

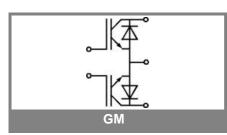
SEMITOP[®] 2

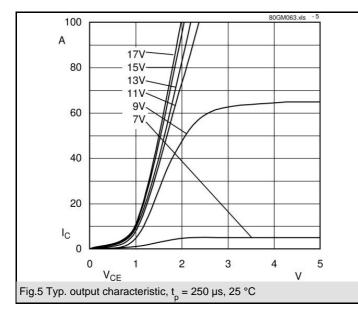
IGBT Module

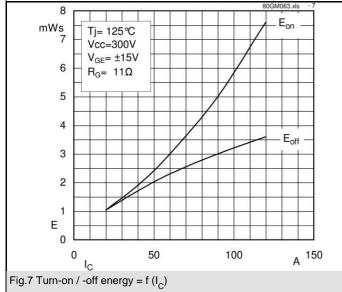
SK 80 GM 063

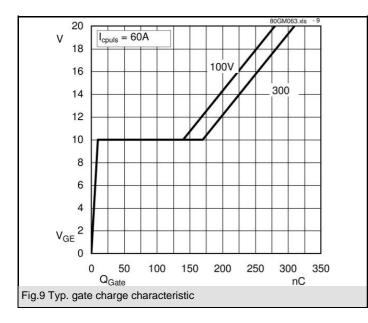
Preliminary Data

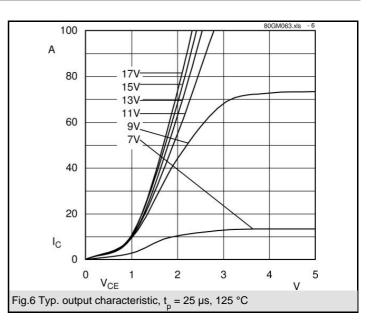
Features

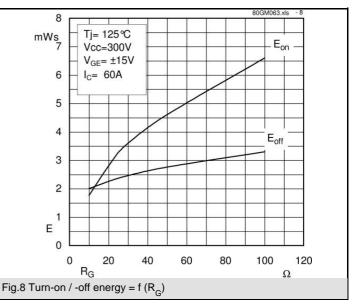

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonding aluminium oxide ceramic (DBC)
- High short circuit capability
- Low tail current with low temperature dependence

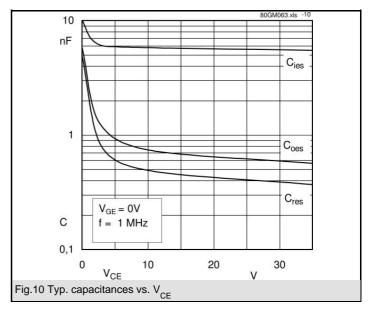

Typical Applications

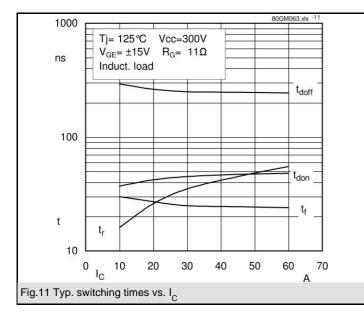

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

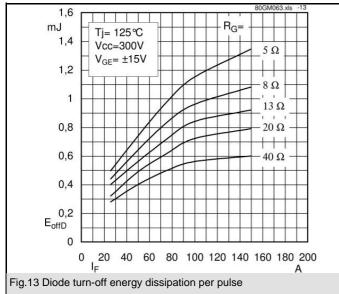

Absolute Maximum Ratings		T _s = 25 °C, unless otherwise	$T_s = 25 \text{ °C}$, unless otherwise specified			
Symbol	Conditions	Values	Units			
IGBT						
V _{CES}		600	V			
V _{GES}		± 20	V			
I _C	T _s = 25 (80) °C;	81 (57)	А			
I _{CM}	t _p < 1 ms; T _s = 25 (80) °C;	162 (114)	А			
T _j		- 40 + 150	°C			
Inverse/F	reewheeling CAL diode		·			
I _F	T _s = 25 (80) °C;	105 (75)	Α			
I _{FM} = - I _{CM}	t _p < 1 ms; T _s = 25 (80) °C;	210 (150)	А			
T _j		- 40 + 150	°C			
T _{stg}		- 40 + 125	°C			
T _{sol}	Terminals, 10 s	260	°C			
V _{isol}	AC 50 Hz, r.m.s. 1 min. / 1 s	2500 / 3000	V			
Characteristics $T_s = 25 \text{ °C}$, unless otherwise speci						
Symbol	Conditions	min. typ. max	. Units			

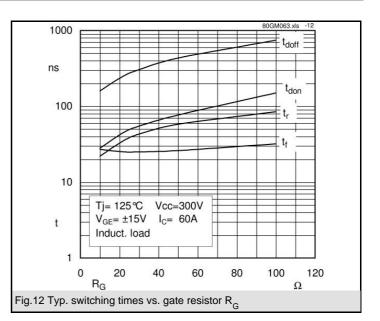

Symbol	Conditions	min.	typ.	max.	Units
IGBT					
V _{CE(sat)}	I _C = 60 A, T _i = 25 (125) °C		1,8 (1,9)	2,1 (2,3)	V
V _{GE(th)}	$V_{CE} = V_{GE}$; $I_{C} = 0,002 \text{ A}$	4,5	5,5	6,5	V
C _{ies}	V _{CE} = 25 V; V _{GE} = 0 V; 1 MHz		5,6		nF
R _{th(j-s)}	per IGBT			0,6	K/W
	per module				K/W
	under following conditions:				
t _{d(on)}	V_{CC} = 300 V , V_{GE} = ± 15 V		45	60	ns
t _r `´	I _C = 60 A, T _i = 125 °C		35	50	ns
t _{d(off)}	$R_{Gon} = R_{Goff} = 11 \ \Omega$		250	300	ns
t _f			25	40	ns
$E_{on} + E_{off}$	Inductive load		5,3	6,9	mJ
Inverse/F	Freewheeling CAL diode				
$V_F = V_{EC}$	I _F = 60 A; T _i = 25 (125) °C		1,3 (1,2)	1,5 (1,45)	V
V _(TO)	T _i = (125) °C		(0,8)	(0,9)	V
r _T	T _j = (125) °C		(5,8)	(7,5)	mΩ
R _{th(j-s)}				1,2	K/W
	under following conditions:				
I _{RRM}	I _F = 60 A; V _R = 300 V		22	26	А
Q _{rr}	dI _F /dt = -500 A/µs		2,2	3,5	μC
E _{off}	V _{GE} = 0 V; T _j = 125 °C		0,2	0,3	mJ
Mechanic	cal data				
M1	mounting torque			2	Nm
w			19		g
Case	SEMITOP [®] 2		T 35		

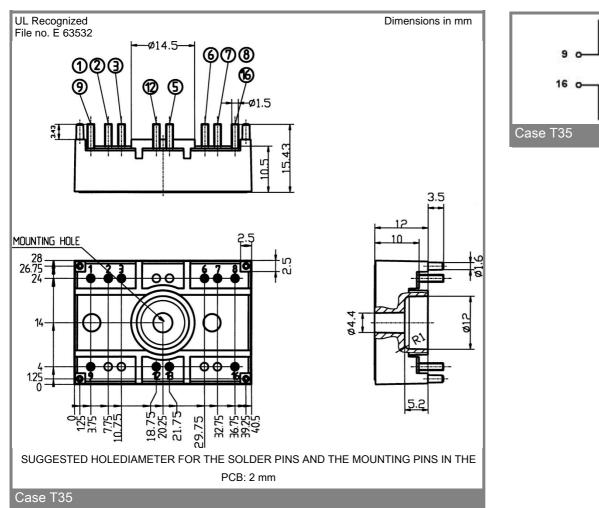












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

o 1, 2, 3

-o 12, 13

6, 7, 8