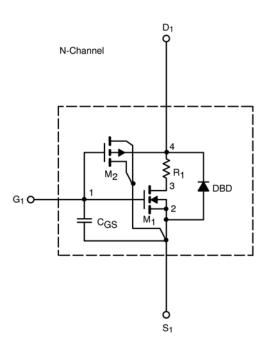


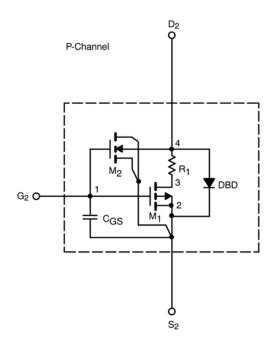
SPICE Device Model Si5517DU Vishay Siliconix

N- and P-Channel 20-V (D-S) MOSFET

CHARACTERISTICS

- N- and P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics


DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n- and p-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0-V to 10-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

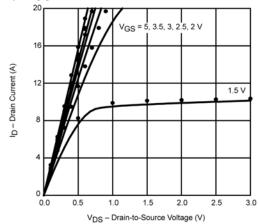
SPICE Device Model Si5517DU

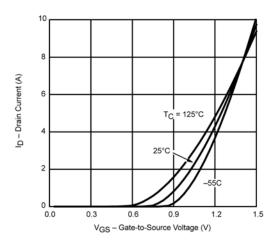
Vishay Siliconix

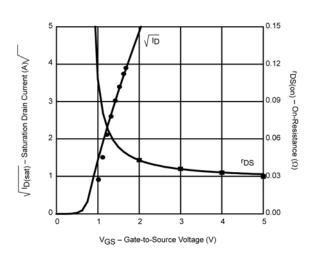
SPECIFICATIONS (T _J = 25°C	UNLESS OT	HERWISE NOTED)				
Parameter	Symbol	Test Condition		Simulated Data	Measured Data	Unit
Static				•		
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	N-Ch	0.50		
		$V_{DS}=\ V_{GS},\ I_D=-250\ \mu A$	P-Ch	0.80		
On-State Drain Current ^a	I _{D(on)}	V_{DS} < 5 V, V_{GS} = 4.5 V	N-Ch	117		А
		V_{DS} < -5 V, V_{GS} = -4.5 V	P-Ch	60		
Drain-Source On-State Resistance ^a	r _{DS(on)}	$V_{GS} = 4.5 \text{ V}, I_D = 4.4 \text{ A}$	N-Ch	0.032	0.032	Ω
		$V_{GS} = -4.5 \text{ V}, I_D = -3.3 \text{ A}$	P-Ch	0.063	0.060	
		$V_{GS} = 2.5 \text{ V}, I_D = 4.1 \text{ A}$	N-Ch	0.038	0.037	
		$V_{GS} = -2.5 \text{ V}, I_D = -2.8 \text{ A}$	P-Ch	0.082	0.083	
		$V_{GS} = 1.8 \text{ V}, I_D = 1.8 \text{ A}$	N-Ch	0.046	0.046	
		$V_{GS} = -1.8 \text{ V}, I_D = -0.76 \text{ A}$	P-Ch	0.107	0.108	
Forward Transconductance ^a	g _{fs}	V _{DS} = 10 V, I _D = 4.4 A	N-Ch	23	22	S
		$V_{DS} = -10 \text{ V}, I_{D} = -3.3 \text{ A}$	P-Ch	11	9	
Diode Forward Voltage ^a	V _{SD}	I _S = 1.2 A	N-Ch	0.72	0.80	V
		I _S = -1A	P-Ch	0.78	- 080	
Dynamic ^b						
Input Capacitance	C _{iss}	$N-Channel \\ V_{DS} = 10 \text{ V, } V_{GS} = 0 \text{ V, } f = 1 \text{ MHz} \\ P-Channel \\ V_{DS} = -10 \text{ V, } V_{GS} = 0 \text{ V, } f = 1 \text{ MHz} \\ \\ -$	N-Ch	605	520	pF
			P-Ch	589	455	
Output Capacitance	C _{oss}		N-Ch	96	100	
			P-Ch	103	105	
Reverse Transfer Capacitance	C _{rss}		N-Ch	62	60	
			P-Ch	57	65	
Total Gate Charge	Qg	$V_{DS} = 10 \text{ V}, V_{GS} = 8 \text{ V}, I_{D} = 4.4 \text{ A}$	N-Ch	8.1	10.5	
		$V_{DS} = -$ 10 V, $V_{GS} = -8$ V, $I_D = -4.6$ A	P-Ch	8.4	9.1	
			N-Ch	5	6	nC
		N-Channel	P-Ch	5	5.5	
Gate-Source Charge	Q_gs	$V_{DS} = 10 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 4.4 \text{ A}$	N-Ch	0.91	0.91	
		P-Channel	P-Ch	0.75	0.75	
Gate-Source Charge	Q_{gs}	$V_{DS} = -10 \text{ V}, V_{GS} = -4.5 \text{ V}, I_{D} = -1.8 \text{ A}$	N-Ch	0.70	0.70	
			P-Ch	1.5	1.5	

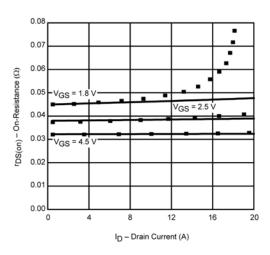
Notes

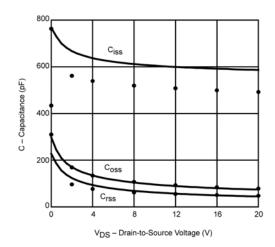
a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%.

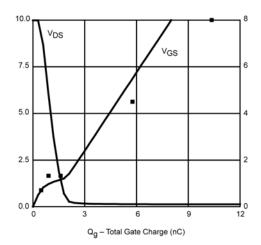

b. Guaranteed by design, not subject to production testing.

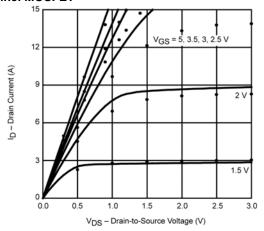


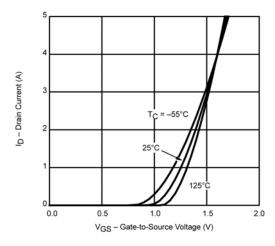

SPICE Device Model Si5517DU Vishay Siliconix

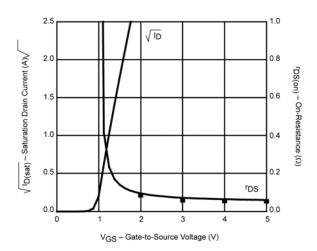

COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)

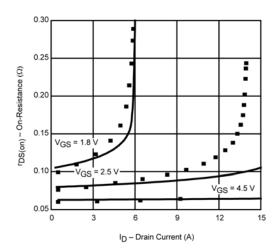

N-Channel MOSFET

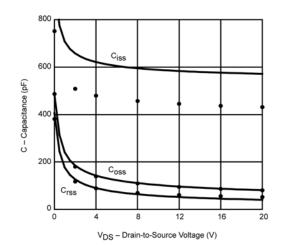


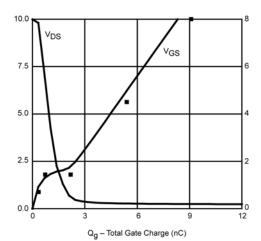

Note: Dots and squares represent measured data.


SPICE Device Model Si5517DU


Vishay Siliconix


VISHAY.


P-Channel MOSFET



Note: Dots and squares represent measured data.