICCON.5 setting.

.7 .6 .5 .4 .3 .2 .1 .0

Figure 21-2. Multi-Master I2C-Bus Tx/Rx Data Register (IICDATA)

MULTI-MASTER I2C-BUS ADDRESS REGISTER (IICADDR)

The address register for the I2C-bus interface, IICADDR, is located at address 0xBB. It is used to store a latched
7-bit slave address. This address is mapped to IICADDR.7–IICADDR.1; bit 0 is not used (see Figure 21-3).

The latched slave address is compared to the next received slave address. If a match condition is detected, and if
the latched value is 00000000B, a general call status is detected.

Register Address R/W Description Reset Value

IICADDR 0xBB R/W I2C-bus address register xxh

I2C-BUS INTERFACE S3FB42F

21-6

LSBMSB

Multi-Master I 2C-Bus Address Register (IICADDR)
Address: 0x8B, R/W

7-bit slave address, latched from the I2C-bus:
When IICCON.5 = "0", IICADDR is write-enabled.
You can read the IICADDR value at any time,
regardless of the current IICCON.5 setting.

.7 .6 .5 .4 .3 .2 .1 -

Not used for the
S3FB41D

Figure 21-3. Multi-Master I2C-Bus Address Register (IICADDR)

Prescaler Register (IICPS)

The prescaler register for the I2C-bus is described in the following table.

Register Address R/W Description Reset Value

IICPS 0xBC R/W I2C-bus Prescaler register xxh

[7:0] Prescaler value This prescaler value is used to generate the serial I2C-bus clock.
The system clock is divided by (4 × (prescaler value + 1)) to make the
serial I2C clock. If the prescaler value is zero, I2C operation may be
worked incorrectly.

PRESCALER COUNTER REGISTER (IICCNT)

The prescaler counter register for the I2C-bus is described in the following table.

Register Address R/W Description Reset Value

IICCNT 0xBD R I2C-bus Prescaler counter register xxh

[7:0] Prescaler counter value This 8-bit value is the value of the prescaler counter. It is read
(in test mode only) to check the counter's current value.

S3FB42F RANDOM NUMBER GENERATOR

22-1

22 RANDOM NUMBER GENERATOR

OVERVIEW

The S3FB42F internal random number generator block has the following features:

— 2 ring oscillators, which run at –33MHz and –8MHz. They operate in a fully asynchronous manner with the CPU
clock and are used as a clock to LFSR8.

— An 8-bit register LFSR8 is a linear feedback shift register, which changes its state with the clock from the ring
oscillators. LFSR8 can serve as a source of the random number generation.

— A 16-bit register LFSR16 is a 16-bit linear feedback shift register, whose coefficients are provided by LFSR8. It
changes its state when the lower byte is read.

— For the maximum flexibility, the programmers can use either LFSR8 or LFSR16 as the random number generator
of their choice. If 16-bit or longer random numbers are required, LFSR16 can be preferred. Otherwise, LFSR8 can
be a better choice.

Figure 22-1 shows a block diagram of the S3FB42F random number generator.

RANDOM NUMBER GENERATOR S3FB42F

22-2

LFSR16[15:8]
(LFSR16H) Write
or LFSR16[15:8]
(LFSR16H) Read

7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RANCON

LFSR8

LFSR16[7:0]
(LFSR16L)

LFSR8
Read or Write

LFSR8 = 0

RANCON
Write

RANCON[0]

LFSR16[15:8]
(LFSR16H)

toggle3

toggle7

toggle2 toggle1

toggle6toggle5toggle4

LFSR16[7:0] Write or
LFSR16[15:8] Read

D
in[7:0]

LFSR8[0]toggle0
LFSR8[1]toggle1
LFSR8[2]toggle2
LFSR8[3]toggle3
LFSR8[4]toggle4
LFSR8[5]toggle5
LFSR8[6]toggle6
LFSR8[7]toggle7
RANCON[2]

toggle0

D
in[7:0]

D
in[7:0]

Ring
Oscillator

7 6 5 4 3 2 1 0

D
in[7:0]

Figure 22 -1. Top Block Diagram of Random Number Generator

S3FB42F RANDOM NUMBER GENERATOR

22-3

FUNCTIONAL DESCRIPTION

The S3FB42F random number generator has 4 registers, LFSR16[15:8] (LFSR16H), LFSR16[7:0] (LFSR16L),
LFSR8, and RANCON, which are addressed by ABH, AAH, A9H, and A8H, respectively. For better randomness, it
has two ring oscillators, the fast ring oscillator and the slow ring oscillator, which run at ~33MHz and ~8MHz,
respectively.

RANDOM NUMBER CONTROL REGISTER

The random number control register, RANCON, is used to control the random number generator module.

Register Address R/W Description Reset Value

RANCON 0xA8 R/W Control Register for Random Number Generation xxh

[0] LFSR8 Clock Selection or Ring
Oscillator Disable

This bit is used to select the clock source for LFSR8. LFSR8 can
be clocked either by the ring oscillator output or by the access
signals from the core. When this bit is set, the ring oscillator
output signal is tied to high. See the detailed description for LFSR8

0: Core R/W Signals 1: Ring Oscillator

[1] Ring Oscillator Selection The ring oscillator block consists of 2 ring oscillators, which run at
~33MHz and ~8MHz, respectively. This bit multiplexes the two ring
oscillators to the ring oscillator output.

0: Fast Ring Oscillator 1: Slow Ring Oscillator

[2] Polynomial Switch If this bit is clear, the polynomial coefficients of LFSR16 is not
affected by the value of LFSR8. Otherwise, the polynomial
coefficients are determined by the value of LFSR8. Referring to the
top block diagram, this serves as the mask bit for toggle0, toggle1,
…, toggle7.

0: Toggle Bits Mask 1: Toggle Bits On

[3] Test Bit This bit is for Test Purpose. When RANCON[0] is set and the ring
oscillator makes a rising transition, then this is set.

[4] Test Bit This bit is for Test Purpose. When RANCON[0] is set and the ring
oscillator makes a falling transition, then this is set.

[5] Slow Ring Off If this bit value is set, the slow ring oscillator stops.

0: Slow Ring Oscillator Run 1: Slow Ring Oscillator Stop.

[6] Fast Ring Off If this bit value is set, the fast ring oscillator stops.

0: Fast Ring Oscillator Run 1: Fast Ring Oscillator Stop.

[7] – –

RANDOM NUMBER GENERATOR S3FB42F

22-4

RING OSCILLATOR

The ring oscillator block consist of 2 ring oscillators, one of which runs at ~33MHz, which is called “fast ring
oscillator” and the other runs at ~8MHz, which is called “slow ring oscillator”. The frequencies of the ring oscillators
are determined by the gate size as well as the number of gates in the oscillator loop. Depending on a specific
application, programmers can select the fast or the slow ring oscillators, which can serve the application best. Since
the ring oscillators run totally asynchronously with the master clock of the chip, they can clock LFSR8m which, in
turn, can be used as an 8-bit random number generator. The ring oscillators are laid out to be sensitive to fabrication
conditions, the exact frequencies of the ring oscillators can vary from a chip to another. Each ring oscillator can be
stopped by setting the corresponding control bit, Fast Ring Off or Slow Ring Off, in order to save power consumption.

Ring Oscillator Selection
(RANCON[1])

Ring Oscillator Disable
(RANCON[0])

1

0Fast RIng Off
(RANCON[6])

Slow RIng Off
(RANCON[5])

Figure 22-2. Ring Oscillator Block

S3FB42F RANDOM NUMBER GENERATOR

22-5

LINEAR FEEDBACK SHIFT REGISTER 8 (LFSR8)

LFSR8 is a register for generating 8-bit random numbers. When RANCON[0] (LFSR8 Clock Selection) is set,
LFSR8 is linear feedback shifted at the rising edge of the ring oscillator output. When RANCON[0] is clear, the core
(CalmRISC) can parallel load the data through the input data bus (Din[7:0]) by writing the data to the address 0x92h.
Also the core can read the contents of LFSR8 by reading the address 0xA9, regardless of the value of RANCON[0].
Note that when the core reads in the contents of LFSR8, a single linear feedback shift operation is performed right
after the read operation if RANCON[0] = 0.

Register Address R/W Description Reset Value

LFSR8 0xA9 R/W 8-bit linear feedback shift register xxh

LFSR8[7:0] When RANCON[0] = 1, a linear feedback shift operation is performed at the rising
edge of the ring oscillator output. In this case, the core (CalmRISC core) cannot write
data into LFSR8.

When RANCON[0] = 0, the core can write data into LFSR8 by a load instruction to
the address 0xA9. A read operation on LFSR8 is automatically followed by a linear
feedback shift operation.

NOTE:
When RANCON[0] = 1, a write operation by the core has no effect and a linear feedback
operation does not automatically ensue after a core read operation.

LINEAR FEEDBACK SHIFT REGISTER 16 (LFSR16)

LFSR16 is a 16-bit linear feedback shift register, which can be parallel loaded through a core write operation or linear
feedback shifted by a core read operation on LFSR[15:8]. The polynomial coefficients of LFSR is determined by the
value of LFSR8, only when RANCON[2](Polynomial Switch) is set. Otherwise, the polynomial coefficient is fixed
such that LFSR16 performs a simple rotate operation.

Register Address R/W Description Reset Value

LFSR16[15:8]
(LFSR16H)

0xAB R/W 16-bit linear feedback shift register xxh

LFSR16[7:0]
(LFSR16L)

0xAA R/W xxh

RANDOM NUMBER GENERATOR S3FB42F

22-6

LFSR16[15:8]
and LFSR16[7:0]

LFSR16H[15:8] and LFSR16L[7:0] can be individually read and loaded. A linear
feedback shift operation is performed on LFSR16[15:0] right after LFSR16H[15:8] is
read. The linear feedback shift operations follow the rule below:

RANCON[2]=0 A simple rotate operation is executed.
LFSR16[15] = LFSR16[0]
LFSR16[14] = LFSR16[15]
 • • •
LFSR16[0] = LFSR16[1]

RANCON[2]=1 A linear feedback operation is executed.
LFSR16[15] = (toggle0&LFSR16[2])^(toggle1&LFSR16[3])^
 (toggle1&LFSR16[5])^(toggle1&LFSR16[9])^
 LFSR16[0]
LFSR16[14] = LFSR16[15]
LFSR16[13] = toggle4^ LFSR16[14]
LFSR16[12] = toggle5^ LFSR16[13]
LFSR16[11] = LFSR16[12]
LFSR16[10] = toggle6^ LFSR16[11]
LFSR16[9] = LFSR16[10]
LFSR16[8] = LFSR16[9]
LFSR16[7] = LFSR16[8]
LFSR16[6] = toggle7^ LFSR16[7]
LFSR16[5] = LFSR16[6]
LFSR16[4] = LFSR16[5]
LFSR16[3] = LFSR16[4]
LFSR16[2] = LFSR16[3]
LFSR16[1] = LFSR16[2]
LFSR16[0] = LFSR16[1]
Where
toggle0 = LFSR8[0]&RANCON[2]
 :
 :
toggle7 = LFSR8[7]&RANCON[2]

S3FB42F USB

23-1

23 USB

USB PERIPHERAL FEATURES

Table 23-1. General USB Features

Complete USB Specification yes

On-chip USB transceivers yes

Automatic transmit/receive FIFO management yes

Suspend/resume yes

USB rate (full speed) 12 Mbps

USB interrupt vectors yes

Table 23-2. General Function Features

Control Endpoint 1

Data endpoints 3

FIFO sizes
Endpoint 0
Endpoint 1
Endpoint 2
Endpoint 3

16 bytes
32 bytes
64 bytes
64 bytes

Direction of data endpoints In/Out

Supported transfer of data endpoints Interrupt/Bulk/Isochronous transfer

FUNCTIONAL SPECIFICATION

— Power Management

— General purpose Full Speed Controller

— Each data endpoints support interrupt, bulk and isochronous transfer

— Protocol handling in hardware

— Built-in Full-Speed tranceiver

USB S3FB42F

23-2

The basic blocks are the Serial Interface Engine (SIE), MCU Interface Unit (MIU), Function Interface Unit (FIU) and
SIE Interface Unit (SIU).

USB MODULE BLOCK DIAGRAM

PLL
Block Serial

Interface
Engine
(SIE)

SIE
Interface

Unit
(SIU)

Funtion
Interface Unit

(FIU)

MCU Interface
Unit

 (MIU)

Power Control

MCU

Transceivers
(XCVR)

48 MHz

Up Stream Port

PWR

D-

D+

Control/Status

Figure 23-1. USB Module Block Diagram

S3FB42F USB

23-3

FUNCTION DESCRIPTION

Transceivers (XCVR)

The transceiver consists of a differential receiver, two single ended receivers and two drivers. That is capable of
transmitting and receiving data at 12 Mbit/sec and 1.5 Mbit/sec meeting the USB requirements.

Serial Interface Engine (SIE)

The Serial Interface Engine implements the protocol layer of the USB. It does the clock recovery, error checking,
data conversion between serial and parallel data, do the handshake on the USB bus if the packet was directed to it,
bus timeout if response from the host is late, and all other USB protocol related functions.

It consists of Phase Locked Loop (PLL) for clock recovery from the incoming data, CRC checker and generator, bit
stuff and bit removal logic, NRZI encoder/decoder, shift register for serial/parallel conversion, PID decoder, data
toggler and sync detect logic.

SIE Interface Unit (SIU)

The SIE Interface Unit interfaces with SIE to get the parallel data and pass on to the FIU. Other important function of
the SIU is to compare the device and endpoint address in the token packet with the valid device and endpoint
addresses from the embedded function, and generate a address valid signal to the SIE so it can complete the
handshake to FIU so they can get started waiting for the data phase.

Function Interface Unit (FIU)

Function Interface Unit consists of Endpoint0 and three additional endpoints for the embedded function. The
Endpoint0 logic consists of 16 byte bi-directional FIFO and all the control logic necessary to interface with the SIU
on one side and with the MCU interface logic on the other side. The control logic keeps track of data toggle bit in a
multiple packet transaction and resend of the data when the request is retried by the host. It handles the setting and
clearing of the endpoint stall bit. The OUT/SETUP data from the FIFO is read by the MCU interface and data for the
IN is loaded into the FIFO by MCU interface.

The three additional endpoints are programmable as In or Out endpoint, and they can be interrupt, bulk or
isochronous types. Each endpoint consists of 32, and 64 byte bi-directional FIFOs used in one direction only with
direction programmed via a control bit in their respective CSR register. The data transfers between the MCU and the
FIFOs are controlled by setting/clearing bits in the CSR. Interrupt may be generated on occurrence of some
significant events and this interrupt can be disabled by the firmware.

MCU Interface Unit (MIU)

This block of logic will allow the MCU to interface to the FIU units. This block will handle the MCU timing, address
decoding and data multiplexing.

USB S3FB42F

23-4

Suspend/Resume:

The suspend timer is used to detect inactivity on the upstream port. If no SOF is received for more than 3 ms device
enters a suspend state and SUSPEND signal is asserted. On detecting SUSPEND, STOP_CLK signal can be
asserted by the MCU (or external hardware) to stop the clock in the USB block.

When resume is detected by the upstream port control logic the SUSPEND signal is removed and suspend state is
reset at the end of resume.

MCU can also do a remote wakeup by asserting RESUME_IN to the USB block.

MCU Programming:

MCU firmware need to support the Function Unit completely, all the traffic related to the embedded port will be
relayed to the MCU by the USB block.

The Host commands supported by the Function Unit will depend on the device firmware is implementing e.g. in
monitor application HID class besides the required standard commands need to be supported.

The USB block presents number of registers to the MCU for controlling, monitoring and data transfers.

S3FB42F USB

23-5

USB FUNCTION REGISTERS DESCRIPTION

Table 23-3. USB Function Registers Description

Register Name ADDR R/W/C Description

FUNADDR 80H R/W Function Address Register

PWRMAN 81H R/W Power Management Register

FRAMELO 82H R Frame Number LO Register

FRAMEHI 83H R Frame Number HI Register

INTREG 84H R/W Interrupt Pending Register

INTENA 85H R/W Interrupt Enable Register

EPINDEX 86H R/W Endpoint Index Register

EPDIR 89H W Endpoint Direction Register

INCSR 8AH R/W IN Control Status Register

OUTCSR 8BH R/W OUT Control Status Register

INMAXP 8CH R/W IN MAX Packet Register

OUTMAXP 8DH R/W OUT MAX Packet Register

WRTCNTLO 8EH R/W Write Counter LO Register

WRTCNTHI 8FH R/W Write Counter HI Register

EP0FIFO 90H R/W Endpoint 0 FIFO Register

EP1FIFO 91H R/W Endpoint 1 FIFO Register

EP2FIFO 92H R/W Endpoint 2 FIFO Register

EP3FIFO 93H R/W Endpoint 3 FIFO Register

USBENA 9EH R/W USB Enable Register

USB S3FB42F

23-6

USB RELEATED REGISTERS

Some of the registers in the USB function unit are similar, specially pertaining to the endpoints. Hence the
description of those registers will be presented only once here in the USB Related Registers to avoid duplication and
avoid keep both sets updated.

Function Address Register

Register Address R/W Description Reset Value

FUNADDR 0x80 R/W Function address register 00h

At reset the address is 00h. After the SET_ADDRESS is received by the MCU, it should load the address received
into this register. This register is enabled for address comparison after the "Status" phase of the SET_ADDRESS
control transfer. This is so that the status IN packet which will still have "0" address can to be recognized for this
embedded function by the hardware in the SIU. This register should be loaded before setting DATAEND and clearing
OUTPKTRDY in the EP0 CSR.

This register is cleared by the core when port reset is received from the host for the embedded port or when
USB_RESET has been received.

LSBMSB

Function Address Register (FUNADDR)
80H, R/W, Reset: 00h

Not used USB device address

.7 .6 .5 .4 .3 .2 .1 .0

Figure 23-2. Function Address Register

S3FB42F USB

23-7

Power Management Register

This Register is used for power management in the function controller core.

Register Address R/W Description Reset Value

PWRMAN 0x81 R/W Power Management register 00h

SUSPEND: When the function receives a suspend signaling, the function controller core sets this bit. This also
generates an interrupt to the microcontroller. Upon seeing this bit set, the microcontroller can store its internal
register and enter suspend mode, disabling the clock of the fucntion controller core.

UC_RESUME: When the microcontroller is awakend by keyboard stroke or mouse movement, it starts its wakeup
sequence and sets this bit. While this bit is set and the function is in suspend mode, the function generate a resume
signaling as long as this bit for a 10 to 15ms duration to start the resume signaling, After the resume signaling, the
microcontroller can clear both the SUSPEND and SEND_RESUME bits.

USB_RESUME: When the function controller core is in suspend mode and recieves resume signaling this bit is set
and an interrupt is generated. The microcontroller, se this bit set, can start wake-up sequence

USB_RESTN: The function contoller core sets this bit, if reset signaling is received from the host.

LSBMSB

Power Management Register (PWRMAN)
81H, R/W, Reset: 00h

Not used

.7 .6 .5 .4 .3 .2 .1 .0

SUSPEND

UC_RESUME

USB_RESUME

USB_RESTN

Figure 23-3. Power Management Register

USB S3FB42F

23-8

Frame Number Register

Register Address R/W Description Reset Value

FRAMELO 0x82 R Frame number low register 00h

FRAMEHI 0x83 R Frame number high register 00h

On detection of SOF from the host, this register is updated with the frame number received with the SOF packet.

LSBMSB

Frame Number Low Register (FRAMELO)
82H, R, Reset: 00h

.7 .6 .5 .4 .3 .2 .1 .0

Frame number low

Figure 23-4. Frame Number Low Register

LSBMSB

Frame Number High Register (FRAMEHI)
83H, R, Reset: 00h

.7 .6 .5 .4 .3 .2 .1 .0

Not used Frame number high

Figure 23-5. Frame Number High Register

S3FB42F USB

23-9

Interrupt Pending Register

Register Address R/W Description Reset Value

INTREG 0x84 R/W Interrupt pending register 00h

This register is used to indicate the condition that sent and interrupt to the microcontroller.

LSBMSB

Interrupt Pending Register (INTPND)
84H, R/W, Reset: 00h

.7 .6 .5 .4 .3 .2 .1 .0

EP0INT

EP1/IN0

EP1/OUT0

EP2/IN1

SUSPEND
RESUME

EP3/OUT2

EP3/IN2

EP2/OUT1

Figure 23-6. Interrupt Pending Register

USB S3FB42F

23-10

Table 23-4. Interrupt Pending Register

Bit Description USB MCU Condition for Interrupt

EP0
(CONTROL)

W R/C The USB sets this bit under the following conditions.
1.OUT_PKT_RDY is set
2.IN_PKT_RDY is set
3.SENT_STALL is cleared
4.IN_PKT_RDY is cleared

EP1/IN0 W R/C The USB sets this bit under the following conditions.
IN_PKT_RDY is cleared

EP1/OUT0 W R/C The USB sets this bit under the following conditions.
1.Set OUT_PKT
2.Set FORCE_STALL

ENDPT2/IN1 W R/C The USB sets this bit under the following conditions.
IN_PKT_RDY is cleared

EP2/OUT1 W R/C The USB sets this bit under the following conditions.
1.Set OUT_PKT
2.Set FORCE_STALL

EP3/IN2 W R/C The USB sets this bit under the following conditions.
IN_PKT_RDY is cleared

EP3/OUT2 W R/C The USB sets this bit under the following conditions.
1.Set OUT_PKT
2.Set FORCE_STALL

S3FB42F USB

23-11

Interrupt Enable Register

Register Address R/W Description Reset Value

INTENA 0x85 R/W Interrupt enable register 00h

This register serves as interrupt mask register. If the corresponding bit = 0 then the respective interrupt is disabled,
and when = 1 interrupt is enabled. By default upon reset, all the interrupts are disabled. If an interrupt is being
serviced firmware may want to mask the interrupt by masking the corresponding bit(s) or when certain interrupt
status bits are going to be polled.

LSBMSB

Interrupt Enable Register (INTENA)
85H, R/W, Reset: 00h

.7 .6 .5 .4 .3 .2 .1 .0

EP0INT

EP1/IN0

EP1/OUT0

EP2/IN1

SUSPEND
RESUME

EP3/OUT2

EP3/IN2

EP2/OUT1

0: Disable
1: Enable

Figure 23-7. Interrupt Enable Register

USB S3FB42F

23-12

Endpoint Index Register

Register Address R/W Description Reset Value

EPINDEX 0x86 R/W Endpoint index register 00h

If ISO_UPDATE bits is set, Isocronous transaction is enabled in endpoint 1-6. Endpoint 0-3 registers
(IN_CSR,OUT_CSR, CNT, MAXP) share the same address space. To select between them, Endpoint Register is
provided and MCU can load the register. The buffer data is available for each endpoint at unique addresses and are
independent of the FUNC_EP_SEL bits.

LSBMSB

Endpoint Index Register (EPINDEX)
86H, R/W, Reset: 00h

.7 .6 .5 .4 .3 .2 .1 .0

Not used FUNC_EP_SELISO_UPDATE

Figure 23-8. Endpoint Index Register

Endpoint Direction Register

Register Address R/W Description Reset Value

EPDIR 0x89 W Endpoint direction register 00h

If ENDPOINTX DIRECTION Bit is 1, ENDPOINTX is for IN Transaction else ENDPOINTX is for OUT Transaction.

LSBMSB

Endpoint Direction Register (EPDIR)
89H, W, Reset: 00h

Not used

.7 .6 .5 .4 .3 .2 .1 .0

EP1 direction (1: In, 0: Out)

EP2 direction (1: In, 0: Out)

EP3 direction (1: In, 0: Out)

Figure 23-9. Endpoint Direction Register

S3FB42F USB

23-13

ENDP POINT 0 Control Status Register

When EP Select register is equal to zero, Endpoint Out CSR and Endpoint In CSR select the same Endpoint0 CSR.
Reading and writing to either address accesses the same register. This Register has Control and status bits for EP0,
Since control transactions involve both IN and OUT token.

Register Address R/W Description Reset Value

EP0CSR 0x8A, 0x8B R/W EP0 CSR register 00h

EP0 USB MCU Description

OUT_PKT_RDY W R/C Packet received from the Host is ready in the FIFO

IN_PKT_RDY R/C R/W Packet to be sent to the Host is ready in the FIFO

SENT_STALL W R/C USB sent a stall handshake to the Host.

DATA_END R/C R/W set by MCU when last data is loaded in FIFO or no Data is
needed by the command

SETUP_END W R/C Set when current control transaction need to be aborted.

FORCE_STALL R/C R/W Force a stall handshake to the Host(Write Only?)

CLR_OUT_PKT_RDY R W Clear the OUT PKT RDY bit.

CLR_SETUP_END R W Clear the SETUPEND bit.

OUT_PKT_RDY: The GFI sets this bits, whenever it has a valid token packet in the endpt0 FIFO. The micro
controller seeing this bit set, unloads the FIFO and clears this bit. If it is the SETUP phase, then the micro controller
also decodes the SETUP token, and checks to see if it is a valid command and, then clears this bit by doing
CLR_EP0_OUTPKTRDY. At the time of clearing this bit, the micro controller will also set FORCE_STALL if it is a
invalid command, and DATA END if the length of data transfer during data phase is zero (no DATA phase, viz.,
SET_ADDRESS).

IN_PKT_RDY: The micro controller after filling the FIFO with a IN data, set this bit. MCU should wait for this bit to be
cleared by the GFI before loading next IN token. If the function receives a valid IN token, while IN PKT RDY is not set
by the micro controller then the endpt0 state machine issues a NAK and shake.

SENT_STALL: When the hardware decodes an illegal sequence from the host, it may send a STALL on its own to
the USB host. This bit is set to inform the MCU that such an event has happened. This is informational only and
does not cause an interrupt, and it needs to be cleared by the MCU after it has seen it.

USB S3FB42F

23-14

DATA_END: During the DATA phase of a control transfer, after the micro controller has finished loading/unloading the
exact number of bytes as specified in the SETUP phase, it sets this bit.

FORCE_STALL: When an illegal or unsupported command is decoded by the firmware it needs to set this bit.
When set, this bit causes the hardware to return a STALL handshake to the host and is reset by the hardware when
handshake has been sent. This bit should not be set when host does a SET_FEATURE STALL, as this will cause
all transfers to/from endpoint 0 to return STALL. This behavior is different for other endpoints.

Once the micro controller sees this bit set, it should end the SETUP phase, stop loading/unloading the FIFO (NOTE:
Micro Controller does not set DATA_END in this case). The GFI before setting this bit flushes the FIFO, and
prevents micro controller accesses to the FIFO.

CLR_OUTPKT_RDY: Write a *1* to this bit to clear the out packet ready. This bit not sticky, It can be set in
conjunction with other bits.

CLR_SETUP_END: Write a *1* to this bit to clear SETUP_END bit. This again is not sticky and can be set together
with other bits

LSBMSB

EP0 CSR Register (EP0CSR)
8AH, 8BH, R/W, Reset: 00h

.7 .6 .5 .4 .3 .2 .1 .0

OUT_PKT_RDY

IN_PKT_RDY

SENT_STALL

DATA_END

CLR_SETUP_END

CLR_OUT_PKT_RDY

FORCE_STALL

SETUP_END

Figure 23-10. EP0 CSR Register (EP0CSR)

S3FB42F USB

23-15

IN Control Status Register

For Endpoints other than 0, separate in and out registers are available and micro-code should read the
register the endpoint has been programmed for.

Register Address R/W Description Reset Value

INCSR 0x8A R/W IN control status register 00h

ENDPT1CSR BIT USB MCU Description

IN_PKT_RDY R/C R/W When packet has been load into FIFO by MCU and ready for
transfer to the host, write '1' to this bit.

UNDERRUN W R/C USB under-run error during ISO.

FORCE STALL R/C R/W Force a stall handshake to the host.

ISO R R/W if set, indicates an isocronous endpoint.

INTPT_ENDPT R R/W if set, USB sends packet whatever data is there in the FIFO.

IN_PKT_RDY2 R/C R When MCU writes a '1' to bit 0,this bit is always set. It is cleared
by the USB when the data has been transferred to the host.

FIFO_FLUSH R/C W The MCU sets this bit if it intends to flush the IN FIFO.

This bit is cleared by the USB when the FIFO is flushed. The MCU
is interrupted when this happens. If a token is in progress, the USB
waits until the transmissions in complete before the FIFO is
flushed.

CLR_DATA_TOGGLE R W When the MCU writes a 1 to this bit, the data toggle bit is cleared.
This is a write-only.

IN_PKT_RDY: The micro controller after filling the FIFO with a IN data, set this bit. MCU should wait for this bit to be
cleared by the USB before loading next IN token. If the function receives a valid IN token, while IN PKT RDY is not
set by the micro controller then the endpt state machine issues a NAK handshake.

UNDER RUN: This bit is used to isocronous endpoints. It is set if the function times out to an IN token.

ISO: if this bit is set, the endpoint behaves as an isocronous endpoint.

FORCE_STALL: This bit is set by the micro controller. Whenever this bit is set, the function controller issues a
STALL handshake to the host. This bit may be set by the MCU for any fault condition within the function or when
host does a SET_FEATURE (ENDPOINT_STALL). It is cleared by the micro controller when it receives a
CLEAR_FEATURE (ENDPOINT_STALL) command from the host.

IN_PKT_RDY2: When MCU writes a *1* to bit 0 position, this bit always gets set and is cleared by the hardware
when all the packets have been transferred to the host.

USB S3FB42F

23-16

LSBMSB

INCSR Register (INCSR)
8AH, R/W, Reset: 00h

.7 .6 .5 .4 .3 .2 .1 .0

IN_PKT_RDY

UNDERRUN

FORCE_STALL

ISO

CLR_DATA_TOGGLE

FIFO_FLUSH

IN_PKT_RDY2

INPT_ENDPT

Figure 23-11. INCSR Register

S3FB42F USB

23-17

Out Control Status Register

Register Address R/W Description Reset Value

OUTCSR 0x8B R/W OUT control status register 00h

OUT CSR BIT USB MCU Description

OUT_PKT_RDY W R/C Packet received from the host is ready in the FIFO

OVERRUN W R/C This is set only in ISO mode. USB sets this bit when overrun is
detected.

SEND_STALL R/C R/W MCU forces a stall handshake to the host.

FORCE_STALL W R/C USB sets this bit when OUT transaction ended with STALL
handshake.
This happens when:
1. Host sends more then MAXP data.
2. USB detected protocol violation.

ISO R R/W if set, indicates an isocronous endpoint.

DATA_ERR W R/C This is set only in ISO mode. USB sets this bit if at the time of
setting OUTPKTRDY if an error has occurred.

OUT_PKT_RDY: The GFI sets this bits, whenever it has a valid token packet in the endpt1 FIFO. The micro
controller seeing this bit set, unloads the FIFO and clears this bit by doing writing a *1* to this bit. At the time of
clearing this bit, the micro controller should also set SEND_STALL if a stall condition exists.

OVERRUN: This is used for isochronous endpoints only, if an OUT token packet is receved and the out_pkt_rdy from
the pervious transactions is not cleared, the USB discard the data and set this bit to indicate to the micro controller
that an OUT packet was lost.

SEND_STALL: This bit is set by the micro controller. Whenever this bit is set, the function controller issues a
STALL handshake to the host.

This bit may be set by the MCU for any fault condition within the function or when host does a
SET_FEATURE(ENDPOINT_STALL). It is cleared by the micro controller when it receives a
CLEAR_FEATURE(ENDPOINT_STALL) command from the host.

ISO: if this bit is set, the endpoint behaves as an isocronous endpoint.
 If this bit is dear, the endpoint be haves as a bulk or interrupt endpoint.

FORCE_STALL: USB sets this bit when OUT transaction ended with STALL handshake.
This happens when:
1. Host sends more than MAXP data.
2. USB detected protocol violation.

DATA_ERR: For ISO endpoint , HW sets OUT PKT RDY even if the core has a CRC/bit stuffing error. But
DATA_ERR bit is also set in this case. If the microcode is capable of error recovery it can unload the packet, else it
can flush the FIFO, which will clear out the FIFO and reset OUT PKT RDY.

USB S3FB42F

23-18

LSBMSB

OUT Control Status Register (OUTCSR)
8BH, R/W, Reset: 00h

.7 .6 .5 .4 .3 .2 .1 .0

OUT_PKT_RDY

OVERRUN

SEND_STALL

ISO

Not used

DATA_ERR

FORCE_STALL

Figure 23-12. OUT Control Status Register

S3FB42F USB

23-19

IN MAX Packet Register

Register Address R/W Description Reset Value

INMAXP 0x8C R/W IN MAX packet register 00h

NAME USB MCU Description

MAXP R R/W 0000 MAXP = 0
0001 MAXP = 8
0010 MAXP = 16
0011 MAXP = 24
0100 MAXP = 32
0101 MAXP = 40
0110 MAXP = 48
0111 MAXP = 56
1000 MAXP = 64

This register has Maximum packet size for the IN endpoint. The packet is selectable in multiple of 8 byte.

LSBMSB

IN MAX Packet Register (INMAXP)
8CH, R/W, Reset: 00h

.7 .6 .5 .4 .3 .2 .1 .0

Not used MAXP

Figure 23-13. IN MAX Packet Register (INMAXP)

USB S3FB42F

23-20

OUT MAX Packet Register

Register Address R/W Description Reset Value

OUTMAXP 0x8D R/W OUT MAX pocket register 00h

NAME USB MCU Description

MAXP R R/W 0000 MAXP = 0
0001 MAXP = 8
0010 MAXP = 16
0011 MAXP = 24
0100 MAXP = 32
0101 MAXP = 40
0110 MAXP = 48
0111 MAXP = 56
1000 MAXP = 64

This register has Maximum packet size for the OUT endpoint. The packet is selectable in multiple of 8byte.

LSBMSB

OUT MAX Packet Register (OUTMAXP)
8DH, R/W, Reset: 00h

.7 .6 .5 .4 .3 .2 .1 .0

Not used MAXP

Figure 23-14. OUT MAX Packet Register

S3FB42F USB

23-21

EP0 MAX Packet Register

Register Address R/W Description Reset Value

EP0MAXP 0x8C, 0x8D R/W EP0 MAX packet regsiter 00h

NAME USB MCU Description

MAXP R R/W 00 MAXP = 8
01 MAXP = 16

This register has Maximum packet size for the Endpoint0. The packet is selected as either 8 or 16 bytes.

LSBMSB

EP0 MAX Packet Register (EP0MAXP)
8CH, 8DH, R/W, Reset: 00h

.7 .6 .5 .4 .3 .2 .1 .0

Not used MAXP

Figure 23-15. EP0 MAX Packet Register

USB S3FB42F

23-22

Write Counter Register

Register Address R/W Description Reset Value

WRTCNTLO 0x8E R/W Write counter low register 00h

WRTCNTHI 0x8F R/W Write counter high register 00h

when OUT_PKT_RDY is set for EPX, this register maintains the number of bytes in the EPX_OUT_FIFO.

LSBMSB

Write Counter Low Register (WRTCNTLO)
8EH, R/W, Reset: 00h

.7 .6 .5 .4 .3 .2 .1 .0

Write count value

Figure 23-16. Write Counter LO Regsiter

LSBMSB

Write Counter High Register (WRTCNTHI)
8FH, R/W, Reset: 00h

.7 .6 .5 .4 .3 .2 .1 .0

Reserved

Figure 23-17. Write Counter HI Register

S3FB42F USB

23-23

ENDPOINT0 FIFO Register

Register Address R/W Description Reset Value

EP0FIFO 0x90 R/W Endpoint0 FIFO register 00h

This register is used to read the Endpoint0 FIFO. The Endpoint0 is bidirectional and can be accessed either by USB
or the microcontroller. The default direction is from the GFI to the microcontroller. However, oncethe Endpoint0
receives a SETUP token, and it has decoded the direction of the DATA phase of the control transfer to be IN, the
direction of the FIFO is changed.

ENDPOINTX FIFO Register

Register Address R/W Description Reset Value

EP1FIFO 0x91 R/W Endpoint1 FIFO register 00h

EP2FIFO 0x92 R/W Endpoint2 FIFO register 00h

EP3FIFO 0x93 R/W Endpoint3 FIFO register 00h

This register is used to access ENDPOINTX whith the microcontroller.

USB S3FB42F

23-24

USB ENABLE Register

Register Address R/W Description Reset value

USBENA 0x9E R/W USB Enable register 00h

If MCU is reseted by power on reset or external reset, you must manuplate this register to enable USB function.

LSBMSB

USB Enable Register (USB ENABLE)
9EH, R/W, Reset: 00h

Not used USB CLK Enable

.7 .6 .5 .4 .3 .2 .1 .0

USB Block Enable

Figure 23-18 USB Enable Register

S3FB42F EMBEDDED FLASH MEMORY INTERFACE

24-1

24 EMBEDDED FLASH MEMORY INTERFACE

OVERVIEW

The S3FB42F has an on-chip flash ROM instead of masked ROM. The flash ROM is accessed by serial data format
and the type of a half flash. The S3FB42F's embedded 106.5 K-word (213 K-byte) memory has several operating
features below:

The S3FB42F has 6 pins used to read/write the flash memory, VDD/VSS, Reset, VPP, SDAT, SCLK.
The flash memory control block supports tool program mode :

TOOL PROGRAM MODE

The 6 pins are connected to a tool board and programmed by Serial OTP Tool(MDS). 12.5V is supplied into the VPP
pin. The other modules except flash ROM module are at a reset state.

This mode doesn't support sector erase but chip erase and two protection modes. (hard lock protection/ read
protection)

EMBEDDED FLASH MEMORY INTERFACE S3FB42F

24-2

00000H

11FFFH

13FFFH

19FFFH

18800H

 Y-ROM Bank 2
(Flash Data Memory)

17FFFH

15C00H

12000H

 Y-ROM Bank 1
(Flash Data Memory)

 Y-ROM Bank 0
(Flash Data Memory)

 Code Memory
(Flash Program Memory)

6KL Word

9KL Word

8KL Word

72K Word

Blank(7KLW)

Blank(2KLW)

Figure 24-1. Flash memory structure

S3FB42F EMBEDDED FLASH MEMORY INTERFACE

24-3

FLASH MEMORY CONTROL REGISTER

FMCON register controls what is concerned with an internal flash memory including data memory bank selection.

Register Address R/W Description Reset Value

FMCON 0078h R/W Flash memory control register 00h

[0] Data memory bank selection S3FB42F has two banks -bank0, bank1- as data memory in
CalmRISC side. (See chapter2.Address Space for the banks)
This bank selection bit should be controlled before accessing any
address in data memory bank0 or bank1.
0: Bank0
1: Bank1

[2:1] Y-data flash memory bank select This bank selection bit should be controlled before accessing any
address in Y-data flash memory.
00: No Select
01: Select Bank 0
10: Select Bank 1
11: Select Bank 2

[3] Flash memory accessing speed
selection

0: When fxx is under 4MHz
1: When fxx is more than 4MHz

[5:4] I/O area accessing wait cycle
selection

1 cycle or 2 cycles delay time can occurs by setting these bits
when any address in I/O area is accessed.
00: Wait 0 cycle
01: Wait 1 cycle
1x: Wait 3 cycles

[6] ROM accessing wait cycle enable 1 cycle or 2 cycles delay time can occur by setting this bit when
ROM area is accessed.
0: Disable
1: Enable 1 cycle stretch

[6] Flash Data Memory stretch
enable

It is recommended to enable this bit when CALM CPU access to
data flash memory.
0: Disable
1: Enable 1 cycle stretch (don't care when DSP instruction)

EMBEDDED FLASH MEMORY INTERFACE S3FB42F

24-4

[0] Data memory bank selection bit
0 = Bank0
1 = Bank1

[2:1] Y-data flash memory selection bits
00 = No Select
01 = Selection Bank 0
10 = Selection Bank 1
11 = Selection Bank 2

[3] Flash memory speed selection bit
00 : When fxx is under 4 MHz
01 : When fxx is more than 4 MHz

[5:4] I/O area accessing wait cycle selection bit
00 = not-used wait cycle
01 = wait 1 cycle
1x = wait 3 cycles

[6] ROM accessing wait cycle enable
0 = disable
1 = enable 1 cycle stretch

[7] Y-data flash memory stretch control
0 = disable
1 = enable 1 cycle stretch (don't care when DSP instruction)

06 5 3 27

"0"

14

XX X XXXX

Figure 24-2. Flash Memory Control Register

S3FB42F MAC2424

25-1

25 MAC2424

INTRODUCTION

MAC2424 is a 24-bit high performance fixed-point DSP coprocessor for CalmRISC microcontroller. MAC2424 is
designed for the mid to high-end audio applications which require low power consumption and portability. It mainly
includes a 24-bit arithmetic unit (ARU), a barrel shifter & exponent unit(BEU), a 24-bit x 24-bit multiplier
accumulation unit (MAU), and a RAM pointer unit (RPU) for data address generation. Main datapaths are
constructed to 24-bit width for audio applications, but it can also perform 16-bit data processing efficiently in 16-bit
operation mode.

MAC2424 is designed to be the DSP coprocessor for CalmRISC microcontroller. It receives 12-bit instruction code
and command information from CalmRISC via special coprocessor interface and send internal status information to
CalmRISC through external condition port.

MAC2424 S3FB42F

25-2

ARCHITECTURE FEATURES

– 16-bit barrel shifter with support for multi-precision capability

– 24-bit exponent evaluation with support for multi-precision capability

– Four data address RAM pointers with post-modification & modulo capability

– Four index registers with two extended index registers : up to 8-bit index value

– Two direct address RAM pointers for short direct addressing

– Min/Max instruction with pointer latching and modification

– Division step in single cycle

– Conditional instruction execution capability

24-bit Mode Operation

– Signed fractional/integer 24 x 24-bit multiplication in single cycle

– 24 x 24-bit multiplication and 52-bit accumulation in a single cycle

– 24-bit arithmetic operation

– Two 48-bit multiplier accumulator with 4-bit guard

– 32K x 24-bit data memory spaces

16-bit Mode Operation

– Four-Quadrant fractional/integer 16 x 16-bit multiplication in single cycle

– 16 x 16-bit multiplication and 40-bit accumulation in a single cycle

– 16-bit arithmetic operation with 8-bit guard

– Two 32-bit multiplier accumulator with 8-bit guard

– 32K x 16-bit data memory spaces

S3FB42F MAC2424

25-3

BLOCK DIAGRAM

MSR2

MSR1

X0/X1

MA0/1

52-bit Adder

24 x 24 Multiplier

P

MA0/1

X0/X1 X0/X1Y0/Y1

Modulo
Arithmetic

RP0-3 SD0-3MC0-1

RPD0-1

MSR0
Interface

Logic

MAU ARU BEU

RPU Status
Registers

Control

Modulo
Arithmetic

XB[23:0]

YB[23:0]

A/B

24-bit Adder

A/B

SRSG

24-bit Exponent
Detector

SISA

16-bit Barrel
Shifter

SASI

Figure 25-1. MAC2424 Block Diagram

MAC2424 S3FB42F

25-4

The block diagram shows the main blocks that compose the MAC2424:

– Multiplier Accumulator Unit (MAU)

– Arithmetic Unit (ARU)

– Barrel shifter & Exponent detection Unit (BEU)

– RAM Pointer Unit (RPU)

– Status Registers

– Interface Unit

The MAC2424 DSP coprocessor is organized around two 24-bit data buses (XB, YB). Data movement between the
units and memories occur over XD and YD data buses. Each of this data bus has its dedicated 14-bit address bus
XA and YA respectively.

I/O DESCRIPTION

MAC2424

nXCS nYCS MMWR XA YA

Memory Interface

14 14

Debug Interface

XB_DIS nGIDIS

Bus Interface

24 2424 24

XBI YBI XBO YBO

12

EI

ICLK

nRES

SYSCP

nCOPID

nMRCS

MRWR

MRADDR
4

3

H
ost Interface

S
trapH16

Figure 25-2. MAC2424 Pin Diagram

S3FB42F MAC2424

25-5

Two data and address buses are provided with control signals. The address XA and YA are 14-bit, and accesses
data memories up to 16 Kbyte with 24-bit data width. The host interface signals receive the coprocessor interface
signals from CalmRISC microcontroller, and send the status information through EI signals. For more information
about coprocessor interface signals, please refer to CalmRISC Architecture manual.

Table 25-1. MAC2424 Pin Description

Signal Name Width Direction Description

ICLK 1 I Input Clock

nRES 1 I Reset Bar

SYSCP 12 I Instruction Bus

nCOPID 1 I Instruction Bus Valid Indication Bar

MRADDR 4 I Internal Register Selection Address

nMRCS 1 I Internal Register Read/Write Enable Bar

MRWR 1 I Internal Register Write Enable

EI 3 O Internal Status Information

nXMCS 1 O X Memory Chip Select Bar

nYMCS 1 O Y Memory Chip Select Bar

MMWR 1 O Memory Write Enable

XA 14 O X Memory Address

YA 14 O Y Memory Address

XBI 24 I X Memory Data Input Bus

YBI 24 I Y Memory Data Input Bus

XBO 24 O X Memory Data Output Bus

YBO 24 O Y Memory Data Output Bus

H16 1 I 16-bit Host Processor Indication

XB_DIS 1 I X Memory Data Output Bus Disable

nGIDIS 1 O Global Interrupt Disable for Long Word Instruction

MAC2424 S3FB42F

25-6

PROGRAMMING MODEL

In this chapter, the important features of each unit in MAC2424 are discussed in details. How the data memories are
organized is discussed and data memory addressing modes are explained.

The major components of the MAC2424 are :

• Multiplier Accumulator Unit (MAU)

Multiplier
– Input Registers X0, X1, Y0, Y1
– Output Register P

Multiplier Accumulators MA0, MA1
Saturation Logic

Multiplier Accumulator Shifter

52-bit Arithmetic Unit

Status Register MSR1

• Arithmetic Unit (ARU)

Accumulator A, B
Saturation Logic

Accumulator Shifter

24-bit Arithmetic Unit

Status Registers MSR0, MSR2

• Barrel shifter & Exponent detection Unit (BEU)

24-bit Exponent Detector

16-bit Barrel Shifter
– Input Registers SA, SI
– Output Registers SG, SR

• RAM Pointer Unit (RPU)

Two Modulo Address Generators

Bit-Reverse Generator

Indirect Address Pointers RP0, RP1, RP2, RP3

Index Registers SD0, SD1, SD2, SD3

Extended Index Registers SD0E, SD3E

Direct Pointers RPD0, RPD1

Modulo Configuration Registrers MC0, MC1

S3FB42F MAC2424

25-7

MULTIPLIER AND ACCUMULATOR UNIT

The Multiplier and Accumulator Unit contains two main units, the Multiplier Unit and the Accumulator Unit. The
detailed block diagram of the Multiplier and Accumulator Unit is shown in Figure 25-3.

X0

52-bit Adder24 x 24 Multiplier

P

X1

Y0

Y1

Shifter/Saturation

XB[23:0]

YB[23:0]

MA0

MA1

Align Align Shifter Shifter

Saturation

Figure 25-3. Multiplier and Accumulator Unit Block Diagram

MAC2424 S3FB42F

25-8

Multiplier

The Multiplier unit consists of a 24 by 24 to 48 bit parallel 2’s complement single-cycle, non-pipelined multiplier, 4
24-bit input registers (X0, X1, Y0, and Y1), a 48-bit output product register (P), and output shifter & saturation logic.
The multiplier performs signed by signed multiplication in 24-bit mode, and 4 quadrant multiplication in 16-bit mode.
Together with 52-bit adder in MAU, the MAC2424 can perform a single-cycle Multiply-Accumulate (MAC) operation.
The multiplier only operates when multiply instruction is executed. The P register is not updated and the multiplier is
not operated after a change in the input registers. This scheme reduces power consumption in multiplier.

In 16-bit operation mode, multiplier input registers, X and Y, are aligned (shifting 4 bits to the left) before
multiplication, and 32-bit output result is written in bit 39 to 8 of P register. The bit 47 to 40 of P register is sign-
extended, and lower 8-bit part are forced to 0.

PSH1 bit of MSR1 register indicates whether multiplier output is shifted 1 bit to the left or not. If PSH1 bit is set,
multiplier output is shifted 1 bit to the left. This operation can be used in the signed fractional multiplication. USM bit
of MSR1 register indicates whether multiplier input register is signed or unsigned in 16-bit operation mode. When
USM bit is set in 16-bit mode, X1 and Y1 register is interpreted as an unsigned operand. For example, if X1 and Y0
register is selected as multiplier input register, unsigned by signed multiplication is performed. If X1 and Y1 register
is selected, unsigned by unsigned multiplication is performed. Note that unsigned operation is only possible in the
16-bit mode.

The X or Y register is read or written via the XB bus, and Y register is written via YB when dual load instruction is
executed. The 24-bit most significant portion (MSP) of the P register (PH) or the 24-bit least significant portion (LSP)
of the P register (PL) can be written by the XB as an operand. When MSP of the P register is written, LSP of the P
register is forced to zero. When LSP of the P register is written, MSP of the P register is not changed. In 16-bit
operation mode, read or write operation on PL register is different from 24-bit operation mode. When PL write
operation, the 16-bit most significant portion of PL register is written by the 16-bit least significant portion of XB bus,
and 8-bit LSP of PL is forced to zero. On PL read operation, the 16-bit most significant portion of PL register is read
to the 16-bit least significant portion of XB bus, and 8-bit MSP of XB is sign-extended. The other registers performs
the same operation as 24-bit mode.

Overflow Protection in Multiplier

The only case the multiplier overflow occurs is when multiplying 800000h by 800000h in fractional 24-bit mode, and
8000h by 8000h in signed/signed fractional 16-bit mode. (These cases mean –1*-1) : the result should be normally 1,
which overflows fractional format. Thus, in this particular case, a multiplier saturation block forces the multiplier result
to 7FFFFFFFFFFFh (24-bit mode) or 007FFFFFFF00h (16-bit mode) after internal 1-bit shift to the left and write this
value to the product register P.

– Saturation Condition at 24-bit mode: ~Prod[47] & Prod[46] & PSH1

– Saturation Condition at 16-bit mode: ~Prod[39] & Prod[38] & PSH1 & SX & SY

S3FB42F MAC2424

25-9

Multiplier Accumulators

Each MAi (i=0,1) is organized as two regular 24-bit registers (MA0H, MA0L, MA1H, MA1L) and two 4-bit extension
nibble (MA0E, MA1E) in MSR1 register. The MAi accumulators can serve as the source operand, as well as the
destination operand of MA relevant instructions. Only one MA accumulator can be used as an operand at a time
according to the BKMA bit of the MSR1 register. If BKMA is set, MA1 register can be used, and if BKMA is reset,
MA0 register can be used. Data transfer between two MA accumulators is possible through “ELD MA1, MA0” and
“ELD MA0, MA1” instructions. These are the only cases when two MA accumulator is accessible independent on
BKMA bit and a full 52-bit MA accumulator is loaded.

The 24-bit most significant portion (MSP) of the MA register (MAiH) or the 24-bit least significant portion (LSP) of the
MA register (MAiL) can be written by the XB as an operand. When MAiH register is written, MAiL register is forced to
zero and MAiE extension nibble is sign-extended. When MAiL register is written, MAiH and MAiE are not changed.

In 16-bit operation mode, read or write operation on MAiL register is different from 24-bit operation mode. The
operation is same as PL register operation. When MAiL write operation, the 16-bit most significant portion of MAiL
register is written by the 16-bit least significant portion of XB bus, and 8-bit LSP of MAiL is forced to zero. On MAiL
read operation, the 16-bit most significant portion of MAiL register is read to the 16-bit least significant portion of XB
bus, and 8-bit MSP of XB is sign-extended. In case of 16-bit mode MAiH write operation, MAiE extension nibble is
not sign-extended.

Extension Nibbles

Extension nibbles MA0E and MA1E in MSR1 register offer protection against 48-bit overflows in 24-bit mode
operation. When the result of a 52-bit adder output crosses bit 47, it sets VMi flag of MSR1 register (MA register
Overflow flag). When the sign is lost beyond the MSB of the extension nibble, it sets MV flag of MSR1 (Memorized
Overflow flag) and latches the value.

In 16-bit mode, these extension nibbles are not used at all and 8-bit most significant portion of the MAiH register is
used as extension byte. If the result of a 52-bit adder output crosses bit 39, it sets VMi flag.

Overflow Protection in MA Registers

The multiplier accumulator saturation instruction (ESAT instruction) sets the destination MA register to the positive
negative maximum value, if selected MA register overflows (VMi bit of MSR1 register is set). In case of 24-bit mode,
saturation values are 7FFFFFFFFFFFh (positive overflow) or 800000000000h (negative overflow) for the MA register
and extension nibble is sign-extended. In case of 16-bit mode, saturation value is different. When positive overflow
occurs, the saturation value is 007FFFFFFF00h for MA register, and when negative overflow, the saturation value is
FF8000000000h.

Another saturation condition is when moving from MAiH register through XB bus. This saturation mode is enabled
when selected MA register overflows (VMi bit at MSR1 register is set), and overflow protection bit is enabled (OPM
bit at MSR1 register is set). In this case the saturation logic will substitute a limited data value having maximum
magnitude and the same sign as the source register. The MA register value itself is not changed at all. In case of 24-
bit mode, saturation values are 7FFFFFh (positive overflow) or 800000h (negative overflow) and in 16-bit mode,
saturation values are 007FFFh or FF8000h.

– Saturation by Instruction: "ESAT" Instruction & VMi

– Saturation by MA Read: Read MAiH & VMi & OPM

MAC2424 S3FB42F

25-10

P

0232447

P

0232447 784039

PH PL

PH PLPH Guard Region

MAi

0232447

MAH MAL

MSR1_MAi

4851

MA Guard Region

MAi

0232447

MAH MAL

MSR1_MAi

4851

MA Guard Region

784039

Xi/Yi

023

Xi/Yi

023

Xi/YiXi/Yi Guard Region

Xi/Yi

1516

X0/X1/Y0/Y1

P

MA0/MA1

mode24

mode24

mode24

mode16

mode16

mode16

Figure 25-4. MAU Registers Configuration

S3FB42F MAC2424

25-11

ARITHMETIC UNIT

The arithmetic unit performs several arithmetic operations on data operands. It is a 52-bit, single-cycle, non-pipelined
arithmetic unit. The arithmetic unit receives one operand from MAi, and another operand from P register. The source
and destination MA accumulator of arithmetic instruction is always the same.

The arithmetic unit can perform positive or negative accumulate, add, subtract, shift, and several other operations,
most of them in a single cycle. It uses two's complement arithmetics. Some flags (VMi, MV flag) are affected as a
result of the arithmetic unit output value. The flags represent the MA register status.

Rounding Provision

Rounding (by adding 800000h to the LSP of the MA register) can be performed by special instruction ("ERND"
instruction) in a single cycle: two's complement rounding. After rounding operation, the 24-bit least significant portion
of MA register are cleared and the 24-bit most significant portion of MA register are filled with the rounded value.

MA Shifting Capabilities

52-bit MA register can be shifted by 1-bit left or right. All of this shift operation is arithmetic shift operation.

Double Precision Multiplication Support

The arithmetic unit support for double precision multiplication by add or subtract instruction with an alignment option
of the P register. The P register can be aligned (shifting 24 bits to the right) before accumulating the partial
multiplication result.

Division Possibilities

Two specific instructions ("EDIVQ" and "ERESR" instruction) are used to implement a non-restoring conditional
add/subtract division algorithm. The division can be only signed and two operands (dividend and divisor) must be all
positive number. The dividend must be a 48-bit operand, located in MA register. : 4-bit extension nibble contains the
sign extension of the MA register in 24-bit operation mode. In 16-bit operation mode, the dividend must be a 32-bit
operand and 8-bit extension nibble in the MA register must be sign-extended. The divisor must be a 24-bit
operand(24-bit mode) or 16-bit operand with sign-extended to 24-bit, located in 24-bit most significant portion of the P
register. The 24-bit least significant portion of the P register must be zero.

To obtain a valid result , the value of the dividend must be strictly smaller than the value of divisor (reading operand as
fractional data). Else, the quotient could not be expressed in the correct format. (for example, quotient greater than 1
for fractional format). At the end of algorithm, the result is stored in the MA register. (the same which previously
contained the dividend) : the quotient in the 24-bit LSP, the significant bit remainder stored in the 24 MSP of the MA
register.

Typically 48/24 division can be executed with 24 elementary divide operations (32/24 division with 16 elementary
divide operations), preceded by 1 initialization instructions (This instruction is required to perform initial subtraction
operation.), and possibly followed by one restoring instruction which restores the true remainder (in case this last
one is useful for the next calculations). Note that lower precision can also be obtained by decreasing the number of
elementary division step applied.

The operation of elementary instructions for division is as follows.

MAC2424 S3FB42F

25-12

"EDIVQ" :

This single cycle instruction is repeatedly executed to generate division quotient bits. It calculates one bit of the
quotient at a time, computes the new partial remainder, sets VMi bit of the MSR1 register according to the new
partial remainder sign. First, this instruction calculates the new partial remainder by adding or subtracting the divisor
from the remainder, depending on current VMi bit value.

If current VMi = 0, new partial remainder = old partial remainder – divisor

If current VMi = 1, new partial remainder = old partial remainder + divisor

This add or subtract operation is performed between MA register and P register. Second, this instruction shifts the
new partial remainder one bit to the left and moves one bit quotient into the rightmost bit. The one bit quotient bit is
the inverted value of the new partial remainder sign-bit.

Quotient bit = ~(sign of new partial remainder)

Third, EDIVQ updates the MA register with shifted new partial remainder value, and updates the VMi bit of MSR1
register with sign value of the new partial remainder. This VMi update determines the operation of the next EDIVQ
instruction.

"ERESR":

This single cycle instruction restores the true remainder value. In fact, due to the non-restoring nature of the division
algorithm, the last remainder has to be restored or not by adding 2 times the divisor, depending on the VMi bit of
MSR1 register previously computed.

If VMi = 0, No Operation is performed

If VMi = 1, Adds two times the divisor to the MA register.

(containing the last calculated remainder in the 24-bit most significant portion)

The new calculated remainder will have to be 24-bit right arithmetical shifted (16-bit right arithmetic shifted in 16-bit
mode), in order to be represented in a usual fractional format.

S3FB42F MAC2424

25-13

Dividend : 23 (0001 0111)
Divisor : 6 (0110)

MA

P

0 0001 0111

0110 0000

ESLA : MA 0 0010 1110

EDIVQ : 1 1010 0000+
1 1100 1110
1 1001 1100MA

EDIVQ : 0 0110 0000+
1 1111 1100
1 1111 1000MA

EDIVQ : 0 0110 0000+
0 0101 1000
0 1011 0001MA

EDIVQ : 1 1010 0000+
0 0101 0001
0 1010 0011MA

ERESR : 0 0000 0000+

0 1010 0011MA

ESRA : MA 0 0101 0001

Dividend : 17 (0001 0001)
Divisor : 6 (0110)

MA

P

0 0001 0001

0110 0000

ESLA : MA 0 0010 0010

EDIVQ : 1 1010 0000+
1 1100 0010
1 1000 0100MA

EDIVQ : 0 0110 0000+
1 1110 0100
1 1100 1000MA

EDIVQ : 0 0110 0000+
0 0010 1000
0 0101 0001MA

EDIVQ : 1 1010 0000+
1 1111 0001
1 1110 0010MA

ERESR : 0 1100 0000+

0 1010 0011MA

ESRA : MA 0 0101 0001

Quotient
(3)

Quotient
(2)

Remainder
(5)

Remainder
(5)

Figure 25-5. Integer Division Example

MAC2424 S3FB42F

25-14

Dividend : 23/128 (0001 0111)
Divisor : 6/8 (0110)

MA

P

0 0001 0111

0110 0000

EDIVQ : 1 1010 0000+
1 1011 0111
1 0110 1110MA

EDIVQ : 0 0110 0000+
1 1100 1110
1 1001 1100MA

EDIVQ : 0 0110 0000+
1 1111 1100
1 1111 1000MA

EDIVQ : 0 0110 0000+
0 0101 1000
0 1011 0001MA

ERESR : 0 0000 0000+

0 1011 0001MA

Dividend : 29/128 (0001 1101)
Divisor : 6/8 (0110)

MA

P

0 0001 1101

0110 0000

EDIVQ : 1 1010 0000+
1 1011 1101
1 0111 1010MA

EDIVQ : 0 0110 0000+
1 1101 1010
1 1011 0100MA

EDIVQ : 0 0110 0000+
0 0001 0100
0 0010 1001MA

EDIVQ : 1 1010 0000+
1 1100 1001
1 1001 0010MA

ERESR : 0 1100 0000+

0 0101 0010MA

Quotient
(1/8)

Quotient
(2/8)

Remainder
(11/128)

Remainder
(5/128)

MA 0 0001 0111 MA 0 0001 1101

Figure 25-6. Fractional Division Example

S3FB42F MAC2424

25-15

A 48/24 integer division example code is as follows

ER VM // Initialize Division Step
ESLA MA // Arithmetic Shift Left 1
EDIVQ MA, P // Division Step
….
EDIVQ MA, P // Division Step (24 times)
ERESR MA, P // Remainder Restoring
ESRA MA // Arithmetic Shift Right 1

A 48/24 fractional division example code is as follows.

ER VM // Initialize Division Step
EDIVQ MA, P // Division Step

….
EDIVQ MA, P // Division Step (24 times)
ERESR MA, P // Remainder Restoring

Note that the validity of the division operand must be checked before all of these code : i.e. the dividend is strictly
smaller than the divisor. The following two figures show division with 9-bit dividend and 8-bit divisor. (Assume that the
MA register and P register are 8-bit wide, and MA guard bit is 1-bit wide.)

MAC2424 S3FB42F

25-16

STATUS REGISTER 1 (MSR1)

MSR1 register of three MAC2424 status registers (MSR0, MSR1, MSR2) is used to hold the flags, control bits,
status bits for MAU. The contents of each field definitions are described as follows.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MA1E MA0E OPMUSM MV VM1 VM0BKMAPSH1

MA1 Register Extension Nibble

MA0 Register Extension Nibble

Reserved (Read as 0)

MA Register Bank Select
0 = MA0 Register (Reset Value)
1 = MA1 Register

Product Left Shift 1 Control
0 = No Shift (Reset Value)
1 = 1-bit Left Shift

Unsigned Multiplication Control
0 = Signed (Reset Value)
1 = Unsigned X1/Y1

MA Overflow Protection
(0 when Reset)

Memorized Overflow Flag
(0 when Reset)

MA1 Overflow Flag

MA0 Overflow Flag

Figure 25-7. MSR1 Register Configuration

S3FB42F MAC2424

25-17

MA1E/MA0E – Bit 15–12/Bit 11–8

These four bit nibbles are used as guard bits for MA registers in 24-bit mode operation. These bits are updated when
MA register write operation is occurred. In 16-bit mode operation these bits are not affected during MA write
operation. These bits are also written during MSR1 register write operation.

BKMA – Bit 6

This bit defines current bank of MA register. Only one MA register of two MA registers is accessible at a time except
"ELD MA1, MA0" or "ELD MA0, MA1" instruction. The BKMA bit is only affected when MSR1 register write operation
or "ER/ES BKMA" instruction is used. When this bit is set, current bank of MA register is MA1 register, and when
this bit is clear, current bank of MA register is MA0 register. The BKMA bit is cleared by a processor reset.

PSH1 – Bit 5

This bit defines multiplier output shift operation. When this bit is set, multiplier output result is 1-bit shifted left. This
property can be used for fractional format operand multiplication. When this bit is clear, no shift is executed on the
multiplier output. The PSH1 bit can be modified by writing to MSR1 register or "ER/ES PSH1" instruction. The PSH1
bit is cleared by a processor reset.

USM – Bit 4

The USM bit indicates that the X1 or Y1 register is signed or unsigned as a multiplicand. It is only used for product
calculation in 16-bit mode operation. In 24-bit mode operation, this bit has no effect. When set, selected multiplicand
is interpreted as a unsigned number if X1 or Y1 register is selected. The other registers (X0, Y0) are always signed
number. The USM bit can be modified by writing to MSR1 register or "ER/ES USM" instruction. The USM bit is
cleared by a processor reset.

OPM – Bit 3

The OPM bit indicates that saturation arithmetic is provided or not when moving from the higher portion of one of the
MA registers through the XB bus. When the OPM bit is set(Overflow Protection is enabled), the saturation logic will
substitute a limited data value having maximum magnitude and the same sign as the source MA register. If the OPM
bit is clear, no saturation is performed. This bit has not effect on a "ESAT" instruction, which always saturates the
MA register value. The OPM bit is modified by writing the MSR1 register or "ER/ES OPM" instruction. The OPM bit
is cleared by a processor reset.

MV – Bit 2

The MV bit is a memorized 52-bit overflow (in 24-bit mode) or 48-bit overflow (in 16-bit mode). This bit indicates that
the guard bits of MA register is overflowed during previous arithmetic operations. This bit is set when overflow on
guard bits is occurred and is not cleared when this overflow is cleared. It is only cleared when "ER MV" instruction or
MSR1 register write instruction is executed.

VM1/VM0 – Bit 1–0

These bits indicates arithmetic overflow on MA1 register and MA0 register respectively. One of these bits is set if an
arithmetic overflow (48-bit overflow when 24-bit operation mode or 40-bit overflow when 16-bit operation) occurs after
an arithmetic operation, and cleared otherwise. It represents that the result of an operation cannot be represented in
48 bits (in 24-bit mode) or 40 bits (in 16-bit mode). i.e. these bits are set when 5-bit value of MA[51:47] register is not
all the same in 24-bit mode or 9-bit value of MA[47:39] register is not all the same in 16-bit mode. These bits are
modified by writing the MSR1 register and one of these bits is written when "ER/ES VM" instruction or all arithmetic
instruction according to the current bank of MA register (BKMA bit).

MAC2424 S3FB42F

25-18

RAM POINTER UNIT

The RAM Pointer Unit (RPU) performs all address storage and effective address calculations necessary to address
data operands in data memories. In addition, it supports latching of the modified register in maximum/minimum
operations and bit reverse address generation. This unit operates in parallel with other resources to minimize address
generation overhead. The RPU performs two types of arithmetics : linear or modulo. The RPU contains four 16-bit
indirect address pointer registers (RP0 ~ RP3, also referred to RPi) for indirect addressing, two 16-bit direct address
pointer registers (RPD0 ~ RPD1, also referred to RPDi) for short direct form addressing, four 16-bit indirect index
registers (SD0 ~ SD3, also referred to SDi) and its extensions (SD0E and SD3E), and two 16-bit modulo
configuration registers (MC0 and MC1, also referred to MCi) for modulo control. The MC0 register has effect on RP0
and RP1 pointer register, and the MC1 register has effect on RP2 and RP3 register.

All indirect pointer registers (RPi) and direct pointer registers (RPDi) can be used for both XA and YA for instructions
which use only one address register. In this case the X memory and Y memory can be viewed as a single
continuous data memory space. the bit 13 to bit 0 of RPi register and RPDi register defines address for X or Y
memory, and the bit 14 determines whether the address is for X memory or Y memory. The bit 15 of RPi indicates
whether the selected pointer is updated with modulo arithmetic. The RPU can access two data operand
simultaneously over XA and YA buses. In dual access case, RP0 is automatically selected as a X memory pointer
and RP3 is selected as a Y memory pointer regardless of bit 14 of RP0 and RP3.

All registers in the RPU may be read or written to by the XB as 16-bit data. The detailed block diagram of the RAM
Pointer Unit is shown in Figure 25-8.

ADDRESS MODIFICATION

The RPU can generate up to two 14-bit addresses every instruction cycle which can be post-modified by two
modifiers: linear and modulo modifier. The address modifiers allow the creation of data structures in the data memory
for circular buffers, delay lines, FIFOs, etc. Address modification is performed using 15-bit two's complement linear
arithmetics.

Linear (Step) Modifier

During one instruction cycle, one or two of the pointer register, RPi, can be post incremented/decremented by a 2's
complement 4-bit step (from –8 to +7). If XSD bit of MSR0 register is set, these 4-bit step is extended to 8-bit (from –
128 to +127) by concatenating index register with extended index register (SD0E, SD3E) when selected pointer is
RP0 or RP3. The selection of linear modifier type (one out of four) is included in the relevant instructions. The four
step values are stores in each index register SDi. If the instruction requires a data memory read operation, S0 (bit 3
to bit 0) or S1 (bit 7 to bit 4) field of SDi register is selected as a index value. If the instruction requires a data
memory write operation, D0 (bit 11 to bit 8) or D1(bit 15 to bit 12) field of SDi register is selected as an index value.

S3FB42F MAC2424

25-19

RP0

RP1

XB[23:0]

RP2

RP3

SD1

SD0/SD0E

SD2

SD3/SD3E

MC0

MC1

RPD0

RPD1

XA[13:0]

YA[13:0]

X Modulo Logic

Y Modulo Logic

Bit-Reverse
Logic

Figure 25-8. RAM Pointer Unit Block Diagram

Modulo Modifier
 The two modulo arithmetic units (X, Y Modulo Logic) can update one or two address registers within one instruction
cycle. They are capable of performing modulo calculations of up to 210 (=1024). Each register can be set
independently to be affected or unaffected by the modulo calculation using the ME bits in the each pointer register.
Modulo setting values are stored in 13 least significant bits of modulo configuration registers MC0 and MC1
respectively. The bits 12 to bit 10 of MC0 and MC1 register determines maximum modulo size from 8 to 1024 and
the bits 9 to bit 0 of modulo control register defines upper boundary of modulo calculation in the current modulo size.
The lower boundary of modulo calculation is automatically defined by modulo size itself. (Refer to figure 25-10)

MAC2424 S3FB42F

25-20

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEi PTRi

Modulo Enable RPi
0 = RPi Modulo Mode Disable
1 = RPi Modulo Mode Enable

Address Pointer RPi

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PTRi

Reserved (Readable/Writable)

Address Pointer RPDi

RPi

RPDi

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D1 S0

Destination Index 1

SDi D0 S1

Destination Index 0

Source Index 1

Source Index 0

Figure 25-9. Pointer Register and Index Register Configuration

For proper modulo calculation, the following constraints must be satisfied. (M = modulo size, S = step size)

1. Only the p LSBs of RPi can be modified during modulo operation, where p is the minimal integer that satisfies 2p

≥ M. RPi should be initiated with a number whose p LSBs are less than M.

2. M ≥ S

The modulo modifier operation, which is a post-modification of the RPi register, is defined as follows
if ((RPi == Upper Boundary in k LSBs) and (q > 0)) then

RPi k LSB ← 0
else if ((RPi == Lower Boundary in k LSBs) and (q < 0)) then

RPi k LSB ← Upper Boundary in k LSBs
else

RPi k LSB ← RPi + q (k LSBs)
where k is defined by MCi[12:10]

S3FB42F MAC2424

25-21

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Modulo Size Upper Boundary

Reserved (Readable/Writable)

RP0/RP1 Modulo Size
000 = 210, modulo area: dddd0000000000 - dddd,MC0[9:0]
001 = 23, modulo area: dddddddddddd000 - ddddddddddd,MC[2:0]
010 = 24, modulo area: ddddddddddd0000 - dddddddddd,MC[3:0]
011 = 25, modulo area: dddddddddd00000 - ddddddddd,MC[4:0]
100 = 26, modulo area: ddddddddd000000 - dddddddd,MC[5:0]
101 = 27, modulo area: dddddddd0000000 - ddddddd,MC[6:0]
110 = 28, modulo area: ddddddd00000000 - dddddd,MC[7:0]
111 = 29, modulo area: dddddd000000000 - ddddd,MC[8:0]

MC0

Modulo Upper Boundary

15 14 13 12 11 10 15 159 8 7 6 5 4 3 2 1 0

Bit-Reverse
Order Modulo Size Upper Boundary

Bit-Reverse Order
000 = reverse RPi[4:0]
001 = reverse RPi[5:0]
010 = reverse RPi[6:0]
011 = reverse RPi[7:0]
100 = reverse RPi[8:0]
101 = reverse RPi[9:0]
110 = reverse RPi[10:0]
111 = reverse RPi[11:0]

RP2/RP3 Modulo Size
000 = 210, modulo area: dddd0000000000 - dddd,MC0[9:0]
001 = 23, modulo area: dddddddddddd000 - ddddddddddd,MC[2:0]
010 = 24, modulo area: ddddddddddd0000 - dddddddddd,MC[3:0]
011 = 25, modulo area: dddddddddd00000 - ddddddddd,MC[4:0]
100 = 26, modulo area: ddddddddd000000 - dddddddd,MC[5:0]
101 = 27, modulo area: dddddddd0000000 - ddddddd,MC[6:0]
110 = 28, modulo area: ddddddd00000000 - dddddd,MC[7:0]
111 = 29, modulo area: dddddd000000000 - ddddd,MC[8:0]

MC1

Modulo Upper Boundary

* "d" means DON'T CARE

Figure 25-10. Modulo Control Register Configuration

MAC2424 S3FB42F

25-22

The modulo calculation examples are as follows.

1. Full Modulo with Step = 1 (selected by instruction and index register value)
MC0 = 000_001_0000000111 (Upper Boundary = 7, Lower Boundary = 0, Modulo Size = 8)
RPi = 0010h
0010h → 0011h → 0012h → 0013h → 0014h → 0015h → 0016h → 0017h → 0010h → 0011h

2. Full Modulo with Step = 3 (selected by instruction and index register value)
MC0 = 000_001_0000000111 (Upper Boundary = 7, Lower Boundary = 0, Modulo Size = 8)
RPi = 0320h
0320h → 0323h → 0326h → 0321h → 0324h → 0327h → 0322h → 0325h → 0320h → 0323h

3. Part Modulo with Step = -2 (selected by instruction and index register value)
MC0 = 000_001_0000000101(Upper Boundary = 5, Lower Boundary = 0, Modulo Size = 8)
RPi = 2014h
2014h → 2012h → 2010h → 2014h → 2102h

The total number of circular buffer (modulo addressing active area) is defined by 32K/Modulo size. i.e. if current
modulo size is 32, the total number of circular buffer is 1024.

Bit Reverse Capabilities

The bit-reverse addressing is useful for radix-2 FFT(Fast Fourier Transform) calculations. The MAC2424 DSP
coprocessor does not support the bit-reverse addressing itself. But it supports the bit field reverse capabilities in the
form of instruction. The "ERPR" instruction selects a source address pointer RPi and performs bit reverse operation
according to the bit field specified in bit 15 to bit 13 of MC1 register. The result bit pattern is written to the RP3
register pointer field. (bit 14 to bit 0) In this way, RP3 has a bit-reversed address value of source pointer value. Note
that the data buffer size is always a power of 2 up to 212.

Index Extension

When an instruction with indirect addressing is executed, the current value of selected address pointer register RPi
provides address on XA and YA buses. Meanwhile, the current address is incremented by the value contained into
the selected index value contained into the selected bit field of selected index register, and stored back into RPi at
the end of instruction execution.

The 4-bit index values can be considered as a signed number, so the maximum increment value is 7(0111b) and the
maximum decrement value is –8(1000b). If the 4-bit index value is insufficient for use, the index values can be
extended to 8-bit values when RP0 or RP3 register is selected as an address pointer register. In this case, all index
values are extended to 8-bit by concatenating with SD0E or SD3E register. The bit field of SD0E and SD3E is the
same as other index register SDi. The index extension registers are enabled when the XSD bit of MSR0 register is
set. Otherwise, those are disabled. If the extension index registers are enable, index values for indirect addressing
becomes to 8-bit during addressing with RP0 and RP3 pointer register, and current index register becomes the
extended index register instead of the regular index register: i.e. When a index register is read or written by a load
instruction, SD0E register or SD3E register is selected as a source operand or a destination operand, instead of SD0
or SD3 register. For each of SD0/SD0E or SD3/SD3E, only one register is accessible at a time.

S3FB42F MAC2424

25-23

DATA MEMORY SPACES AND ORGANIZATION

The MAC2424 DSP coprocessor has only data memory spaces. The program memory can only be accessed by
CalmRISC, host processor. The data memory space is shared with host processor. The CalmRISC has 16-bit data
memory address, so it can access up to 64 Kbyte data memory space.

The MAC2424 access data memory with 24-bit width or 16-bit width. It can access upto 32 Kword (word = 2-byte or
3-byte). The data space is divided into a lower 16 Kword X data space and a higher 16 Kword Y data space. When
two data memory access are needed in an instruction, one is accessed in X data space, and the other is accessed
in Y memory space. When one data memory access is needed, the access is occurred in X or Y data memory
space according to the address.

XE
(16 Kbyte)

XH/XL
(16 * 2 Kbyte)

YE
(16 Kbyte)

7FFFh

4000h
3FFFh

0000h

I/O region
(128 byte)

0040h
003Fh

YH/YL
(16 * 2 Kbyte)

Figure 25-11. Data Memory Space Map

MAC2424 S3FB42F

25-24

Each space is divided into 3 16 Kbyte XE/XH/XL or YE/YH/YL region when 24-bit data is needed, or 2 16 Kbyte
XH/XL or YH/YL region when 16-bit data is needed, respectively. Each space can contain RAM or ROM, and can be
off-chip or on-chip. In the X data space, the lower 128 byte locations are reserved for memory-mapped I/O. The
MAC2424 coprocessor can not access the I/O region. only host processor can access. The configuration of this
region depends on the specific chip configuration.

 When 24-bit width data memory is used, the total memory space becomes to 96 Kbyte (16 Kbyte * 6). Because
CalmRISC can only access 64 Kbyte memory space, the extended memory regions (XE and YE) are shadowed in
the high address memory region (XH and YH). So, CalmRISC can access XH/XL pair or XE/XL pair in a time. The
selection of shadowed region can be accomplished with "SYS #imm" instruction in CalmRISC. (Refer to each
evaluation chip specification)

ARITHMETIC UNIT

The Arithmetic Unit (ARU) performs all arithmetic operations on data operands. It is a 24-bit, single cycle, non-
pipelined arithmetic unit. The MAC2424 is a coprocessor of CalmRISC microcontroller. So, all the logical operation
and other bit manipulation operations can be performed in CalmRISC. Thus, the MAC2424 has not logical units and
bit manipulation units at all.

The ARU receives one operand from Ai(A or B) register, and another operand from either the MSB part of MA
register, the XB bus, or from Ai. Operations between the two Ai register are possible. The source and destination Ai
register of an ARU instruction is always the same. The XB bus input is used for transferring one of the MAC2424
register content, an immediate operand, or the content of a data memory location, addressed in direct addressing
mode or in indirect addressing mode as a source operand. The flags in the MSR0 register are affected as a result of
the ARU output. In most of the instructions where the ARU result is transferred to one of Ai registers, the flags
represent the Ai register status. The detailed block diagram of the Arithmetic Unit is shown in Figure 25-12.

24-bit Adder

XB[23:0]

A

B

Shifter Shifter

Saturation

MSR0

MSR2

EI Generation

Figure 25-12. Arithmetic Unit Block Diagram

S3FB42F MAC2424

25-25

The ARU can perform add, subtract, compare, several other arithmetic operations (such as increment, decrement,
negate, and absolute), and some arithmetic shift operations. It uses two's complement arithmetic.

A, B ACCUMULATORS

Each Ai (A or B) register is organized as a regular 24-bit register. The Ai accumulators can serve as the source
operand, as well as the destination operand of the ARU instructions. The Ai registers can be read or written though
the XB bus. In the 16-bit mode operation, Ai register is organized as a regular 16-bit register (bit 15 to bit 0) and 8-bit
extension guard bits. (bit 23 to bit 16) When the result of a 24-bit adder output crosses bit 15, it sets Vi(VA or VB)
bit of MSR0 register (A/B register Overflow flag). The extension guard bits offer protection against 16-bit overflows up
to 255 overflows or underflows. If the sign is lost beyond the MSB of the extension guard bits, the result is lost and
the value can not be recovered. There is no overflow indication at 24-bit boundary in 16-bit operation mode. In 24-bit
operation mode, when the result of a 24-bit adder output crosses bit 23, it sets Vi.

OVERFLOW PROTECTION IN A/B ACCUMULATORS

The Ai accumulator saturation is performed differently according to the current operation mode. In 24-bit operation
mode, the selected accumulator value is saturated during arithmetic operation which causes overflow, if overflow
protection bit (OPA or OPB bit in MSR0 register) is enabled. The limited values are 7FFFFFh (positive overflow), or
800000h (negative overflow). During accumulator register read through XB bus, the saturation is not occurred.
Contrary, in 16-bit operation mode, saturation is not occurred during arithmetic operation. The saturation is only
occurred during accumulator register read through XB bus, if overflow protection is enabled and overflow occurred
(OPA/OPB bit of MSR0 register is set, and VA/VB bit of MSR0 register is set). The saturated values are 007FFFh
(positive overflow) or FF8000h (negative overflow).

– Saturation Condition at 24-bit mode : Arithmetic instruction & 24-bit Overflow & OPA/OPB

– Saturation Condition at 16-bit mode : Read A/B & VA/VB & OPA/OPB

A/B

023

A/B

023

A/BA/B Guard Region

A/B

1516

A/B

mode24

mode16

Figure 25-13. Ai Accumulator Register Configuration

MAC2424 S3FB42F

25-26

ARITHMETIC UNIT

Maximum-Minimum Possibilities

 Two Cycle maximum/minimum operations are available with pointer latching and modification. One of the Ai
accumulator register holds the maximum value in a "EMAX" instruction, or the minimum value in a "EMIN"
instruction. In the first cycle, the one accumulator register is compared with the operand by "ECP" instruction, and
this instruction updates N flag value. In the second cycle, this value is copied to the above defined accumulator
register. The address pointer register which generates address (except RP3) can be post-modified according to the
specified mode in the instruction. When the new maximum or minimum number is found, the previous pointer value is
latched into the LSB 15-bit field of RP3 pointer register. For more details, refer to "EMAX" and "EMIN" instructions on
the instruction set.

The examples which searches block elements are as follows

Loop_Start:
ECP A, @RP0+S0 // Compare Two Values (S0 must be 0)
EMAX(EMIN) A, @RP0+S1 // Conditional Load (S1 must be search index)
JP Loop_Start

Conditional Instruction Execution

Some instructions can be performed according to the T flag value of MSR0 register. These instructions may operate
when the T flag is set, and do nothing if the T flag is cleared. The instructions which have suffix "T" are this type of
instructions. ("emod1" type instruction. The conditional instruction execution capabilities can reduce the use of
branch instructions which require several cycles.

Shifting Operations

A few options of shifting are available in the ARU and all of them are performed in a single cycle. All shift operations
performed in the ARU are arithmetic shift operations : i.e. right shift filling the MSBs with sign values and left shift
filling with LSBs with zeros. The source and destination operands are one of 24-bit Ai accumulator registers. The
shift instructions performed in the ARU are all conditional instructions. The shift amount is limited to 1 and 8, right or
left respectively. The shift with carry is also supported.

Multi-Precision Support

Various instructions which help multi-precision arithmetic operation, are provided in the MAC2424. The instructions
with suffix "C" indicates that the operation is performed on source operand and current carry flag value. By using this
instructions, double precision or more precision arithmetics can be accomplished. The following shows one example
of multi-precision arithmetic.

// 3-cycle Double Precision Addition (A:B + 2 memory operand)
EADD B, @RP0+S0 // Lower Part Addition
EINCC A // Carry Propagation
EADD A, @RP0+S0 // Higher Part Addition

S3FB42F MAC2424

25-27

EXTERNAL CONDITION GENERATION UNIT

 The MAC2424 can generates and send the status information or control information after instruction execution to the
host processor CalmRISC through EI[2:0] pin (Refer to Pin Diagram). The CalmRISC can change the program
sequence according to this information by use of a conditional branch instruction that uses EI pin values as a branch
condition. The EI generation block in the ARU selects one of status register value or combination of status register
values according to the SECi (I=0,1,2) field in the MSR2 register. (Refer to MSR2 register configuration)

STATUS REGISTER 0 (MSR0)

 MSR0 register of three MAC2424 status registers (MSR0, MSR1, MSR2) is used to hold the flags, control bits,
status bits for the ARU and BEU(Barrel Shifter and Exponent Unit). The contents of each field definitions are
described as follows.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OPA VS VB NVA Z C T

Reserved (Read as 0)

Operation Mode Select
0 = 24-bit Mode (Reset Value)
1 = 16-bit Mode

B Accumulator Overflow Protection
(0 when Reset)

Extended Index Enable
0 = No Extension (Reset Value)
1 = SD0/SD3 Extension

Barrel Shifter/Exponent Overflow Flag

Negative Flag

Zero Flag

OPBXSDM16

A Accumulator Overflow Protection
(0 when Reset)

Reserved (Read as 0)

B Accumulator Overflow Flag

A Accumulator Overflow Flag

Carry Flag

Test Flag

Figure 25-14. MSR0 Register Configuration

MAC2424 S3FB42F

25-28

M16 – Bit 11

This bit defines current operation mode of the MAC2424 DSP coprocessor. If this bit is set, it indicates the current
operation mode is 16-bit mode, and data registers and flags are configured to 16-bit mode. If this bit is clear (reset
state), the MAC2424 operates on normal 24-bit mode. The M16bit is only affected when MSR0 register write
operation or "ER/ES M16" instruction is used.

XSD – Bit 10

This bit defines current bank of index register for index register read or write operation, and the length of index value
for address modification. When this bit is set, the current bank of index register is SD0E and SD3E instead of SD0
and SD3, respectively. When clear, the current index registers are SD0 and SD3. (reset state) During indirect
addressing mode, pointer register RPi is post-modified by index register value. If XSD is set, the width of index value
becomes to 8-bit by concatenating extension index register and normal index register. If clear, the normal 4-bit index
value is applied. The XSD bit can be modified by writing to MSR0 register or "ER/ES XSD" instruction. The XSD bit is
cleared by a processor reset.

OPB/OPA – Bit 9/Bit 8

The OPB/OPA bit indicates that saturation arithmetic in the ARU is provided or not when overflow is occurred during
data move or arithmetic operation. The overflow protection can be applied to A and B register respectively. If this bit
is set, the saturation logic will substitute a limited value having maximum magnitude and the same sign as the
source Ai register during overflow. If clear, no saturation is performed, and overflow is not protected by the MAC2424.
The OPA/OPB bit can be modified by writing to MSR0 register or "ER/ES OPA/OPB" instruction. The OPA/OPB bit
is cleared by a processor reset.

VS – Bit 6

The VS bit is a overflow flag for BEU(Barrel Shifter and Exponent Unit). This bit is set if arithmetic overflow is
occurred during shift operation or exponent evaluation on BEU registers. When the instructions which performs BEU
operation writes this bit as a overflow flag instead of VA or VB bit. The VS bit indicates that the result of a shift
operation can not be represented in 16-bit SR register, or the source value of an exponent operation is all zero or all
one. The VS bit can be modified by writing to MSR0 register instruction.

S3FB42F MAC2424

25-29

VB/VA – Bit 5 / Bit 4

The VA or VB bit is a overflow flag for ARU Ai accumulators. This bit is set if arithmetic overflow is occurred during
arithmetic operation on Ai accumulator registers in ARU. The VA and VB bit indicates that the result of an arithmetic
operation can not be represented in 24-bit A and B register in 24-bit mode operation and the result crosses 16-bit
boundary in A and B register at 16-bit mode. Only one of two bits is updated by arithmetic operation according to the
destination operand. The VA and VB bit can be modified simultaneously by writing to MSR0 register instruction.

N – Bit 3

The N bit is a sign flag for ARU or BEU operation result. This bit is set if ARU or BEU operation result value is a
negative value, and cleared otherwise. The N flag is the same as the MSB of the output if current operation does not
generate overflow. If overflow is occurred during instruction execution, the value of N flag is the negated value of the
MSB of the output. The N bit can be modified by instructions writing to MSR0 register.

Z – Bit 2

The Z bit is a zero flag for ARU or BEU operation result. This bit is set when ARU or BEU operation result value is
zero, and cleared otherwise. The Z bit can be modified by instructions writing to MSR0 register, explicitly.

C – Bit 1

The C bit is a carry flag for ARU or BEU operation result. This bit is set when ARU or BEU operation generates carry,
and cleared otherwise. The C bit is not affected by "ELD" instruction because this instruction does not generate
carry all the times. The C bit can be modified by instructions writing to MSR0 register, explicitly.

T – Bit 0

The T bit is a test flag that evaluates various conditions when "ETST" instruction is executed. This flag value can be
used as a condition during executing a conditional instruction (instructions that have a suffix "T"). The conditional
instructions can only be executed when the T bit is set. Otherwise, performs no operation. The T bit can be modified
by instructions writing to MSR0 register, explicitly.

MAC2424 S3FB42F

25-30

STATUS REGISTER 2 (MSR2)

MSR2 register of three MAC2424 status registers (MSR0, MSR1, MSR2) is used to select EI port of the MAC2424
from various flags and status information in MSR0 and MSR1 register. The MSR2 register is used at external
condition generation unit in the ARU. The contents of each field definitions are described as follows.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SEC2 SEC1 SEC0

Reserved (Read as 0)

EC2 Selection
0000 = Z
0001 = ~Z
0010 = N
0011 = ~N
0100 = C
0101 = ~C
0110 = VA
0111 = VB
1000 = GT
1001 = LE
1010 = VM0
1011 = VM1
1100 = VS
1101 = reverved
1110 = MV
1111 = T

1101 = reverved

EC1 Selection
0000 = Z
0001 = ~Z
0010 = N
0011 = ~N
0100 = C
0101 = ~C
0110 = VA
0111 = VB
1000 = GT
1001 = LE
1010 = VM0
1011 = VM1
1100 = VS

1110 = MV
1111 = T

EC0 Selection
0000 = Z
0001 = ~Z
0010 = N
0011 = ~N
0100 = C
0101 = ~C
0110 = VA
0111 = VB
1000 = GT
1001 = LE
1010 = VM0
1011 = VM1
1100 = VS
1101 = reverved
1110 = MV
1111 = T

Figure 25-15. MSR2 Register Configuration

S3FB42F MAC2424

25-31

BARREL SHIFTER AND EXPONENT UNIT

The Barrel Shifter and Exponent Unit (BEU) performs several shifting operations and exponent evaluations. It
contains a 16-bit, single cycle, non-pipelined barrel shifter and 24-bit exponent evaluation unit. The detailed block
diagram of the Barrel Shifter and Exponent Unit is shown in figure 25-16.

24-bit Exponent

SA

XB[23:0]

from A/B

16-bit Barrel Shifter

SR

SG

SI

Figure 25-16. Barrel Shifter and Exponent Unit Block Diagram

MAC2424 S3FB42F

25-32

BARREL SHIFTER

The barrel shifter performs standard arithmetic and logical shift, and several special shift operations. It is a 32-bit left
and right, single-cycle, non-pipelined barrel shifter. The barrel shifter receives the source operand from either one of
the 24-bit two Ai accumulator registers or 16-bit SI register. When selected source operand is Ai register, 16 LSBs of
24-bit register value are only valid. The upper 8-bit values are ignored. It also receives the shift amount value from
either one of the 24-bit two Ai accumulator registers or 6-bit SA register. Because the maximum amount of shift is
from –32 (right shift 32-bit) to +31 (left shift 31 bit), 6-bit shift amount is sufficient. When Ai register is used as the
shift amount register, 6 LSBs of 24-bit register value are only valid. The amount of shifts is only determined by a
value in the one of these three register and can not be determined by a constant embedded in the instruction opcode
(immediate shift amount is not supported). The barrel shifter takes 16-bit input operand and 6-bit amount value, and
generates 32-bit shifted output values. The destination of shifted value is two 16-bit shift output register SG and SR
register. The SG register holds the value of shifted out, and the SR register holds the shifted 16-bit values.

The flags are affected as a result of the barrel shifter output, as well as a result of the ARU output. When the result is
transferred into the barrel shifter output register, the flags represent the shifter output register status. The C, N, and Z
flag in MSR0 register is used common to the ARU and the BEU, but the V flag is different. The ARU uses the VA
and VB flags as overflow flag, and the BEU uses the VS flag as overflow flag.

Shifting Operations

Several shift operations are available using the barrel shifter, all of them are performed in a single cycle. The detailed
operations of each shift instruction are depicted in figure 2.15. If 6-bit shift amount value is positive, shift left operation
is performed and if negative, shift right operation is performed. After all barrel shifter operation is performed, the carry
flag has the bit value which is shifted out finally.

"ESFT" instruction performs a standard logical shift operation. The shifted bit pattern is stored into the 16-bit SR
register (Shifter Result register), and the shifted out bit pattern is stored into the 16-bit SG register (Shifter Guard
register). When shift left operation, MSBs of SG register and LSBs of SR register is filled with zeros. When shift right
operation, LSBs of SG register and MSBs of SR register is filled with zeros. "ESFTA" instruction performs a
standard arithmetic shift operation. the operation is all the same as a logical shift except that the MSBs of SG
register or MSBs of SR register is sign-extended instead of being filled with zeros.

"ESFTD" instruction is provided for double precision shift operation. With this instruction, one can shift 32-bit number
stored in two registers. Unlike standard logical and arithmetic shift, this instruction only updates the SG register with
the values that is ORed previous SG register value and shifted out result from barrel shifter. The following codes are
examples of double precision shift operation.

// Double Precision Left ({SG,SR} ← {B,A} <<SA
ESFT A,SA // Lower Part Shift
ESFTD B,SA // Upper Part Shift
// Double Precision Right ({SR,SG} ← {B,A}>>SA
ESFT B,SA // Upper Part Shift
ESFTD A,SA // Lower Part Shift

S3FB42F MAC2424

25-33

"ESFTL" instruction is used for bit-stream manipulation. It links the previously shifted data with the current data. The
operation of this instruction is the same as logical shift instruction except that the shifted out result is ORed with
previous SG register values. This ORing process makes it possible to concatenate the previous data and the current
data. This instruction is valid only when the magnitude of shift amount is greater than 16. The linking process
example is as follows.

// Left Link ({SG,SR} ← B<<A and link SI
ESFT B,A // Previous Data Shift
ESUB A,#16 // Preprocessing for Linking
ESFTL SI,A // Current Data Shift

// Right Link ({SR,SG} ← B>>A and link SI
ESFT B,A // Previous Data Shift
EADD A,#16 // Preprocessing for Linking
ESFTL SI,A // Current Data Shift

MAC2424 S3FB42F

25-34

Input

0's0's

SRSG

0's0's

Shifter Input

Shifter Output

ESFT (Logical Shift)

ESFTA (Arithmetic Shift)

ESFTD (Double-Precision Shift)

ESFTL (Linked Shift)

0

0

0

15
Input

015

15015

31

SRSG
015015

Registers

031

Input

0'ssign's

SRSG

0'ssign's

Shifter Input

Shifter Output

0

0

0

15
Input

015

15015

31

SRSG
015015

Registers

031

Input

0's0's 0's0's

Shifter Input

Shifter Output

0

0

15
Input

015

31 031

SG
015

SG
015

Input

0's0's 0's0's

Shifter Input

Shifter Output

0

0

15
Input

015

31 031

SG
015

SR
015

SG
015

SR
015

Registers

Registers

Left Shift Operations Right Shift Operations

Figure 25-17. Various Barrel Shifter Instruction Operation

S3FB42F MAC2424

25-35

Bit-Field Operation

The barrel shifter supports a bit-field masking operation. This operation can be used for data bit-stream manipulation
only. Various bit-field operations such as bit set, bit reset, bit change, and bit test operation is supported in
CalmRISC, host processor. So the MAC2424 need not powerful bit operation capabilities. "ENMSK" instruction is
provided for bit-pattern masking. This instrucion masks MSBs of SG register with selected mask pattern. The mask
pattern is generated according to the 4-bit immediate operand embedded in the instruction.

EXPONENT BLOCK

The exponent block performs exponent evaluation of one of the two 24-bit accumulator registers Ai. The result of this
operation is a signed 6-bit value, and transferred into the Shift Amount register (SA). The source operand is
unaffected by this calculation.

The algorithm for determining the exponent result for a 24-bit number is as follows. Let N be the number of the sign
bits (i.e. the number of MSBs equal to bit 23) found in the evaluated number. The exponent result is N-1. This means
that the exponent is evaluated with respect to bit 24. Therefore, the exponent result is always greater than or equal to
zero. (Refer to following table as examples) A non-zero result represents an un-normalized number. When evaluating
the exponent value of one of the Ai accumulator, the result is the amount of left shifts that should be executed in
order to normalize the source operand. An exponent result equal to zero represents a normalized number.

Table 25-2. Exponent Evaluation and Normalization Example

Evaluated Number N Exponent Result Normalized Number

00001101…. 4 3 (shift left by 3) 01101….

11101010…. 3 2 (shift left by 2) 101010…

00000011…. 6 5 (shift left by 5) 011….....

11111011…. 5 4 (shift left by 4) 1011…….

MAC2424 S3FB42F

25-36

Normalization

Full normalization can be achieved in 2 cycles, using "EEXP" instruction, followed by "ESFT" instruction. The
"EEXP" instruction evaluates the exponent value of one of the Ai register. The second instruction "ESFT" is shifting
the evaluated number, according to the exponent result stored at SA register.

// Normalization
EEXP A
ESFT A,SA

The block normalization is also possible using the exponent unit and "EMIN" instruction. The "EMIN" instruction can
select the minimum exponent value from all evaluated exponent result.

Double Precision Supports

The MAC2424 Coprocessor has an instruction which can evaluate exponent values of double precision 48-bit data
operand. Double precision exponent evaluation can be achieved in 2 cycles, using a standard exponent valuation
instruction ("EEXP"), followed by "EEXPC" instruction. The "EEXP" instruction sets the VS flag when the source
operand has the all one value or the all zero value and sets the C flag with the LSB bit value of the source operand.
The C flag transfer the sign information of higher 24-bit data. After "EEXP" instruction is executed, the "EEXPC"
instruction evaluates the exponent value of lower 24-bit data and carry if the VS flag is set. And then the calculated
exponent value is added with previous SA register value. In this way, full double precision exponent calculation can
be done.

// Double Precision Exponent Evaluation about {A,B}
EEXP A
EEXPC B

S3FB42F MAC2424

25-37

INSTRUCTION SET MAP AND SUMMARY

ADDRESSING MODES

Various addressing modes, including indirect linear and modulo addressing, short and long direct addressing, and
immediate, are implemented in the MAC2424 coprocessor.

(1) Indirect Addressing Mode

Indirect Addressing for Read Operation
@RP0+S0, @RP0+S1, @RP1+S0, @RP1+S1, @RP2+S0, @RP2+S1, @RP3+S0, @RP3+S1
One of the RPU pointer registers (RP0, RP1, RP2, RP3) points to one of the 32K data words. The data location
content, pointed to by the pointer register, is the source operand. The RPi pointer register is modified with one of two
4-bit or 8-bit source index values (S0 or S1 field) which reside in the index register after the instruction is executed.
The source index values are sign extended to 15-bit and added to 15-bit pointer values in RPi register. The RP1 and
RP2 register can only use 4-bit source index value. The RP0 and RP3 register can use extended 8-bit source index
value if XSD bit of MSR0 register is set.

EADD A, @RP0+S1 (When XSD = 1)

Before Execution After Execution

008010hA

RP0 (no modulo) 0010h

Data Loacation 10h 000011h

SD0 F333h

SD0E 0122h

008021h

0033h

000011h

F333h

0122h

Figure 25-18. Indirect Addressing Example I (Read Operation)

MAC2424 S3FB42F

25-38

Indirect Addressing for Write Operation
@RP0+D0, @RP0+D1, @RP1+D0, @RP1+D1, @RP2+D0, @RP2+D1, @RP3+D0, @RP3+D1
One of the RPU pointer registers (RP0, RP1, RP2, RP3) points to one of the 32K data words. The data location
content, pointed to by the pointer register, is the destination operand. The RPi pointer register is modified with one of
two 4-bit or 8-bit destination index values (D0 or D1 field) which reside in the index register after the instruction is
executed. The destination index values are sign extended to 15-bit and added to 15-bit pointer value in RPi register.
The RP1 and RP2 register can only use 4-bit source index value. The RP0 and RP3 register can use extended 8-bit
source index value if XSD bit of MSR0 register is set.

ELD @RP1+D0, B

Before Execution After Execution

008010hB

RP1 (no modulo) 0020h

Data Loacation 20h 000011h

SD1 1819h

008010h

0018h

008010h

1819h

Figure 25-19. Indirect Addressing Example II (Write Operation)

S3FB42F MAC2424

25-39

(2) Direct Addressing Mode

Short direct Addressing
form I : rpd1.adr:4
form II: rpdi.adr:5
The data location, one of the 32K data word, is one of the source operand or destination operand. The 15-bit data
location is composed of the page number in the MSB 10 or 11 bits of RPD0 or RPD1 register (except bit 15) and the
direct address field (the offset in the page) in the instruction code. The short direct addressing form I only uses RPD1
register as a page value, and the form II uses RPD0 or RPD1 register specified in instruction code. The LSB 5 or 6
bits of RPD0 or RPD1 register is not used at all. And the bit 15 of RPD0 or RPD1 register is not used, either.

EADD A, RPD0.3h

Before Execution After Execution

008010hA

RPD0 0028h

Data Loacation 23h 000011h

008021h

0028h

000011h

Address Generation 0000000001 00011

14 045

RPD0[14:5] adr:5

Figure 25-20. Short Direct Addressing Example

MAC2424 S3FB42F

25-40

Long Direct Addressing
adr:15
The data location, one of the 32K data word, is one of the source operand or destination operand. The 15-bit data
location is specified as the second word of the instruction. There is no use of the page bits in the RPDi register in
this mode.

ELD 1234h, B

Before Execution After Execution

008010hB

Data Loacation 1234h 000011h

008010h

008010h

Address Generation 001001000110100

14 0

adr:15

Figure 25-21. Long Direct Addressing Example

S3FB42F MAC2424

25-41

(3) Immediate Mode

Short Immediate
form I : #imm:4
form II: #imm:5
The form I is used for 4-bit register field load in "ESDi" instruction and "ESECi" instruction, or masking pattern
generation in "ENMSK" instruction. The form II is used for one of the source operands. The 5-bit value is right-justified
and sign-extended to the 24-bit operand.

Long Immediate
form I : #imm:15
form II: #imm:16
The form I is used only when “ERPN” instruction is executed. The 15-bit immeidate value is used as an long index
values for address pointer register modification. The form II is used for one of the source operands. The 16-bit value is
right-justified and sign-extended to the 24-bit operand when the destination operand is 24-bit. When the destination
register has 16-bit width, the immediate value is no changed. The long immediate requires the second instruction
code.

MAC2424 S3FB42F

25-42

INSTRUCTION CODING

(1) Abbreviation Definition and Encoding

•• rps

Mnemonic Encoding Description

RP0+S0 000 RP0 post-modified by SD0 S0 field

RP0+S1 001 RP0 post-modified by SD0 S1 field

RP1+S0 010 RP1 post-modified by SD1 S0 field

RP1+S1 011 RP1 post-modified by SD1 S1 field

RP2+S0 100 RP2 post-modified by SD2 S0 field

RP2+S1 101 RP2 post-modified by SD2 S1 field

RP3+S0 110 RP3 post-modified by SD3 S0 field

RP3+S1 111 RP3 post-modified by SD3 S1 field

•• rpd

Mnemonic Encoding Description

RP0+D0 000 RP0 post-modified by SD0 D0 field

RP0+D1 001 RP0 post-modified by SD0 D1 field

RP1+D0 010 RP1 post-modified by SD1 D0 field

RP1+D1 011 RP1 post-modified by SD1 D1 field

RP2+D0 100 RP2 post-modified by SD2 D0 field

RP2+D1 101 RP2 post-modified by SD2 D1 field

RP3+D0 110 RP3 post-modified by SD3 D0 field

RP3+D1 111 RP3 post-modified by SD3 D1 field

•• rp0s

Mnemonic Encoding Description

RP0+S0 0 RP0 post-modified by SD0 S0 field

RP0+S1 1 RP0 post-modified by SD0 S1 field

•• rp3s

Mnemonic Encoding Description

RP3+S0 0 RP3 post-modified by SD3 S0 field

RP3+S1 1 RP3 post-modified by SD3 S1 field

S3FB42F MAC2424

25-43

Abbreviation Definition and Encoding (Continued)

•• mg1/mg1d/mg1s

Mnemonic Encoding Description

Y0 000 Y0[23:0] register

Y1 001 Y1[23:0] register

X0 010 X0[23:0] register

X1 011 X1[23:0] register

P 100 P[47:0] / P[47:24] register

PL 101 P[23:0] register

MA 110 current bank MA[51:0] / MA[47:24]

MAL 111 current bank MA[23:0]

•• mg2/mg2d/mg2s

Mnemonic Encoding Description

RP0 000 RP0[15:0] register

RP1 001 RP1[15:0] register

RP2 010 RP2[15:0] register

RP3 011 RP3[15:0] register

RPD0 100 RPD0[15:0] register

RPD1 101 RPD1[15:0] register

MC0 110 MC0[15:0] register

MC1 111 MC1[15:0] register

•• rpi

Mnemonic Encoding Description

RP0 00 RP0[15:0] register

RP1 01 RP1[15:0] register

RP2 10 RP2[15:0] register

RP3 11 RP3[15:0] register

•• sdi/sdis/sdid

Mnemonic Encoding Description

SD0 00 current bank of SD0[15:0] register (SD0 or SD0E)

SD1 01 SD1[15:0] register

SD2 10 SD2[15:0] register

SD3 11 current bank of SD3[15:0] register (SD3 or SD3E)

MAC2424 S3FB42F

25-44

Abbreviation Definition and Encoding (Continued)

•• mg

Mnemonic Encoding Description

Y0 00000 Y0[23:0] register

Y1 00001 Y1[23:0] register

X0 00010 X0[23:0] register

X1 00011 X1[23:0] register

P 00100 P[47:0] / P[47:24] register

PL 00101 P[23:0] register

MA 00110 current bank MA[51:0] / MA[47:24] register

MAL 00111 current bank MA[23:0] register

RP0 01000 RP0[15:0] register

RP1 01001 RP1[15:0] register

RP2 01010 RP2[15:0] register

RP3 01011 RP3[15:0] register

RPD0 01100 RPD0[15:0] register

RPD1 01101 RPD1[15:0] register

MC0 01110 MC0[15:0] register

MC1 01111 MC1[15:0] register

SD0 01000 current bank of SD0[15:0] register (SD0 or SD0E)

SD1 01001 SD1[15:0] register

SD2 01010 SD2[15:0] register

SD3 01011 current bank of SD3[15:0] register (SD3 or SD3E)

SA 01100 SA[5:0] register

SI 01101 SI[15:0] register

SG 01110 SG[15:0] register

SR 01111 SR[15:0] register

MSR0 11000 MSR0[15:0] register

MSR1 11001 MSR1[15:0] register

MSR2 11010 MSR2[15:0] register

– 11011 reserved

MASR 11100 arithmetic right one bit shifted current MA[47:24] register

MASL 11101 arithmetic left one bit shifted current MA[47:24] register

MARN 11110 rounded current MA[47:24] register

PRN 11111 rounded P[47:24] register

* Grayed Field : read only register

S3FB42F MAC2424

25-45

Abbreviation Definition and Encoding (Continued)

• mgx

Mnemonic Encoding Description

Y0 00 Y0[23:0] register

Y1 01 Y1[23:0] register

X0 10 X0[23:0] register

X1 11 X1[23:0] register

• mga

Mnemonic Encoding Description

P 00 P[47:0] / P[47:24] register

A 01 A[23:0] register

MA 10 current bank MA[51:0] / MA[47:24] register

B 11 B[23:0] register

• srg/srgd/srgs

Mnemonic Encoding Description

SA 00 SA[5:0] register

SI 01 SI[15:0] register

SG 10 SG[15:0] register

SR 11 SR[15:0] register

• asr

Mnemonic Encoding Description

A 00 A[15:0] register

B 01 B[15:0] register

SI 10 SI[15:0] register

SR 11 SR[15:0] register

• asa

Mnemonic Encoding Description

A 00 A[5:0] register

B 01 B[5:0] register

SA 10 SA[5:0] register

– 11 reserved

MAC2424 S3FB42F

25-46

Abbreviation Definition and Encoding (Continued)

• Ai

Mnemonic Encoding Description

A 0 A[23:0] register

B 1 B[23:0] register

• mci

Mnemonic Encoding Description

MC0 0 MC0[15:0] register

MC1 1 MC1[15:0] register

• bs

Mnemonic Encoding Description

OPA 0000 MSR0[5]

OPB 0001 MSR0[6]

– 0010 reserved

– 0011 reserved

ME0 0100 RP0[15]

ME1 0101 RP1[15]

ME2 0110 RP2[15]

ME3 0111 RP3[15]

OPM 1000 MSR1[3]

PSH1 1001 MSR1[4]

USM 1010 MSR1[5]

BKMA 1011 MSR1[6]

MV 1100 MSR1[2]

XSD 1101 MSR1[9]

M16 1110 MSR1[10]

VM 1111 MSR1[1] or MSR1[0] by current MA register bank

• ns

Mnemonic Encoding Description

S0 00 SDi[3:0] register

S1 01 SDi[7:4] register

D0 10 SDi[11:8] register

D1 11 SDi[15:12] register

S3FB42F MAC2424

25-47

MAC2424 S3FB42F

25-48

Abbreviation Definition and Encoding (Continued)

• ereg

Mnemonic Encoding Description

AHL/AH 0000 A[23:16] register

AHL/AH 0001 A[23:16] register

ALH/AL 0010 A[15:8] register or A[15:0] register

ALL/AL 0011 A[7:0] register or A[15:0] register

BHL/BH 0100 B[23:16] register

BHL/BH 0101 B[23:16] register

BLH/BL 0110 B[15:8] register or B[15:0] register

BLL/BL 0111 B[7:0] register or B[15:0] register

SA 1000 SA[5:0] register

SA 1001 SA[5:0] register

SIH/SI 1010 SI[15:8] register or SI[15:0] register

SIL/SI 1011 SI[7:0] register or SI[15:0] register

SGH/SG 1100 SG[15:8] register or SG[15:0] register

SGL/SG 1101 SG[7:0] register or SG[15:0] register

SRH/SR 1110 SR[15:8] register or SR[15:0] register

SRL/SR 1111 SR[7:0] register or SR[15:0] register

• 1st : CalmRISC8 as a host / 2nd : CalmRISC16 as a host

S3FB42F MAC2424

25-49

Abbreviation Definition and Encoding (Continued)

• cct

Mnemonic Encoding Description

Z 0000 Z = 1

NZ 0001 Z = 0

NEG 0010 N = 1

POS 0011 N = 0

C 0100 C = 1

NC 0101 C = 0

VA 0110 VA = 1

VB 0111 VB = 1

GT 1000 N = 0 and Z = 0

LE 1001 N = 1 or Z = 1

VM0 1010 VM0 = 1

VM1 1011 VM1 = 1

VS 1100 VS = 1

– 1101 reserved

MV 1110 MV = 1

– 1111 reserved

MAC2424 S3FB42F

25-50

Abbreviation Definition and Encoding (Continued)

• emod0

Mnemonic Encoding Description

ELD 00 Load

EADD 01 Add

ESUB 10 Subtract

ECP 11 Compare

• emod1

Mnemonic Encoding Description

ESRA(T) 0000 Arithmetic shift right 1-bit

ESLA(T) 0001 Arithmetic shift left 1-bit

ESRA8(T) 0010 Arithmetic shift right 8-bit

ESLA8(T) 0011 Arithmetic shift left 8-bit

ESRC(T) 0100 Arithmetic shift right 1-bit with Carry

ESLC(T) 0101 Arithmetic shift left 1-bit with Carry

EINCC(T) 0110 Increment with Carry

EDECC(T) 0111 Decrement with Carry

ENEG(T) 1000 Negate

EABS(T) 1001 Absolute

EFS16(T) 1010 Force to Sign bit 23 ~ bit 8 by bit 7

EFZ16(T) 1011 Force to Zero bit 23 ~ bit 8

EFS8(T) 1100 Force to Sign bit 23 ~ bit 16 by bit 15

EFZ8(T) 1101 Force to Zero bit 23 ~ bit 16

EEXP(T) 1110 Exponent detection

EEXPC(T) 1111 Exponent detection with Carry

NOTE: “T” suffix means that instruction is executed when T flag is set.

• XiYi

Mnemonic Encoding Description

X0Y0 00 X0[23:0] * Y0[23:0]

X0Y1 01 X0[23:0] * Y1[23:0]

X1Y0 10 X1[23:0] * Y0[23:0]

X1Y1 11 X1[23:0] * Y1[23:0]

S3FB42F MAC2424

25-51

Abbreviation Definition and Encoding (Continued)

• emod2

Mnemonic Encoding Description

ESRA 0000 Arithmetic shift right 1-bit

ESLA 0001 Arithmetic shift left 1-bit

ERND 0010 Rounding

ECR 0011 Clear

ESAT 0100 Saturate

ERESR 0101 Restore Remainder

– 0110 reserved

– 0111 reserved

ELD MA0,MA1 1000 Load from MA1 to MA0

ELD MA1,MA0 1001 Load from MA0 to MA1

EADD MA,P 1010 Add MA and P

ESUB MA,P 1011 Subtract P from MA

EADD MA,PSH 1100 Add MA and 24-bit right shifted P

ESUB MA,PSH 1101 Subtract 24-bit right shifted P from MA

EDIVQ 1110 Division Step

– 1111 reserved

• Xi

Mnemonic Encoding Description

X0 0 X0[23:0] register

X1 1 X1[23:0] register

• Yi

Mnemonic Encoding Description

Y0 0 Y0[23:0] register

Y1 1 Y1[23:0] register

• rs

Mnemonic Encoding Description

ER 0 Bit Reset Instruction

ES 1 Bit Set Instruction

MAC2424 S3FB42F

25-52

(2) Overall COP instruction set map

Instruction 11 10 9 8 7 6 5 4 3 2 1 0

EMAD XiYi mgx,@rps 0 0 0 0 0 XiYi mgx rps

EMSB XiYi mgx,@rps 0 0 0 0 1 XiYi mgx rps

EMLD XiYi mgx,@rps 0 0 0 1 0 XiYi mgx rps

EMUL XiYi mgx,@rps 0 0 0 1 1 XiYi mgx rps

EADD A,MA mgx,@rps 0 0 1 0 0 0 0 mgx rps

ESUB A,MA mgx,@rps 0 0 1 0 0 0 1 mgx rps

ELD A,MA mgx,@rps 0 0 1 0 0 1 0 mgx rps

EADD MA,P mgx,@rps 0 0 1 0 0 1 1 mgx rps

ESUB MA,P mgx,@rps 0 0 1 0 1 0 0 mgx rps

ELD MA,P mgx,@rps 0 0 1 0 1 0 1 mgx rps

EADD MA,P @rpd,mga 0 0 1 0 1 1 0 mga rpd

ESUB MA,P @rpd,mga 0 0 1 0 1 1 1 mga rpd

ELD MA,P @rpd,mga 0 0 1 1 0 0 0 mga rpd

EADD A,MA @rpd,mga 0 0 1 1 0 0 1 mga rpd

ESUB A,MA @rpd,mga 0 0 1 1 0 1 0 mga rpd

ELD A,MA @rpd,mga 0 0 1 1 0 1 1 mga rpd

EADD A,MA MA,@rps 0 0 1 1 1 0 0 0 0 rps

ESUB A,MA MA,@rps 0 0 1 1 1 0 0 0 1 rps

ELD A,MA MA,@rps 0 0 1 1 1 0 0 1 0 rps

EADD MA,P A,@rps 0 0 1 1 1 0 0 1 1 rps

ESUB MA,P A,@rps 0 0 1 1 1 0 1 0 0 rps

ELD MA,P A,@rps 0 0 1 1 1 0 1 0 1 rps

ELD Ai,@rps 0 0 1 1 1 0 1 1 Ai rps

EADD Ai,@rps 0 0 1 1 1 1 0 0 Ai rps

ESUB Ai,@rps 0 0 1 1 1 1 0 1 Ai rps

ECP Ai,@rps 0 0 1 1 1 1 1 0 Ai rps

ELD @rpd,Ai 0 0 1 1 1 1 1 1 Ai rpd

ELD mg1,@rps 0 1 0 0 0 0 mg1 rps

ELD @rpd,mg1 0 1 0 0 0 1 mg1 rpd

NOTE: “d” means DON’T CARE.

S3FB42F MAC2424

25-53

Overall COP instruction set map (Continued)

Instruction 11 10 9 8 7 6 5 4 3 2 1 0

ELD srg,@rps 0 1 0 0 1 0 0 srg rps

ELD @rpd,srg 0 1 0 0 1 0 1 srg rpd

EMAX Ai,@rps 0 1 0 0 1 1 0 0 Ai rps

EMIN Ai,@rps 0 1 0 0 1 1 0 1 Ai rps

ETST cct 0 1 0 0 1 1 1 0 cct

ELD Xi,@rp0s Yi,@rp3s 0 1 0 0 1 1 1 1 Yi rp3s Xi rp0s

EMAD XiYi Xi,@rp0s Yi,@rp3s 0 1 0 1 0 0 XiYi Yi rp3s Xi rp0s

EMSB XiYi Xi,@rp0s Yi,@rp3s 0 1 0 1 0 1 XiYi Yi rp3s Xi rp0s

EMLD XiYi Xi,@rp0s Yi,@rp3s 0 1 0 1 1 0 XiYi Yi rp3s Xi rp0s

EMUL XiYi Xi,@rp0s Yi,@rp3s 0 1 0 1 1 1 XiYi Yi rp3s Xi rp0s

ELD rpi,rpd1.adr:4 0 1 1 0 0 0 rpi adr:4

ELD rpd1.adr:4,rpi 0 1 1 0 0 1 rpi adr:4

ELD rpdi.adr:5,Ai 0 1 1 0 1 rpdi Ai adr:5

ELD Ai,rpdi.adr:5 0 1 1 1 0 rpdi Ai adr:5

EADD Ai,rpdi.adr:5 0 1 1 1 1 rpdi Ai adr:5

ESUB Ai,rpdi.adr:5 1 0 0 0 0 rpdi Ai adr:5

ECP Ai,rpdi.adr:5 1 0 0 0 1 rpdi Ai adr:5

ELD mgx,#imm:16 1 0 0 1 0 0 mgx imm:16

ELD rpi,#imm:16 1 0 0 1 0 1 rpi imm:16

ELD sdi,#imm:16 1 0 0 1 1 0 sdi imm:16

ERPN rpi,#imm:15 1 0 0 1 1 1 0 rpi Imm:15

ELD mci,#imm:16 1 0 0 1 1 1 1 mci imm:16

ELD Ai,#imm:16 1 0 1 0 0 0 0 Ai imm:16

EADD Ai,#imm:16 1 0 1 0 0 0 1 Ai imm:16

ESUB Ai,#imm:16 1 0 1 0 0 1 0 Ai imm:16

ECP Ai,#imm:16 1 0 1 0 0 1 1 Ai imm:16

ELD adr:15,Ai 1 0 1 0 1 0 0 0 Ai adr:15

ELD Ai,adr:15 1 0 1 0 1 0 0 1 Ai adr:15

EADD Ai,adr:15 1 0 1 0 1 0 1 0 Ai adr:15

ESUB Ai,adr:15 1 0 1 0 1 0 1 1 Ai adr:15

ECP Ai,adr:15 1 0 1 0 1 1 0 0 Ai adr:15

NOTE: “d” means DON’T CARE.
“Gray” means 2 word Instruction

MAC2424 S3FB42F

25-54

S3FB42F MAC2424

25-55

Overall COP instruction set map (Continued)

Instruction 11 10 9 8 7 6 5 4 3 2 1 0

EMOD2 MA 1 0 1 0 1 1 0 1 emod2

ER/ES bs 1 0 1 0 1 1 1 rs bs

ELD mg1d,mg1s 1 0 1 1 0 0 mg1d mg1s

ELD mg2d,mg2s 1 0 1 1 0 1 mg2d mg2s

ELD sdid,sdis 1 0 1 1 1 0 0 0 sdid sdis

ELD srgd,srgs 1 0 1 1 1 0 0 1 srgd srgs

ERPS rps 1 0 1 1 1 0 1 0 0 rps

ERPD rpd 1 0 1 1 1 0 1 0 1 rpd

ERPR rpi 1 0 1 1 1 0 1 1 0 0 rpi

reserved 1 0 1 1 1 0 1 1 1 ddd

EMOD1 Ai 1 0 1 1 1 1 ts Ai emod1

EMAD XiYi A,MA 1 1 0 0 0 0 0 0 0 0 XiYi

EMSB XiYi A,MA 1 1 0 0 0 0 0 0 0 1 XiYi

EMLD XiYi A,MA 1 1 0 0 0 0 0 0 1 0 XiYi

EMUL XiYi A,MA 1 1 0 0 0 0 0 0 1 1 XiYi

EMAD XiYi A,MASL 1 1 0 0 0 0 0 1 0 0 XiYi

EMSB XiYi A,MASL 1 1 0 0 0 0 0 1 0 1 XiYi

EMLD XiYi A,MASL 1 1 0 0 0 0 0 1 1 0 XiYi

EMUL XiYi A,MASL 1 1 0 0 0 0 0 1 1 1 XiYi

EMAD XiYi A,MASR 1 1 0 0 0 0 1 0 0 0 XiYi

EMSB XiYi A,MASR 1 1 0 0 0 0 1 0 0 1 XiYi

EMLD XiYi A,MASR 1 1 0 0 0 0 1 0 1 0 XiYi

EMUL XiYi A,MASR 1 1 0 0 0 0 1 0 1 1 XiYi

EMAD XiYi 1 1 0 0 0 0 1 1 0 0 XiYi

EMSB XiYi 1 1 0 0 0 0 1 1 0 1 XiYi

EMLD XiYi 1 1 0 0 0 0 1 1 1 0 XiYi

EMUL XiYi 1 1 0 0 0 0 1 1 1 1 XiYi

ESFT asr,asa 1 1 0 0 0 1 0 0 asa asr

ESFTA asr,asa 1 1 0 0 0 1 0 1 asa asr

ESFTL asr,asa 1 1 0 0 0 1 1 0 asa asr

ESFTD asr,asa 1 1 0 0 0 1 1 1 asa asr

NOTE: “d” means DON’T CARE.

MAC2424 S3FB42F

25-56

Overall COP instruction set map (Continued)

Instruction 11 10 9 8 7 6 5 4 3 2 1 0

ELD SA,#imm:5 1 1 0 0 1 0 0 imm:5

ENMSK SG,#imm:4 1 1 0 0 1 0 1 0 imm:4

EMOD0 Aid,Ais 1 1 0 0 1 0 1 1 emod0 Aid Ais

ELD mg,Ai 1 1 0 0 1 1 Ai mg

EMOD0 Ai,mg 1 1 0 1 emod0 Ai mg

ESD0 ns #imm:4 1 1 1 0 0 0 ns imm:4

ESD1 ns #imm:4 1 1 1 0 0 1 ns imm:4

ESD2 ns #imm:4 1 1 1 0 1 0 ns imm:4

ESD3 ns #imm:4 1 1 1 0 1 1 ns imm:4

ENOP 1 1 1 1 0 0 0 0 dddd

ESEC0 #imm:4 1 1 1 1 0 0 0 1 imm:4

ESEC1 #imm:4 1 1 1 1 0 0 1 0 imm:4

ESEC2 #imm:4 1 1 1 1 0 0 1 1 imm:4

ELD Ai,#imm:5 1 1 1 1 0 1 Ai imm:5

EADD Ai,#imm:5 1 1 1 1 1 0 Ai imm:5

ECP Ai,#imm:5 1 1 1 1 1 1 Ai imm:5

NOTE: “d” means DON’T CARE.

S3FB42F MAC2424

25-57

QUICK REFERENCE

opc op1 op2 op3 op4 op5 Function Flag

EMAD XiYi mgx @rps – – MA ← MA+P, P ← Xi*Yi, op2 ← op3 VMi

EMSB MA ← MA-P, P ← Xi*Yi, op2 ← op3 VMi

EMLD MA ← P, P ← Xi*Yi, op2 ← op3 VMi

EMUL P ← Xi*Yi, op2 ← op3 –

EMAD XiYi Xi @rp0s Yi @rp3s MA ← MA+P, P ← Xi*Yi, op2 ← op3,
op4 ← op5

VMi

EMSB MA ← MA-P, P ← Xi*Yi, op2 ← op3,
op4 ← op5

VMi

EMLD MA ← P, P ← Xi*Yi, op2 ← op3, op4
← op5

VMi

EMUL P ← Xi*Yi, op2 ← op3, op4 ← op5 –

EMAD XiYi A MA/

MASR/

MASL

MA ← MA+P, P ← Xi*Yi, op2 ← op3 VMi,Z,VA,N

EMSB MA ← MA-P, P ← Xi*Yi, op2 ← op3 VMi,Z,VA,N

EMLD MA ← P, P ← Xi*Yi, op2 ← op3 VMi,Z,VA,N

EMUL P ← Xi*Yi, op2 ← op3 N,VA,Z

EMAD XiYi – – – – MA ← MA+P, P ← Xi*Yi VMi

EMSB MA ← MA-P, P ← Xi*Yi VMi

EMLD MA ← P, P ← Xi*Yi VMi

EMUL P ← Xi*Yi –

EADD A MA mgx @rps – op1 ← op1+op2, op3 ← op4 C,Z,VA,N

ESUB op1 ← op1-op2, op3 ← op4 C,Z,VA,N

ELD op1 ← op2, op3 ← op4 Z,VA,N

EADD MA P mgx @rps – op1 ← op1+op2, op3 ← op4 VMi

ESUB op1 ← op1-op2, op3 ← op4 VMi

ELD op1 ← op2, op3 ← op4 –

MAC2424 S3FB42F

25-58

QUICK REFERENCE

opc op1 op2 op3 op4 op5 Function Flag

EADD A MA @rpd mga – op1 ← op1+op2, op3 ← op4 C,Z,VA,N

ESUB op1 ← op1-op2, op3 ← op4 C,Z,VA,N

ELD op1 ← op2, op3 ← op4 Z,VA,N

EADD MA P @rpd mga – op1 ← op1+op2, op3 ← op4 VMi

ESUB op1 ← op1-op2, op3 ← op4 VMi

ELD op1 ← op2, op3 ← op4 –

EADD A MA MA @rps – op1 ← op1+op2, op3 ← op4 C,Z,VA,N,VMi

ESUB op1 ← op1-op2, op3 ← op4 C,Z,VA,N,VMi

ELD op1 ← op2, op3 ← op4 Z,VA,N,VMi

EADD MA P A @rps – op1 ← op1+op2, op3 ← op4 VMi,Z,VA,N

ESUB op1 ← op1-op2, op3 ← op4 VMi,Z,VA,N

ELD op1 ← op2, op3 ← op4 Z,VA,N

ELD Ai mg/@rps
Ai/adr:15
rpdi.adr:5
#imm:16

– – – op1 ← op2 Z,Vi,N

EADD op1 ← op1+op2 C,Z,Vi,N

ESUB op1 ← op1-op2 C,Z,Vi,N

ECP op1-op2 C,Z,Vi,N

ELD Ai #imm:5 op1 ← op2 Z,Vi,N

EADD op1 ← op1+op2 C,Z,Vi,N

ECP op1-op2 C,Z,Vi,N

ECP Xi @rp0s Yi @rp3s – op1 ← op2, op3 ← op4 –

NOTE: opc - opcode, op1 - operand1, op2 - operand2, op3 - operand3, op4 - operand4, op5 - operand5
VMi - VM0 or VM1 according to the current MA bank (when VMi is written, MV is written)
Vi - VA or VB according to the Ai bit

S3FB42F MAC2424

25-59

Quick Reference (Continued)

opc op1 op2 Function Flag

ELD @rpd/mg
adr:15

rpdi:adr:5

Ai op1 ← op2 –

ELD mgx/mci #imm:16 op1 ← op2 –

ELD mg1 mg1/@rps op1 ← op2 -(VMi) (note)

ELD srg srg/@rps op1 ← op2 –

ELD @rpd mg1/srg op1 ← op2 –

ELD mg2 mg2 op1 ← op2 –

ELD rpi rpd1.adr:4

#imm:16

op1 ← op2 –

ELD sdi sdi/#imm:16 op1 ← op2 –

ELD MA1 MA0 op1 ← op2 VM1

ELD MA0 MA1 op1 ← op2 VM0

ELD rpd1.adr:4 rpi op1 ← op2 –

EADD MA P/PSH op1 ← op1+op2 VMi

ESUB op1 ← op1-op2 VMi

EMAX Ai @rps if (N=1) op1 ← op2, RP3 ← rpi Z,Vi,N

EMIN if (N=0) op1 ← op2, RP3 ← rpi Z,Vi,N

ERPN rpi #imm:15 op1 ← mod(op1+op2) –

ERPS rps – op1 ← mod(op1+Si) –

ERPD rpd – op1 ← mod(op1+Di) –

ERPR rpi – RP3 ← bit_reverse(op1) –

ETST cct – T ← cct T

ER/ES bs – op1 ← 0/1 –

ESFT asr asa {SG,SR} ← op1<</>>op2 logical shift C,Z,VS,N

ESFTA {SG,SR} ← op1<</>>op2 arithmetic shift C,Z,VS,N

ESFTD SG ← SG|(op1<</>>op2) C,Z,VS,N

ESFTL SR ← op1<</>>op2, SG<-SG|(op1<</>>op2) C,Z,VS,N

MAC2424 S3FB42F

25-60

Quick Reference (Continued)

opc op1 op2 Function Flag

ENMSK SG #imm:4 SG ← SG&mask_pattern by #imm:4 Z,VS,N

ESD0 ns #imm:4 SD0.ns ← op2 –

ESD1 SD1.ns ← op2 –

ESD2 SD2.ns ← op2 –

ESD3 SD3.ns ← op2 –

ENOP – – No Operation –

ESEC0 #imm:4 – MSR2.SEC0 ← op2 –

ESEC1 MSR2.SEC1 ← op2 –

ESEC2 MSR2.SEC2 ← op2 –

EDIVQ MA P if (VMi=0)
 new remainder = op1-op2
else if (VMi=1)
 new remainder = op1+op2
if (new remainder>0)
 op1 ← new_remainder<<1 + 1
else
 op1 ← new_remainder<<1

VMi

NOTE: VMi is affected when op1 is “MA”

S3FB42F MAC2424

25-61

Quick Reference (Continued)

opc op1 op2 Function Flag

ERESR MA – if (VMi=1) op1 ← op1+2*P VMi

ESLA op1 ← op1<<1 arithmetic VMi

ESRA op1 ← op1>>1 arithmetic VMi

ECR op1 ← 0 VMi

ESAT op1 ← saturated(op1) VMi

ERND op1 ← op1+800000h, op1[23:0]<-0 VMi

ESLA/ESLAT (note) Ai – op1 ← op1<<1 arithmetic C,Z,Vi,N

ESRA/ESRAT (note) op1 ← op1>>1 arithmetic C,Z,Vi,N

ESLA8/ESLA8T (note) op1 ← op1<<8 arithmetic C,Z,Vi,N

ESRA8/ESRA8T (note) op1 ← op1>>8 arithmetic C,Z,Vi,N

ESLC/ESLCT (note) op1 ← {op1[22:0],C} C,Z,Vi,N

ESRC/ESRCT (note) op1 ← {C,op1[23:1]} C,Z,Vi,N

EINCC/EINCCT (note) op1 ← op1+C C,Z,Vi,N

EDECC/EDECCT (note) op1 ← op1-~C C,Z,Vi,N

EABS/EABST (note) op1 ← |op1| C,Z,Vi,N

ENEG/ENEGT (note) op1 ← ~op1+1 C,Z,Vi,N

EFS16/EFS16T (note) op1[23:8] ← op1[7] C,Z,Vi,N

EFZ16/EFZ16T (note) op1[23:8] ← 0 C,Z,Vi,N

EFS8/EFS8T (note) op1[23:16] ← op1[16] C,Z,Vi,N

EFZ8/EFZ8T (note) op1[23:16] ← 0 C,Z,Vi,N

EEXP/EEXPT (note) SA ← exponent of (op1) C,Z,VS,N

EEXPC/EEXPCT (note) if (VS=1) SA ← SA+exponent of ({C,op1}) C,Z,VS,N

NOTE: if T=1, instruction is executed

MAC2424 S3FB42F

25-62

INSTRUCTION SET

GLOSSARY

This chapter describes the MAC2424 instruction set, with the details of each instruction. The following notations are
used for the description.

Notation Interpretation

<opN> Operand N. N can be omitted if there is only one operand. Typically,
<op1> is the destination (and source) operand and <op2> is a source operand.

<dest>, <src> Destination and source operand for load.

adr:N N-bit direct address specifier

imm:N N-bit immediate number

& Bit-wise AND

| Bit-wise OR

~ Bit-wise NOT

^ Bit-wise XOR

N**M Mth power of N

It is further noted that only the affected flags are described in the tables in this section. That is, if a flag is not
affected by an operation, it is NOT specified.

S3FB42F MAC2424

25-63

INSTRUCTION DESCRIPTION

EABS/EABST*
 – Absolute

Format: EABS(T) Ai

Operation: Ai ← |Ai|
This instruction calculates the absolute value of one of 24-bit Accumulator(Ai), and stores the
result back into the same Accumulator.

Flags: C: set if carry is generated. Reset if not.
Z: set if result is zero. Reset if not.
Vi**: set if overflow is generated. Reset if not.
N: exclusive OR of Vi and MSB of result.

Notes: * EABST instruction can be executed only when the T flag is set.
 Otherwise, No operation is performed.
** Vi denotes for VA or VB according to Ai

Examples: EABS A
EABST B

of Words: 1

MAC2424 S3FB42F

25-64

EADD1)
 – Add Accumulator

Format: EADD Ai, <op>
<op>: @rps
rpdi.adr: 5/adr:15
#simm: 5/#simm:16
Ai
mg

Operation: Ai ← Ai + <op>
This instruction adds the values of one of 24-bit Accumulator(Ai) and <op> together,
and stores the result back into the same Accumulator.

Flags: C: set if carry is generated. Reset if not.
Z: set if result is zero. Reset if not.
Vi*: set if overflow is generated. Reset if not.
N: exclusive OR of Vi and MSB of result.

Notes: * Vi denotes for VA or VB according to Ai

Examples: EADD A, @RP0+S0
EADD B, RPD1.5h
EADD A, #0486h
EADD B, A
EADD A, RP0

of Words: 1
2 when <op> is: adr:15 or #simm:16

S3FB42F MAC2424

25-65

EADD2)
– Add Accumulator with One Parallel Move

Format: EADD A, MA <dest>,<src>
<dest>,<src>: mgx, @rps
 MA, @rps
 @rpd, mga

Operation: A <- A + MA, <dest> <- <src>
This instruction adds the values of 24-bit Accumulator A and higher 24-bit part of Multiplier
Accumulator MA together, and stores the result back into Accumulator A. This instruction also
stores source operand from memory or register to destination register or memory.

Flags: C: set if carry is generated by addition. Reset if not.
Z: set if result is zero by addition. Reset if not.
VA: set if overflow is generated by addition. Reset if not.
N: exclusive OR of V and MSB of result by addition.

Notes: None.

Examples: EADD A, MA X0,@RP0+S1
EADD A, MA MA,@RP1+S0
EADD A, MA @RP3+D1, A

of Words: 1

MAC2424 S3FB42F

25-66

EADD3)
 – Add Multiplier Accumulator

Format: EADD MA, <op>
<op>: P / PSH

Operation: MA ← MA + <op>
This instruction adds the values of 52-bit Multiplier Accumulator MA and <op> together, and
stores the result back into Multiplier Accumulator MA.

Flags: VMi*: set if result is overflowed to guard-bits. Reset if not.
MV: set if guard-bit is overflowed. Unchanged if not.

Notes: * VMi denotes for VM0 or VM1 according to the current MA bank.

Examples: EADD MA, P
EADD MA, PSH

of Words: 1

S3FB42F MAC2424

25-67

EADD4)
 – Add Multiplier Accumulator with One Parallel Move

Format: EADD MA, P, <dest>,<src>
<dest>,<src>: mgx, @rps
 A, @rps
 @rpd, mga

Operation: MA ← MA + P, <dest> ← <src>
This instruction adds the values of 52-bit Multiplier Accumulator MA and Product Register P
together, and stores the result back into Multiplier Accumulator MA. This instruction also stores
source operand from memory or register to destination register or memory.

Flags: VMi*: set if result is overflowed to guard-bits. Reset if not.
MV: set if guard-bit is overflowed. Unchanged if not.

Notes: * VMi denotes for VM0 or VM1 according to the current MA bank.

Examples: EADD MA, P Y0, @RP1+S1
EADD MA, P A, @RP2+S0
EADD MA, P @RP0+D0, B

of Words: 1

MAC2424 S3FB42F

25-68

ECLD – Coprocessor Accumulator Load from host processor

Format: ECLD ereg, GPR
ECLD GPR, ereg

Operation: ereg ← GRP or GPR ← ereg
This instruction moves the selected 8-bit general purpose register value of host processor to the
selected 8-bit field of Ai(A or B) accumulator register or moves the selected 8-bit field of Ai(A or
B) accumulator register to the 8-bit general purpose register. This instruction is mapped to “CLD”
instruction of CalmRISC microcontroller.

Flags: –

Notes: –

Examples: ECLD ALL, R0
ECLD R1, BHL

of Words: 1

S3FB42F MAC2424

25-69

ECP – Compare Accumulator

Format: ECP Ai, <op>
<op>: @rps
 rpdi.adr:5 / adr:15
 #simm:5 / #simm:16
 Ai
 mg

Operation: Ai - <op>
This Instruction compares the values of Accumulator Ai and <op> by subtracting <op> from
Accumulator. Content of Accumulator is not changed.

Flags: C: set if carry is generated. Reset if not.
Z: set if result is zero. Reset if not.
Vi*: set if overflow is generated. Reset if not.
N: exclusive OR of Vi and MSB of result.

Notes: * Vi denotes for VA or VB according to Ai

Examples: ECP A, @RP0+S0
ECP B, RPD1.5h
ECP A, #0486h
ECP B, A
ECP A, RP0

of Words: 1
2 when <op> is : adr:15 or #simm:16

MAC2424 S3FB42F

25-70

ECR – Clear MA Accumulator

Format: ECR MA

Operation: MA ← 0
This Instruction clears the value of current bank MA accumulator. The extension nibble of
selected MA accumulator is also cleared in 24-bit operation mode and unchanged in 16-bit
operation mode.

Flags: VMi*: 0.

Notes: * VMi denotes for VM0 or VM1 according to the current MA bank.

Examples: ECR MA

of Words: 1

S3FB42F MAC2424

25-71

EDECC/EDECCT*
 – Decrement with Carry

Format: EDECC(T) Ai

Operation: Ai ← Ai - ~C
This instruction subtracts 1 from the value of one of 24-bit Accumulator(Ai) if current carry flag is
cleared, and stores the result back into the same Accumulator.

Flags: C: set if carry is generated. Reset if not.
Z: set if result is zero. Reset if not.
Vi**: set if overflow is generated. Reset if not.
N: exclusive OR of Vi and MSB of result.

Notes: * EDECCT instruction can be executed only when the T flag is set.
Otherwise, No operation is performed.
** Vi denotes for VA or VB according to Ai

Examples: EDECC A
EDECCT B

of Words: 1

MAC2424 S3FB42F

25-72

EDIVQ – Division Step

Format: EDIVQ MA,P

Operation: if (VMi = 0)
 Adder output ← MA – P
else
 Adder output ← MA + P
if (Adder output > 0)
 MA ← Adder output * 2 + 1
else
 MA ← Adder output * 2
This Instruction adds or subtracts current bank MA accumulator from P register according to the
VMi bit value and calculates one bit quotient and new partial remainder.

Flags: VMi*: if (Adder output > 0) Vmi ← 0, else VMi ← 1

Notes: * VMi denotes for VM0 or VM1 according to the current MA bank.

Examples: EDIVQ MA,P

of Words: 1

S3FB42F MAC2424

25-73

EEXP/EEXPT*
 – Exponent Value Evaluation

Format: EEXP(T) Ai

Operation: SA ← exponent(Ai)
This instruction evaluates the exponent value of one of 24-bit Accumulator(Ai), and stores the
result back into 5-bit SA register.

Flags: C: set if LSB of source Ai accumulator is 1. Reset if not.
Z: set if exponent evaluation result is zero. Reset if not.
VS: set if the value of source Ai accumulator is all zeroes or all ones. Reset if not.
N: reset.

Notes: * EEXPT instruction can be executed only when the T flag is set.
Otherwise, No operation is performed.

Examples: EEXP A
EEXPT B

of Words: 1

MAC2424 S3FB42F

25-74

EEXPC/EEXPCT*
 – Exponent Value Evaluation with Carry

Format: EEXPC(T) Ai

Operation: if (VS = 1)
 SA ← exponent({C,Ai})
else
 no operation
This instruction evaluates the exponent value which concatenates carry and one of 24-bit
Accumulator(Ai), adds the result with SA register value, and stores the added result back into 5-
bit SA register. It can be used for multi-precision exponent evaluation.

Flags: C: set if LSB of source Ai accumulator is 1. Reset if not.
Z: set if exponent evaluation result is zero. Reset if not.
VS: set if the value of carry and source Ai accumulator is all zeroes or all ones. Reset if not.
N: reset.

Notes: * EEXPCT instruction can be executed only when the T flag is set.
Otherwise, No operation is performed.

Examples: EEXPC A
EEXPCT B

of Words: 1

S3FB42F MAC2424

25-75

EFS16/EFS16T*
 – Force to Sign MSB16 bits

Format: EFS16(T) Ai

Operation: Ai ← {16{Ai[7]},Ai[7:0]}
This instruction forces the value of MSB 16 bits of 24-bit Accumulator(Ai) with byte sign bit of Ai
register(Ai[7]), and stores the result back into the same Accumulator.

Flags: C: Reset.
Z: set if result is zero. Reset if not.
Vi**: Reset.
N: MSB of result.

Notes: * EFS16T instruction can be executed only when the T flag is set.
Otherwise, No operation is performed.
** Vi denotes for VA or VB according to Ai

Examples: EFS16 A
EFS16T B

of Words: 1

MAC2424 S3FB42F

25-76

EFS8/EFS8T*
 – Force to Sign MSB8 bits

Format: EFS8(T) Ai

Operation: Ai ← {8{Ai[15]},Ai[15:0]}
This instruction forces the value of MSB 8 bits of 24-bit Accumulator(Ai) with word sign bit of Ai
register(Ai[15]), and stores the result back into the same Accumulator.

Flags: C: Reset.
Z: set if result is zero. Reset if not.
Vi**: Reset.
N: MSB of result.

Notes: * EFS8T instruction can be executed only when the T flag is set.
Otherwise, No operation is performed.
** Vi denotes for VA or VB according to Ai

Examples: EFS8 A
EFS8T B

of Words: 1

S3FB42F MAC2424

25-77

EFZ16/EFZ16T*
 – Force to Zero MSB16 bits

Format: EFZ16(T) Ai

Operation: Ai ← {16{0},Ai[7:0]}
This instruction forces the value of MSB 16 bits of 24-bit Accumulator(Ai) with zero, and stores
the result back into the same Accumulator.

Flags: C: Reset.
Z: set if result is zero. Reset if not.
Vi**: Reset.
N: Reset.

Notes: * EFZ16T instruction can be executed only when the T flag is set.
Otherwise, No operation is performed.
** Vi denotes for VA or VB according to Ai

Examples: EFZ16 A
EFZ16T B

of Words: 1

MAC2424 S3FB42F

25-78

EFZ8/EFZ8T*
 – Force to Zero MSB8 bits

Format: EFZ8(T) Ai

Operation: Ai ← {8{0},Ai[15:0]}
This instruction forces the value of MSB 8 bits of 24-bit Accumulator(Ai) with zero, and stores the
result back into the same Accumulator.

Flags: C: Reset.
Z: set if result is zero. Reset if not.
Vi**: Reset.
N : Reset.

Notes: * EFZ8T instruction can be executed only when the T flag is set.
Otherwise, No operation is performed.
** Vi denotes for VA or VB according to Ai

Examples: EFZ8 A
EFZ8T B

of Words: 1

S3FB42F MAC2424

25-79

EINCC/EINCCT*
 – Increment with Carry

Format: EINCC(T) Ai

Operation: Ai ← Ai + C
This instruction adds 1 from the value of one of 24-bit Accumulator(Ai) if current carry flag is set,
and stores the result back into the same Accumulator.

Flags: C: set if carry is generated. Reset if not.
Z: set if result is zero. Reset if not.
Vi**: set if overflow is generated. Reset if not.
N: exclusive OR of Vi and MSB of result.

Notes: * EINCCT instruction can be executed only when the T flag is set.
Otherwise, No operation is performed.
** Vi denotes for VA or VB according to Ai

Examples: EINCC A
EINCCT B

of Words: 1

MAC2424 S3FB42F

25-80

ELD1)
 – Load Accumulator

Format: ELD Ai, <op>
<op>: @rps
 rpdi.adr:5 / adr:15
 #simm:5 / #simm:16
 Ai
 mg

Operation: Ai ← <op>
This instruction load <op> value to the one of 24-bit Accumulator(Ai).

Flags: Z: set if result is zero. Reset if not.
Vi*: set if overflow is generated. Reset if not.
N: set if loaded value is negative.

Notes: * Vi denotes for VA or VB according to Ai

Examples: ELD A, @RP0+S0
ELD B, RPD1.5h
ELD A, #0486h
ELD B, A
ELD A, RP0

of Words: 1
2 when <op> is : adr:15 or #simm:16

S3FB42F MAC2424

25-81

ELD2)
– Load Accumulator with One Parallel Move

Format: ELD A, MA <dest>,<src>
<dest>,<src>: mgx, @rps
 MA, @rps
 @rpd, mga

Operation: A ← MA, <dest> ← <src>
This instruction load higher 24-bit part of Multiplier Accumulator MA to the 24-bit Accumulator A.
This instruction also stores source operand from memory or register to destination register or
memory.

Flags: Z: set if result is zero by load. Reset if not.
VA: set if overflow is generated by load. Reset if not.
N: set if loaded value is negative.

Notes: None.

Examples: ELD A, MA X0,@RP0+S1
ELD A, MA MA,@RP1+S0
ELD A, MA @RP3+D1, A

of Words: 1

MAC2424 S3FB42F

25-82

ELD3) – Load Multiplier Accumulator

Format: ELD MA0, MA1
ELD MA1, MA0

Operation: MAi ← Maj
This instruction loads the value of the one 52-bit Multiplier Accumulator MA from the other
Multiplier Accumulator.

Flags: VMi*: set if result is overflowed to guard-bits. Reset if not.

Notes: * VMi denotes for VM0 or VM1 according to destination Multiplier Accumulator.

Examples: ELD MA1, MA0
ELD MA0, MA1

of Words: 1

S3FB42F MAC2424

25-83

ELD4)
– Load Multiplier Accumulator with One Parallel Move

Format: ELD MA, P <dest>,<src>
<dest>,<src>: mgx, @rps
 A, @rps
 @rpd, mga

Operation: MA ← A, <dest> ← <src>
This instruction load sign-extended 48-bit Product register P to the 52-bit Multiplier Accumulator
MA. This instruction also stores source operand from memory or register to destination register or
memory.

Flags: VMi*: set if result is overflowed to guard-bits. Reset if not

Notes: * VMi denotes for VM0 or VM1 according to destination Multiplier Accumulator.

Examples: ELD MA, P X0,@RP0+S1
ELD MA, P A,@RP1+S0
ELD MA, P @RP3+D1, A
ELD MA, P @RP0+D0, MA ; @RP0+D0 ← MA
 MA ← P

of Words: 1

MAC2424 S3FB42F

25-84

ELD5)
 – Load Other Registers or Memory

Format: ELD <dest>, <src>
<dest>,<src>: mg1, @rps
 srg, @rps
 @rpd, Ai
 @rpd, mg1
 @rpd, srg
 rpi, rpd1.adr:4
 rpd1.adr:4, rpi
 rpdi.adr:5, Ai
 adr:15, Ai
 mgx, #imm:16
 rpi, #imm:16
 sdi, #imm:16
 mci, #imm:16
 SA, #imm:5
 mg1d, mg1s
 mg2d, mg2s
 sdid, sdis
 srgd, srgs
 mg, Ai

Operation: <dest> ← <src>
This instruction load <src> value to <dest>. If the width of <src> is less than the width of <dest>,
<dest> is sign-extended, and if more, LSB part of <src> is written to <dest>

Flags: No effect when <dest> is not MA or Ai.
When <dest> is MA :
VMi*: set if result is overflowed to guard-bits. Reset if not
When <dest> is Ai :
Z: set if result is zero. Reset if not.
Vi**: set if overflow is generated. Reset if not.
N: set if loaded value is negative.

Notes: * VMi denotes for VM0 or VM1 according to destination Multiplier Accumulator.
** Vi denotes for VA or VB according to Ai

Examples: ELD @RP0+D0, B
ELD RPD1.5h, RP2
ELD MC0, #0486h
ELD RPD1, MC0
ELD X0, Y1
ELD MA, P ; MAH ← PH

of Words: 1
2 when <dest> or <src> is : adr:15 or #imm:16

S3FB42F MAC2424

25-85

ELD6) – Double Load

Format: ELD Xi,@rp0s Yi,@rp3s

Operation: Xi ← operand1 by @rp0s, Yi ← operand2 by @rp3s
This instruction loads two operands from data memory (one from X memory space, and the other
from Y memory space) to the specified 24-bit Xi and Yi register, respectively.

Flags: –

Notes: –

Examples: ELD X0,@RP0+S1 Y1,@RP3+S0

of Words: 1

MAC2424 S3FB42F

25-86

EMAD1) – Multiply and Add

Format: EMAD Xi,Yi

Operation: MA ← MA + P, P ← Xi * Yi
This instruction adds the values of 52-bit Multiplier Accumulator MA and P register together, and
stores the result back into Multiplier Accumulator MA. At the same time, multiplier multiplies Xi
register value and Yi register value, and stores the result to the P register.

Flags: VMi*: set if result is overflowed to guard-bits. Reset if not.
MV: set if guard-bit is overflowed. Unchanged if not.

Notes: * VMi denotes for VM0 or VM1 according to the current MA bank.

Examples: EMAD X1Y0

of Words: 1

S3FB42F MAC2424

25-87

EMAD2) – Multiply and Add with One Parallel Move

Format: EMAD Xi,Yi <dest>,<src>
<dest>,<src>: A,MA
 A,MASR*

 A,MASL**

 mgx,@rps

Operation: MA ← MA + P, P ← Xi * Yi, <dest> ← <src>
This instruction adds the values of 52-bit Multiplier Accumulator MA and P register together, and
stores the result back into Multiplier Accumulator MA. At the same time, multiplier multiplies Xi
register value and Yi register value, and stores the result to the P register. This instruction also
stores source operand from data memory or 24-bit higher portion of the MA register to the
destination register.

Flags: VMi***: set if result is overflowed to guard-bits. Reset if not.
MV: set if guard-bit is overflowed. Unchanged if not.
When <dest> is Ai
Z: set if the value to Ai is zero by load. Reset if not.
VA: set if overflow is generated by load. Reset if not.
N: set if loaded value is negative.

Notes: * MASR: 1-bit right shifted MA[47:24]
** MASL: 1-bit left shifted MA[47:24]
*** VMi denotes for VM0 or VM1 according to the current MA bank.

Examples: EMAD X1Y0 A,MASR
EMAD X0Y0 X0,@RP1+S1

of Words: 1

MAC2424 S3FB42F

25-88

EMAD3) – Multiply and Add with Two Parallel Moves

Format: EMAD Xi,Yi Xi,@rp0s Yi,@rp3s

Operation: MA ← MA + P, P ← Xi * Yi, Xi ← operand1 by @rp0s, Yi ← operand2 by @rp3s
This instruction adds the values of 52-bit Multiplier Accumulator MA and P register together, and
stores the result back into Multiplier Accumulator MA. At the same time, multiplier multiplies Xi
register value and Yi register value, and stores the result to the P register. This instruction also
stores two source operand from data memory (one from X memory space and one from Y
memory space) to the 24-bit Xi register and Yi register respectively.

Flags: VMi*: set if result is overflowed to guard-bits. Reset if not.
MV: set if guard-bit is overflowed. Unchanged if not.

Notes: * VMi denotes for VM0 or VM1 according to the current MA bank.

Examples: EMAD X1Y0 X0,@RP0+S1 Y0,@RP3+S0

of Words: 1

S3FB42F MAC2424

25-89

EMAX – Maximum Value Load

Format: EMAX Ai, <op>
<op>: @rps

Operation: if (N = 1)
 Ai ← <op>, RP3 ← current pointer value
else
 No Operation (Only pointer is updated)
This instruction conditionally loads <op> value to the one of 24-bit Accumulator(Ai) and latches
the current pointer value to the RP3 pointer when N flag of MSR0 register is set. Otherwise, no
operation is performed

Flags: Z: set if result is zero. Reset if not.
Vi*: set if overflow is generated. Reset if not.
N: set if loaded value is negative.

Notes: * Vi denotes for VA or VB according to Ai

Examples: EMAX A, @RP0+S0

of Words: 1

MAC2424 S3FB42F

25-90

EMIN – Minimum Value Load

Format: EMIN Ai, <op>
<op>: @rps

Operation: if (N = 0)
 Ai ← <op>, RP3 ← current pointer value
else
 No Operation (Only pointer is updated)
This instruction conditionally loads <op> value to the one of 24-bit Accumulator(Ai) and latches
the current pointer value to the RP3 pointer when N flag of MSR0 register is cleared. Otherwise,
no operation is performed

Flags: Z: set if result is zero. Reset if not.
Vi*: set if overflow is generated. Reset if not.
N: set if loaded value is negative.

Notes: * Vi denotes for VA or VB according to Ai

Examples: EMIN B, @RP0+S0

of Words: 1

S3FB42F MAC2424

25-91

EMLD1) – Multiply and Load

Format: EMLD Xi,Yi

Operation: MA ← P, P ← Xi * Yi
This instruction loads the P register value to the values of 52-bit Multiplier Accumulator MA At the
same time, multiplier multiplies Xi register value and Yi register value, and stores the result to the
P register.

Flags: VMi*: set if result is overflowed to guard-bits. Reset if not.
MV: set if guard-bit is overflowed. Unchanged if not.

Notes: * VMi denotes for VM0 or VM1 according to the current MA bank.

Examples: EMLD X1Y0

of Words: 1

MAC2424 S3FB42F

25-92

EMLD2)
 – Multiply and Load with One Parallel Move

Format: EMLD Xi,Yi <dest>,<src>
<dest>,<src>: A,MA
 A,MASR*

 A,MASL**

 mgx,@rps

Operation: MA ← P, P ← Xi * Yi, <dest> ← <src>
This instruction loads the P register value to the values of 52-bit Multiplier Accumulator. At the
same time, multiplier multiplies Xi register value and Yi register value, and stores the result to the
P register. This instruction also stores source operand from data memory or 24-bit higher portion
of the MA register to the destination register.

Flags: VMi***: set if result is overflowed to guard-bits. Reset if not.
MV: set if guard-bit is overflowed. Unchanged if not.
When <dest> is Ai
Z: set if the value to Ai is zero by load. Reset if not.
VA: set if overflow is generated by load. Reset if not.
N: set if loaded value is negative.

Notes: * MASR: 1-bit right shifted MA[47:24]
** MASL: 1-bit left shifted MA[47:24]
*** VMi denotes for VM0 or VM1 according to the current MA bank.

Examples: EMLD X1Y0 A,MASR
EMLD X0Y0 X0,@RP1+S1

of Words: 1

S3FB42F MAC2424

25-93

EMLD3) – Multiply and Load with Two Parallel Moves

Format: EMLD Xi,Yi Xi,@rp0s Yi,@rp3s

Operation: MA ← P, P ← Xi * Yi, Xi ← operand1 by @rp0s, Yi ← operand2 by @rp3s
This instruction loads the P register value to the values of 52-bit Multiplier Accumulator. At the
same time, multiplier multiplies Xi register value and Yi register value, and stores the result to the
P register. This instruction also stores two source operands from data memory (one from X
memory space and one from Y memory space) to the 24-bit Xi register and Yi register
respectively.

Flags: VMi*: set if result is overflowed to guard-bits. Reset if not.
MV: set if guard-bit is overflowed. Unchanged if not.

Notes: * VMi denotes for VM0 or VM1 according to the current MA bank.

Examples: EMLD X1Y0 X0,@RP0+S1 Y0,@RP3+S0

of Words: 1

MAC2424 S3FB42F

25-94

EMSB1)
 – Multiply and Subtract

Format: EMSB Xi,Yi

Operation: MA ← MA - P, P ← Xi * Yi
This instruction subtracts the P register from the values of 52-bit Multiplier Accumulator MA, and
stores the result back into Multiplier Accumulator MA. At the same time, multiplier multiplies Xi
register value and Yi register value, and stores the result to the P register.

Flags: VMi*: set if result is overflowed to guard-bits. Reset if not.
MV: set if guard-bit is overflowed. Unchanged if not.

Notes: * VMi denotes for VM0 or VM1 according to the current MA bank.

Examples: EMSB X1Y0

of Words: 1

S3FB42F MAC2424

25-95

EMSB2)
 – Multiply and Subtract with One Parallel Move

Format: EMSB Xi,Yi <dest>,<src>
<dest>,<src>: A,MA
 A,MASR*

 A,MASL**

 mgx,@rps

Operation: MA ← MA - P, P ← Xi * Yi, <dest> ← <src>
This instruction subtracts the P register from the values of 52-bit Multiplier Accumulator MA, and
stores the result back into Multiplier Accumulator MA. At the same time, multiplier multiplies Xi
register value and Yi register value, and stores the result to the P register. This instruction also
stores source operand from data memory or 24-bit higher portion of the MA register to the
destination register.

Flags: VMi***: set if result is overflowed to guard-bits. Reset if not.
MV: set if guard-bit is overflowed. Unchanged if not.
When <dest> is Ai
Z: set if the value to Ai is zero by load. Reset if not.
VA: set if overflow is generated by load. Reset if not.
N: set if loaded value is negative.

Notes: * MASR: 1-bit right shifted MA[47:24]
** MASL: 1-bit left shifted MA[47:24]
*** VMi denotes for VM0 or VM1 according to the current MA bank.

Examples: EMSB X1Y0 A,MASR
EMSB X0Y0 X0,@RP1+S1

of Words: 1

MAC2424 S3FB42F

25-96

EMSB3)
 – Multiply and Subtract with Two Parallel Moves

Format: EMSB Xi,Yi Xi,@rp0s Yi,@rp3s

Operation: MA ← MA - P, P ← Xi * Yi, Xi ← operand1 by @rp0s, Yi ← operand2 by @rp3s
This instruction subtracts the P register from the values of 52-bit Multiplier Accumulator MA, and
stores the result back into Multiplier Accumulator MA. At the same time, multiplier multiplies Xi
register value and Yi register value, and stores the result to the P register. This instruction also
stores two source operand from data memory (one from X memory space and one from Y
memory space) to the 24-bit Xi register and Yi register respectively.

Flags: VMi*: set if result is overflowed to guard-bits. Reset if not.
MV: set if guard-bit is overflowed. Unchanged if not.

Notes: * VMi denotes for VM0 or VM1 according to the current MA bank.

Examples: EMSB X1Y0 X0,@RP0+S1 Y0,@RP3+S0

of Words: 1

S3FB42F MAC2424

25-97

EMUL1)
 – Multiply

Format: EMLU Xi,Yi

Operation: P ← Xi * Yi
This instruction multiplies Xi register value and Yi register value, and stores the result to the P
register.

Flags: –

Notes: –

Examples: EMUL X1Y0

of Words: 1

MAC2424 S3FB42F

25-98

EMUL2) – Multiply with One Parallel Move

Format: EMUL Xi,Yi <dest>,<src>
<dest>,<src>: A,MA
 A,MASR*

 A,MASL**

 mgx,@rps

Operation: P ← Xi * Yi, <dest> ← <src>
This instruction multiplies Xi register value and Yi register value, and stores the result to the P
register. This instruction also stores source operand from data memory or 24-bit higher portion of
the MA register to the destination register.

Flags: When <dest> is Ai
Z: set if the value to Ai is zero by load. Reset if not.
VA: set if overflow is generated by load. Reset if not.
N: set if loaded value is negative.

Notes: * MASR : 1-bit right shifted MA[47:24]
** MASL : 1-bit left shifted MA[47:24]

Examples: EMUL X1Y0 A,MASR
EMUL X0Y0 X0,@RP1+S1

of Words: 1

S3FB42F MAC2424

25-99

EMUL3)
 – Multiply with Two Parallel Moves

Format: EMUL Xi,Yi Xi,@rp0s Yi,@rp3s

Operation: P ← Xi * Yi, Xi <- operand1 by @rp0s, Yi ← operand2 by @rp3s
This instruction multiplies Xi register value and Yi register value, and stores the result to the P
register. This instruction also stores two source operand from data memory (one from X memory
space and one from Y memory space) to the 24-bit Xi register and Yi register respectively.

Flags: –

Notes: –

Examples: EMUL X1Y0 X0,@RP0+S1 Y0,@RP3+S0

of Words: 1

MAC2424 S3FB42F

25-100

ENEG/ENEGT*
 – Negate

Format: ENEG(T) Ai

Operation: Ai ← ~Ai + 1
This instruction negates the value of one of 24-bit Accumulator(Ai), and stores the result back into
the same Accumulator.

Flags: C: set if carry is generated. Reset if not.
Z: set if result is zero. Reset if not.
Vi**: set if overflow is generated. Reset if not.
N: exclusive OR of Vi and MSB of result.

Notes: * ENEGT instruction can be executed only when the T flag is set.
Otherwise, No operation is performed.
** Vi denotes for VA or VB according to Ai

Examples: ENEG A
ENEGT B

of Words: 1

S3FB42F MAC2424

25-101

ENMSK – Masking SG

Format: ENMSK SG,#imm:4

Operation: SG ← SG & mask pattern
This instruction masks MSB n bit (n = 16 - #imm:4) of SG register, and stores back the result
into the SG register.

Flags: Z: set if result is zero. Reset if not.
VS: Reset.
N: MSB of result.

Notes: –

Examples: ENMSK SG,#3h

of Words: 1

MAC2424 S3FB42F

25-102

ENOP – No Operation

Format: ENOP

Operation: No operation.

Flags: –

Notes: –

Examples: ENOP

of Words: 1

S3FB42F MAC2424

25-103

ER – Bit Reset

Format: ER bs*

Operation: specified bit in bs field ← 0
This instruction sets the specified bit in bs field to 0.

Flags: –

Notes: * If bs field is VM, the current bank of VMi bit is cleared. i.e. VM0 is cleared when BKMA bit is 1
and VM1 is cleared when BKMA bit is 0.

Examples: ER OPA
ER ME3

of Words: 1

MAC2424 S3FB42F

25-104

ERESR – Restoring Remainder

Format: ERESR MA,P

Operation: if (VMi = 0)
 Adder output ← MA + 0
else
 Adder output ← MA + 2*P
This Instruction adds two times of the P register and current bank MA accumulator when VMi bit
of MSR1 register is set. Else, performs no operation. It calculates true remainder value of non-
restoring division.

Flags: VMi*: set if result is overflowed to guard-bits. Reset if not.
MV: set if guard-bit is overflowed. Unchanged if not.

Notes: * VMi denotes for VM0 or VM1 according to the current MA bank.

Examples: ERESR MA,P

of Words: 1

S3FB42F MAC2424

25-105

ERND – Round

Format: ERND MA

Operation: MA ← MA + 0000000800000h, MA[23:0] ← 0
This Instruction adds current bank 52-bit MA accumulator and rounding constant and stores the
result value into MSB part of the same register. The LSB 24-bit of the MA register is cleared. It
performs two’s complement rounding.

Flags: VMi*: set if result is overflowed to guard-bits. Reset if not.
MV: set if guard-bit is overflowed. Unchanged if not.

Notes: * VMi denotes for VM0 or VM1 according to the current MA bank.

Examples: ERND MA

of Words: 1

MAC2424 S3FB42F

25-106

ERPD – Update Pointer with Destination Index

Format: ERPD rpd

Operation: RPi ← mod (RPi + D0/D1)
This Instruction updates the selected pointer with the selected index value. The modulo arithmetic
affect the result value when ME bit of selected pointer is set. It only modifies the pointer without
memory access.

Flags: –

Notes: –

Examples: ERPD RP0+D1

of Words: 1

S3FB42F MAC2424

25-107

ERPN – Update Pointer with Immediate Value

Format: ERPN rpi,#imm:15

Operation: RPi ← mod (RPi + #imm:15)
This Instruction updates the selected pointer with 15-bit immediate value. The modulo arithmetic
affect the result value when ME bit of selected pointer is set. It only modifies the pointer without
memory access.

Flags: –

Notes: –

Examples: ERPN RP3,#1555h

of Words: 2

MAC2424 S3FB42F

25-108

ERPR – Bit-Reverse Pointer

Format: ERPR rpi

Operation: RP3 ← bit-reverse (RPi)
This Instruction generates the reversed bit pattern on LSB n bit of the selected pointer according
to the MC1[15:13] bit values which specifies bit reverse order. (Refer to MC1 register configuration
in chapter 2) The result bit pattern is written to RP3 register pointer field. The source pointer value
is not changed at all and the ME bit of RP3 is not changed, either.

Flags: –

Notes: –

Examples: ERPR RP2

of Words: 1

S3FB42F MAC2424

25-109

ERPS – Update Pointer with Source Index

Format: ERPS rps

Operation: RPi ← mod (RPi + S0/S1)
This Instruction updates the selected pointer with the selected index value. The modulo arithmetic
affect the result value when ME bit of selected pointer is set. It only modifies the pointer without
memory access.

Flags: –

Notes: –

Examples: ERPS RP0+S1

of Words: 1

MAC2424 S3FB42F

25-110

ES – Bit Set

Format: ES bs*

Operation: specified bit in bs field ← 1
This instruction sets the specified bit in bs field to 1.

Flags: –

Notes: * If bs field is VM, the current bank of VMi bit is set. i.e. VM0 is set when BKMA bit is 1 and VM1
is set when BKMA bit is 0.

Examples: ES OPA
ES ME3

of Words: 1

S3FB42F MAC2424

25-111

ESAT – Saturate

Format: ESAT MA

Operation: if (VMi == 1)
MA ← maximum magnitude
This Instruction sets the 52-bit MA accumulator to the plus of minus maximum value when
selected MA register overflows. When no overflow occur, the MA register is not changed.

Flags: VMi*: Reset

Notes: * VMi denotes for VM0 or VM1 according to the current MA bank.

Examples: ESAT MA

of Words: 1

MAC2424 S3FB42F

25-112

ESD0/ESD1/ESD2/ESD3 – Source/Destination Index Load

Format: ESD0* ns #imm:4
ESD1 ns #imm:4
ESD2 ns #imm:4
ESD3* ns #imm:4

Operation: specified SDi register bit field in ns field ← #imm:4
This instruction loads 4-bit immediate value to the specified bit field of SDi register. Only 4-bit field
of 16-bit value is changed.

Flags: –

Notes: * If XSD bit of MSR0 register is 1, the selected register is the extended index registers (SD0E and
SD3E). Else, the selected register is the regular index register. (SD0 and SD3)

Examples: ESD0 D0 #3h
ESD1 S1 #Fh

of Words: 1

S3FB42F MAC2424

25-113

ESEC0/ESEC1/ESEC2 – EI Selection Field Load

Format: ESEC0 #imm:4
ESEC1 #imm:4
ESEC2 #imm:4

Operation: specified SECi (I=0~2) field of MSR2 register ← #imm:4
This instruction loads 4-bit immediate value to the specified bit field of MSR2 register. Only 4-bit
field of 16-bit value is changed.

Flags: –

Notes: –

Examples: ESEC0 #3h
ESEC1 #Fh

of Words: 1

MAC2424 S3FB42F

25-114

ESFT – Logical Shift by Barrel Shifter

Format: ESFT asr,asa

Operation: {SR,SG} ← asr<<asa
This instruction shifts the value of 16-bit asr values by the amount of 6-bit asa. If the value of asa
is positive, left shift operation is performed, and if the value of asa is negative right shift operation
is performed. The 16-bit shifted result is stored into SR register and the 16-bit shifted out result is
stored into SG register. The other bits of SR and SG register are filled with zeros.

Flags: C: set if last shifted out bit is 1. Reset if not. Unchanged when shift amount is 0.
Z: set if SR result is zero. Reset if not.
VS: Reset.
N: MSB of SR result.

Notes: –

Examples: ESFT A, B
ESFT SI,SA

of Words: 1

S3FB42F MAC2424

25-115

ESFTA – Arithmetic Shift by Barrel Shifter

Format: ESFTA asr,asa

Operation: {SR,SG} ← asr<<asa
This instruction shifts the value of 16-bit asr values by the amount of 6-bit asa. If the value of asa
is positive, left shift operation is performed, and if the value of asa is negative right shift operation
is performed. The 16-bit shifted result is stored into SR register and the 16-bit shifted out result is
stored into SG register. The remainder MSB bits of SR or SG register are sign extended and the
remainder LSB bits are filled with zeros.

Flags: C: set if last shifted out bit is 1. Reset if not. Unchanged when shift amount is 0.
Z: set if SR result is zero. Reset if not.
VS: set if overflow is generated. Reset if not.
N: MSB of SR result.

Notes: –

Examples: ESFTA A, B
ESFTA SI,SA

of Words: 1

MAC2424 S3FB42F

25-116

ESFTD – Double Shift by Barrel Shifter

Format: ESFTD asr,asa

Operation: SG ← SG | (asr<<asa)
This instruction shifts the value of 16-bit asr values by the amount of 6-bit asa. If the value of asa
is positive, left shift operation is performed, and if the value of asa is negative right shift operation
is performed. The 16-bit shifted result is ORed with previous SG register value ,and then stored
into SG register.

Flags: C: set if last shifted out bit is 1. Reset if not. Unchanged when shift amount is 0.
Z: set if SG result is zero. Reset if not.
VS: Reset.
N: MSB of SG result.

Notes: –

Examples: ESFTD A, B
ESFTD SI,SA

of Words: 1

S3FB42F MAC2424

25-117

ESFTL – Linked Shift by Barrel Shifter

Format: ESFTL asr,asa

Operation: SR ← asr<<asa, SG ← SG | (asr<<asa)
This instruction shifts the value of 16-bit asr values by the amount of 6-bit asa. If the value of asa
is positive, left shift operation is performed, and if the value of asa is negative right shift operation
is performed. The 16-bit shifted result is stored into SR register and the 16-bit shifted out result is
ORed with previous SG value and stored into SG register. The other bits of SR register are filled
with zeros.

Flags: C: set if last shifted out bit is 1. Reset if not. Unchanged when shift amount is 0.
Z: set if SR result is zero. Reset if not.
VS: Reset.
N: MSB of SR result.

Notes: –

Examples: ESFTL A, B
ESFTL SI,SA

of Words: 1

MAC2424 S3FB42F

25-118

ESLA1)/ESLAT*
 – Arithmetic 1-bit Left Shift Accumulator

Format: ESLA(T) Ai

Operation: Ai ← Ai <<1
This instruction shifts the value of one of 24-bit Accumulator(Ai) to 1-bit left , and stores the result
back into the same accumulator.

Flags: C: set if shifted out bit is 1. Reset if not.
Z: set if result is zero. Reset if not.
Vi**: set if overflow is generated. Reset if not.
N: exclusive OR of Vi and MSB of result.

Notes: * ESLAT instruction can be executed only when the T flag is set.
Otherwise, No operation is performed.
** Vi denotes for VA or VB according to Ai

Examples: ESLA A
ESLAT B

of Words: 1

S3FB42F MAC2424

25-119

ESLA2) – Arithmetic 1-bit Left Shift Multiplier Accumulator

Format: ESLA MA

Operation: MA ← MA <<1
This instruction shifts the value of current bank 52-bit Multiplier Accumulator MA to 1-bit left , and
stores the result back into the same Multiplier Accumulator.

Flags: VMi*: set if result is overflowed to guard-bits. Reset if not.
MV: set if guard-bit is overflowed. Unchanged if not.

Notes: * VMi denotes for VM0 or VM1 according to the current MA bank.

Examples: ESLA MA

of Words: 1

MAC2424 S3FB42F

25-120

ESLA8/ESLA8T*
 – Arithmetic 8-bit Left Shift Accumulator

Format: ESLA8(T) Ai

Operation: Ai ← Ai <<8
This instruction shifts the value of one of 24-bit Accumulator(Ai) to 8-bit left , and stores the result
back into the same accumulator.

Flags: C: set if last shifted out bit is 1. Reset if not.
Z: set if result is zero. Reset if not.
Vi**: set if overflow is generated. Reset if not.
N: exclusive OR of Vi and MSB of result.

Notes: * ESLA8T instruction can be executed only when the T flag is set.
Otherwise, No operation is performed.
** Vi denotes for VA or VB according to Ai

Examples: ESLA8 A
ESLA8T B

of Words: 1

S3FB42F MAC2424

25-121

ESLC/ESLCT*
 – Arithmetic 1-bit Left Shift Accumulator with Carry

Format: ESLC(T) Ai

Operation: Ai ← Ai <<1, Ai[0] ← C
This instruction shifts the value of one of 24-bit Accumulator(Ai) to 1-bit left with carry : i.e. the
carry bit is shifted into LSB of Ai register, and stores the result back into the same accumulator.

Flags: C: set if shifted out bit is 1. Reset if not.
Z: set if result is zero. Reset if not.
Vi**: set if overflow is generated. Reset if not.
N: exclusive OR of Vi and MSB of result.

Notes: * ESLCT instruction can be executed only when the T flag is set.
Otherwise, No operation is performed.
** Vi denotes for VA or VB according to Ai

Examples: ESLC A
ESLCT B

of Words: 1

MAC2424 S3FB42F

25-122

ESRA1)/ESRAT*
 – Arithmetic 1-bit Right Shift Accumulator

Format: ESRA(T) Ai

Operation: Ai ← Ai >>1
This instruction shifts the value of one of 24-bit Accumulator (Ai) to 1-bit right, and stores the
result back into the same accumulator.

Flags: C: set if shifted out bit is 1. Reset if not.
Z: set if result is zero. Reset if not.
Vi**: set if overflow is generated. Reset if not.
N: exclusive OR of Vi and MSB of result.

Notes: * ESLRT instruction can be executed only when the T flag is set.
Otherwise, No operation is performed.
** Vi denotes for VA or VB according to Ai

Examples: ESRA A
ESRAT B

of Words: 1

S3FB42F MAC2424

25-123

ESRA2)
 – Arithmetic 1-bit Right Shift Multiplier Accumulator

Format: ESRA MA

Operation: MA ← MA >>1
This instruction shifts the value of current bank 52-bit Multiplier Accumulator MA to 1-bit right, and
stores the result back into the same Multiplier Accumulator.

Flags: VMi*: set if result is overflowed to guard-bits. Reset if not.
MV: set if guard-bit is overflowed. Unchanged if not.

Notes: * VMi denotes for VM0 or VM1 according to the current MA bank.

Examples: ESRA MA

of Words: 1

MAC2424 S3FB42F

25-124

ESRA8/ESRA8T*
 – Arithmetic 8-bit Right Shift Accumulator

Format: ESRA8(T) Ai

Operation: Ai ← Ai >>8
This instruction shifts the value of one of 24-bit Accumulator(Ai) to 8-bit right, and stores the
result back into the same accumulator.

Flags: C: set if last shifted out bit is 1. Reset if not.
Z: set if result is zero. Reset if not.
Vi**: set if overflow is generated. Reset if not.
N: exclusive OR of Vi and MSB of result.

Notes: * ESRA8T instruction can be executed only when the T flag is set.
Otherwise, No operation is performed.
** Vi denotes for VA or VB according to Ai

Examples: ESRA8 A
ESRA8T B

of Words: 1

S3FB42F MAC2424

25-125

ESRC/ESRCT*
 – Arithmetic 1-bit Right Shift Accumulator with Carry

Format: ESRC(T) Ai

Operation: Ai ← Ai >>1, Ai[23] ← C
This instruction shifts the value of one of 24-bit Accumulator(Ai) to 1-bit right with carry : i.e. the
carry bit is shifted into MSB of Ai register, and stores the result back into the same accumulator.

Flags: C: set if shifted out bit is 1. Reset if not.
Z: set if result is zero. Reset if not.
Vi**: set if overflow is generated. Reset if not.
N: exclusive OR of Vi and MSB of result.

Notes: * ESRCT instruction can be executed only when the T flag is set.
Otherwise, No operation is performed.
** Vi denotes for VA or VB according to Ai

Examples: ESRC A
ESRCT B

of Words: 1

MAC2424 S3FB42F

25-126

ESUB1) – Subtract Accumulator

Format: ESUB Ai, <op>
<op>: @rps
 rpdi.adr:5 / adr:15
 #simm:16
 Ai
 mg

Operation: Ai ← Ai - <op>
This instruction subtracts <op> value from the value of one of 24-bit Accumulator(Ai), and stores
the result back into the same Accumulator.

Flags: C: set if carry is generated. Reset if not.
Z: set if result is zero. Reset if not.
Vi*: set if overflow is generated. Reset if not.
N: exclusive OR of Vi and MSB of result.

Notes: * Vi denotes for VA or VB according to Ai

Examples: ESUB A, @RP0+S0
ESUB B, RPD1.5h
ESUB A, #0486h
ESUB B, A
ESUB A, RP0

of Words: 1
2 when <op> is : adr:15 or #simm:16

S3FB42F MAC2424

25-127

ESUB2)
– Subtract Accumulator with One Parallel Move

Format: ESUB A, MA <dest>,<src>
<dest>,<src>: mgx, @rps
 MA, @rps
 @rpd, mga

Operation: A ← A - MA, <dest> ← <src>
This instruction subtracts higher 24-bit part of Multiplier Accumulator MA from the value of 24-bit
Accumulator A, and stores the result back into Accumulator A. This instruction also stores
source operand from memory or register to destination register or memory.

Flags: C: set if carry is generated by addition. Reset if not.
Z: set if result is zero by addition. Reset if not.
VA: set if overflow is generated by addition. Reset if not.
N: exclusive OR of V and MSB of result by addition.

Notes: None.

Examples: ESUB A, MA X0,@RP0+S1
ESUB A, MA MA,@RP1+S0
ESUB A, MA @RP3+D1, A

of Words: 1

MAC2424 S3FB42F

25-128

ESUB3)
 – Subtract Multiplier Accumulator

Format: ESUB MA, <op>
<op>: P / PSH

Operation: MA ← MA - <op>
This instruction subtracts <op> value from the values of 52-bit Multiplier Accumulator MA, and
stores the result back into Multiplier Accumulator MA.

Flags: VMi*: set if result is overflowed to guard-bits. Reset if not.
MV: set if guard-bit is overflowed. Unchanged if not.

Notes: * VMi denotes for VM0 or VM1 according to the current MA bank.

Examples: ESUB MA, P
ESUB MA, PSH

of Words: 1

S3FB42F MAC2424

25-129

ESUB4) – Subtract Multiplier Accumulator with One Parallel Move

Format: ESUB MA, P <dest>,<src>
<dest>,<src>: mgx, @rps
 A, @rps
 @rpd, mga

Operation: MA ← MA - P, <dest> ← <src>
This instruction subtracts the value of the Product register P from the value of 52-bit Multiplier
Accumulator MA, and stores the result back into Multiplier Accumulator MA. This instruction also
stores source operand from memory or register to destination register or memory.

Flags: VMi*: set if result is overflowed to guard-bits. Reset if not.
MV: set if guard-bit is overflowed. Unchanged if not.

Notes: * VMi denotes for VM0 or VM1 according to the current MA bank.

Examples: ESUB MA, P Y0, @RP1+S1
ESUB MA, P A, @RP2+S0
ESUB MA, P @RP0+D0, B

of Words: 1

MAC2424 S3FB42F

25-130

ETST – Test

Format: ETST cct

Operation: if (cct is true)
 T ← 1
else
 T ← 0
This instruction sets the T flag of MSR0 register to 1 if condition specified in cct field is evaluated
to truth. Else, resets the T flag. This instruction must be executed before executing the
conditional instructions.

Flags: T: set/reset according to the condition

Notes: –

Examples: ETST GT
ETST NEG

of Words: 1

S3FB42F ELECTRICAL DATA

26-1

26 ELECTRICAL DATA

OVERVIEW

Table 26-1. Absolute Maximum Ratings

(TA = 25°C)

Parameter Symbol Conditions Rating Unit

Supply voltage VDD – – 0.3 to + 4.5 V

Input voltage VI – – 0.3 to VDD + 0.3 V

Output voltage VO – – 0.3 to VDD + 0.3 V

Output current IOH One I/O pin active – 15 mA

high All I/O pins active – 100

Output current IOL One I/O pin active + 20 mA

low Total pin current for ports 1, 2, 3 + 150

Operating
temperature

TA – – 40 to + 85 °C

Storage
temperature

TSTG – – 65 to + 150 °C

Table 26-2. D.C. Electrical Characteristics

(TA = – 40°C to + 85°C, VDD = 3.0 V to 3.6 V)

Parameter Symbol Conditions Min Typ Max Unit

Operating Voltage VDD f OSC = 30 MHz 3.0 – 3.6 V

Input high voltage VIH0 RESET 0.85 VDD – VDD V

VIH1 Test, P2, P3, P4, P8, P9 0.8 VDD

VIH2 All input pins except VIH0,VIH1
and VIH3

0.7 VDD

VIH3 XIN, XTIN VDD– 0.5

Input low voltage VIL1 Test, RESET, P2, P3, P4, P8, P9 0 – 0.2 VDD V

VIL2 All input pins except VIL1 and VIL3 0.3 VDD

ELECTRICAL DATA S3FB42F

26-2

VIL2 XIN, XTIN 0.4

S3FB42F ELECTRICAL DATA

26-3

Table 26-2. D.C. Electrical Characteristics (Continued)

(TA = – 40°C to + 85°C, VDD = 3.0 V to 3.6 V)

Parameter Symbol Conditions Min Typ Max Unit

Output high voltage VOH1 VDD = 3.0 V to 3.6 V
IOH = – 1 mA

VDD– 1.0 – – V

Output low voltage VOL1 VDD = 3.0 V to 3.6 V
IOL = 5 mA
All output pins

– – 1.0 V

Input high leakage
current

ILIH1 VIN = VDD
All input pins except ILIH2

– – 3 uA

ILIH2 VIN = VDD
XIN, XTIN

20

Input low leakage
current

ILIL1 VIN = 0 V
All input pins except ILIL2

– – -3

ILIL2 VIN = 0 V

XIN, XTIN, RESET
-20

Output high leakage
current

ILOH VOUT = VDD
All I/O pins and Output pins

– – 5

Output low leakage
current

ILOL VOUT = 0 V
All I/O pins and Output pins

– – -5

Pull-up resistor RL1 VIN = 0 V; VDD = 3.3 V; TA=25°C
All input pins except RL2

50 100 200 KΩ

RL2 VIN = 0 V; VDD = 3.3 V; TA=25°C

RESET only

100 250 400

Supply current (1) IDD1 VDD = 3.3 V
30 MHz crystal oscillator

– 35 70 mA

VDD = 3.3 V
32.768kHz crystal

210 400 uA

IDD2 Idle mode: VDD = 3.3 V
30 MHz crystal oscillator

– 5 13 mA

Idle mode: VDD = 3.3 V
32.768kHz crystal oscillator

15 30 uA

IDD3 Stop mode
VDD = 3 V ± 10%

– 1 10 uA

NOTE: 1. Supply current does not include current drawn through internal pull-up resistors or external output current loads.

ELECTRICAL DATA S3FB42F

26-4

Table 26-3. A.C. Electrical Characteristics

(TA = –40°C to + 85°C, VDD = 3.0 V to 3.6 V)

Parameter Symbol Conditions Min Typ Max Unit

Interrupt input high,
low width

tINTH,
tINTL

P4.0-P4.1, P5.0-P5.5 at
VDD = 3.3 V

200 – – ns

RESET input low
width

tRSL VDD = 3.3 V 10 – – us

NOTE: User must keep a larger value than the Min value.

tINTHtINTL

0.8 VDD

0.2 VDD

Figure 26-1. Input Timing for External Interrupts (Port 4, Port5)

RESET

tRSL

0.2 VDD

Figure 26-2. Input Timing for RESETRESET

Table 26-4. Input/Output Capacitance

(TA = – 40 °C to + 85 °C, VDD = 0 V)

Parameter Symbol Conditions Min Typ Max Unit

Input capacitance CIN f = 1 MHz; unmeasured pins
are returned to VSS

– – 10 pF

Output capacitance COUT

S3FB42F ELECTRICAL DATA

26-5

I/O capacitance CIO

Table 26-5. A/D Converter Electrical Characteristics

(TA = – 40 °C to + 85 °C, VDD = 3.0 V to 3.6 V, VSS = 0 V)

Parameter Symbol Conditions Min Typ Max Unit

Resolution – – – 8 – bit

Total
accuracy

– VDD = 3.3 V
Conversion time = 5us

– – ± 2

Integral Linearity
Error

ILE AVREF = 3.3 V – ± 1

Differential Linearity
Error

DLE AVSS = 0 V – ± 1 LSB

Offset Error of Top EOT – ± 1 ± 2

Offset Error of Bottom EOB – ± 0.5 ± 2

Conversion time (1) tCON – 20 – – us

Analog input voltage VIAN – AVSS – AVREF V

Analog input
impedance

RAN – 2 1000 – Mohm

Analog reference
voltage

AVREF – VDD – VDD V

Analog ground AVSS – VSS – VSS V

Analog input current IADIN AVREF = VDD = 3.3 V – – 10 uA

Analog block IADC AVREF = VDD = 3.3 V 1 3 mA

current (2) AVREF = VDD = 3 V 0.5 1.5 mA

NOTES:
1. 'Conversion time' is the time required from the moment a conversion operation starts until it ends.
2. IADC is an operating current during A/D conversion.

Table 26-6. I2S Master Transmitter with Data Rate of 2.5 MHz (10%) (Unit: ns)

Parameter Min Typ Max Condition

Clock period T 360 400 440 Ttr = 360

Clock HIGH tHC 160 – – min > 0.35T = 140 (at typical data rate)

Clock LOW tLC 160 – – min > 0.35T = 140 (at typical data rate)

Delay tdtr – – 300 max < 0.80T = 320 (at typical data rate)

Hold time thtr 100 – – min > 0

Clock rise-time tRC – – 60 max > 0.15T = 54 (atrelevent in slave mode)

ELECTRICAL DATA S3FB42F

26-6

Table 26-7. I2S Slave Receiver with Data Rate of 2.5 MHz (10%) (Unit: ns)

Parameter Min Typ Max Condition

Clock period T 360 400 440 Ttr = 360

Clock HIGH tHC 110 – – min < 0.35T = 126

Clock LOW tLC 110 – – min < 0.35T = 126

Set-up time tsr 60 – – min < 0.20T = 72

Hold time thtr 0 – – min < 0

Table 26-8. Flash Memory D.C. Electrical Characteristics

(TA = – 40°C to + 85°C, VDD = 3.0 V to 3.6 V, VPP = 12.5V)

Parameter Symbol Conditions Min Typ Max Unit

Logic power supply VDD – 3.0 3.3 3.6 V

power supply for
programming Flash cell

VPP – 12.25 12.5 12.75 V

Flash memory operating
current

FIDD1 VDD = 3.0 – 3.6V
during reading

– 20 40 mA

(FIDD) FIDD2 VDD = 3.0 – 3.6V
during programming

– 10 20 mA

FIDD3 VDD = 3.0 – 3.6V
during erasing

– 10 20 mA

Table 26-9. Flash Memory A.C. Electrical Characteristics

(TA = – 40 °C to + 85 °C, VDD = 3.0 V to 3.6 V)

Parameter Symbol Conditions Min Typ Max Unit

Programming time (1) Ftp VDD = 3.3 – 3.6V 20 30 300 uS

Chip Erasing Time (2) Ftp1 – – 10 mS

Sector Erasing time (3) Ftp2 – 2 mS

Data access time FtRS – 50 – nS

Number of writing/erasing Fnwe – – 50,000 Times

NOTES:
1. The programming time is the time during which one word (32-bit) is programmed.
2. The chip erasing time is the time during which all 256K-byte block is erased.
3. The sector erasing time is the time during which all 512-byte block is erased.

S3FB42F ELECTRICAL DATA

26-7

Table 26-10. Data Retention Supply Voltage in Stop Mode

(TA = – 40°C to + 85°C, VDD = 3.0 V to 3.6V)

Parameter Symbol Conditions Min Typ Max Unit

Data retention
supply voltage

VDDDR Normal operation 2 – 3.6 V

Data retention
supply current

IDDDR VDDDR = 2V – – 1 µA

NOTE: Supply current does not include a current which drawn through internal pull-up resistors or external output current
loads.

Execution of
STOP Instruction

RESET
Occur

~ ~

VDDDR

~ ~

Stop Mode
Normal
Operating ModeData Retention Mode

tWAIT

RESET

VDD

NOTE: t WAIT is the same as 2048 x 16 x 1/fxx

Oscillation
Stabilization Time

0.2VDD

Figure 26-3. Stop Mode Release Timing When Initiated by a RESETRESET

ELECTRICAL DATA S3FB42F

26-8

Execution of
STOP Instruction

VDDDR

~ ~ Data Retention
VDD

Normal
Operating
Mode

~ ~

Stop Mode

Osc Start
up time

tWAIT

 NOTE: tWAIT is the same as 2048 x 16 x 1/fxx. The value of 2048 which is selected for the clock
source of the basic timer counter can be changed. Then the value of tWAIT will be changed.

Oscillation
Stabilization Time

0.2VDD

INT

Figure 26-4. Stop Mode Release Timing When Initiated by Interrupts

S3FB42F ELECTRICAL DATA

26-9

Table 26-11. Synchronous SIO Electrical Characteristics

(TA = – 40°C to + 85°C VDD = 3.0 V to 3.6 V, VSS = 0 V, fxx = 30 MHz oscillator)

Parameter Symbol Conditions Min Typ Max Unit

SCK Cycle time tCYC – 200 – – ns

Serial Clock High
Width

tSCKH – 60 – –

Serial Clock Low
Width

tSCKL – 60 – –

Serial Output data
delay time

tOD – – – 50

Serial Input data
setup time

tID – 40 – –

Serial Input data
Hold time

tIH – 100 – –

Output Data

Input Data

SCK

tSCKH

tCYC

tSCKL

0.8 VDD

0.2 VDD

tOD

tID tIH

0.8 VDD

0.2 VDD
SI

SO

Figure 26-5. Serial Data Transfer Timing

ELECTRICAL DATA S3FB42F

26-10

Table 26-12. Main Oscillator Frequency (fosc1)

(TA = – 40°C to + 85°C VDD = 3.0 V to 3.6 V)

Oscillator Clock Circuit Test Condition Min Typ Max Unit

Crystal XIN

C1 C2

XOUT Oscillation frequency 32 32.768 35 kHz

Stabilization time – 1 3 s

External clock XIN XOUT XIN input frequency 32 – 35 kHz

XIN input high and low level
width (tXH, tXL)

14 – 16 us

NOTE: Oscillation stabilization time (tST1) is the time that the amplitude of a oscillator input rich to 0.8 VDD, after a power-

on occurs, or when Stop mode is ended by a RESET or a interrupt signal.

S3FB42F ELECTRICAL DATA

26-11

Table 26-13. Sub Oscillator Frequency (fosc2)

(TA = – 40°C to + 85°C VDD = 3.0 V to 3.6 V)

Oscillator Clock Circuit Test Condition Min Typ Max Unit

Crystal XIN

C1 C2

XOUT Crystal oscillation frequency – – 35 MHz

Stabilization time – – 10 ms

Ceramic XIN

C1 C2

XOUT Ceramic oscillation frequency – – 35 MHz

Stabilization time – – 4 ms

External clock XIN XOUT XIN input frequency – – 35 MHz

XIN input high and low level
width (tXH, tXL)

14 – – ns

NOTE: Oscillation stabilization time (tST1) is the time that the amplitude of a oscillator input rich to 0.8 VDD, after a power-

on occurs, or when Stop mode is ended by a RESET or a interrupt signal.

ELECTRICAL DATA S3FB42F

26-12

XIN

tXHtXL

1/fosc1

VDD - 0.1 V

0.1 V

Figure 26-6. Clock Timing Measurement at XIN

S3FB42F ELECTRICAL DATA

26-13

NOTES

S3FB42F MECHANICAL DATA

27-1

27 MECHANICAL DATA

OVERVIEW

The S3FB42F is available in a 100-QFP-1420C package and a 100-TQFP-1414 package.

100-QFP-1420C

#100

20.00 ± 0.20

23.90 ± 0.30

14
.0

0
±

0.
20

17
.9

0
±

0.
30

0.15
+ 0.10
- 0.05

0-8

0.10 MAX

#1

0.65

NOTE : Dimensions are in millimeters.

(0.58)

0.
80

 ±
 0

.2
0

0.05 MIN

2.65 ± 0.10

3.00 MAX

0.80 ± 0.20

0.30
+ 0.10
- 0.05

(0
.8

3)

0.15 MAX

0.10 MAX

Figure 27-1. 100-QFP-1420C Package Dimensions

MECHANICAL DATA S3FB42F

27-2

100-TQFP-1414

#100

14.00 BSC

16.00 BSC

14
.0

0
B

S
C

16
.0

0
B

S
C

0.08 MAX

0.127
+ 0.073
- 0.037

0-7

NOTE : Dimensions are in millimeters.

#1

0.50 (1.00)

0.
45

-0
.7

5

0.05-0.15

1.00 ± 0.05

1.20 MAX

0.20
+ 0.07
- 0.03

0.08 MAX

Figure 27-2. 100-TQFP-1414 Package Dimensions

