

Samsung is a pioneer in the DSP core approach, which is a high performing and flexible family of DSP core based ASDSP(Application Specifics Digital Signal Processor). The DSP core architecture and instruction set are designed simplicity and flexibility. The DSP core contains only the most essential DSP function blocks. Because all internal buses are accessible externally. The ASDSP is an application specifics integrated circuit that incorporates a programmable digital signal processor core. The ASDSP approach allows the system designer to integrate a programmable dsp core, interface logic, peripheral, extra memory into a single integrated circuit. Typically, the custom circuitry on a ASDSP is implemented either in standard cell or gate array. All methods used samsung process by 0.8um double metal CMOS technology.

The SSP1601 uses 0.8um CMOS technology(CSP4H) and can perform up to 25 MHz at 5V. The SSP1601 DSP cores have the following on-chip functions: two independent high-speed RAM banks, a 16 x 16 multiply unit, an 32-bit ALU , RAM address pointers, a status register, a program control unit, and an external bus control unit. The DSP core can address up to 64K-word of external ROM over an external data bus. The actual size of the external ROM area used depends upon the requirements of the individual application. The SSP1601 has five 16-bit buses and one 32-bit bus; program address (PA) bus, program data (PD) bus, multiplier (M) bus, external (EXT) bus, subsidiary (S) bus, data (D) bus, mpya instructions (add, load, multiply, and modify RAM address pointer) are executed efficiently within one machine cycle. The condition flags in the status register (ST) are set or cleared by the corresponding ALU operations. Values for the status register control bits are loaded by application software or through the I/O pins USR0, USR1, ST5, and ST6.

The system stack has six hardware levels and operates using Push and Pop operations. The pins EA[2:0], ESB, and R/WB are used to control the EXT bus, and the RESB, INTO, INT1, INT2, and SS pins are used to control system functions.

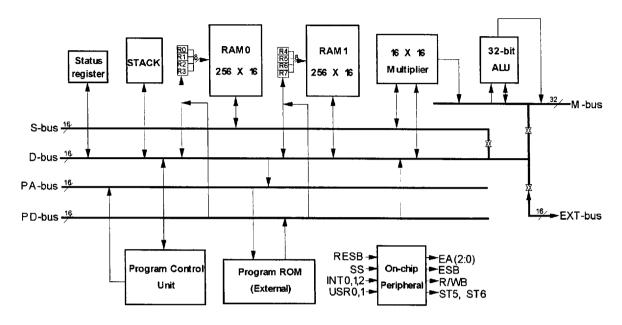
Key Features

- 16-bit fixed point arithmetic
- ACC + A x B -> ACC; MAC operation in 40 ns using pipelined multiplier
- 16x16-bit pipelined multiply with 32-bit output
- 32-bit ALU operation
- 512-word data RAM; RAM0, RAM1
- Eight 8-bit RAM point register are existed,
 R0 ~ R3 are for RAM0,
 R4 ~ R7 are for RAM1.
- RAM pointer registers for easy circular buffer operation
- Simple instruction set
- User defined I/Os
- Up to 64K word Program Memory which can be readable and writable
- SSP1601 EVA Chip has two 256-word SRAM for each RAM banks
- 25 MIPS @ 5.0 Volt
- 68 pin PLCC (evaluation version)
- 0.8um double metal CMOS (CSP4H)
- Excepted core size (except PAD, Data RAM): 3600um x 2400um

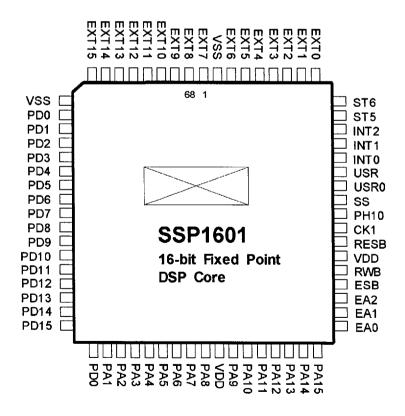
Design Tools

As part of its total support commitment, SASUNG backs up the SSP1601 with a set of high level software and hardware tools.

- Software Tools: running on PC
 - ► Macro-assembler (MASM1601)
 - Linker (LNK1601)
 - ► ROM Splitter (RSP1601)
 - ➤ Simulator (SIM1601)
- Hardware Tools: running on PC
 - ► Real-time Emulator (SDE1601)
 - ► Algorithm Development Board (SDAP1601)
- Design Tools: running on SUN (Unix)
 - ▶ Verilog model
 - ► Macrocells dedicated to the DSP core to build user's applications.
 - Standard cell library, I/O library and Data path generator
 - ► Memory Generator (ROM, RAM)


CD-ROM(Edition 3.0) This Data Sheet is subject to change without notice.

(C) 1996 Samsung Electronics Printed in Korea.


Page: 1 (SSP1601)

Block Diagram

Pin Layout

CD-ROM(Edition 3.0) This Data Sheet is subject to change without notice.

(C) 1996 Samsung Electronics Printed in Korea.

Page: 2 (SSP1601)

Pin Descriptions

Name	Number	1/0	Description			
CK1	51	1	Clock			
PH10B	52	0	Internal clock output inverted output of PH1 generated from CK1			
RESB	50	l	Asynchronous step Effective when CK1 is rising			
SS	53	I	Asynchronous single step Effective when CK1 of a cycle is rising			
INT0	56		Interrupt request 0			
INT1	57	1	Interrupt request 1			
INT2	58		Interrupt request 2			
PA0-PA15	27-35 & 37-43	0	Program data			
PAD0-PD15	11-26	1/0	Program data			
EXT0-EXT15	1-9 & 61-68	1/0	External data bus			
EA0-EA2	44-46	0	External register address			
ESB	47	0	External data strobe			
R/WB	48	0	Read/write timing signal for EXT bus			
USR0	54		User input 0			
USR1	55	1	User input 1			
VDD	36,49	ı	+ 5 Volt			
vss	10-69	ŀ	GND			
ST5 ST6	59 60	0	User output 0 User output 1			

Electrical Characteristics

Absolute Maximum Ratings

Characteristics	Symbol	Value	Unit
V_{DD} to V_{SS}	V _{DD}	0.7	
Input voltage	Vi	V_{DD} + 0.5 to - 0.5	V
Output voltage	V _o	V _{DD} + 0.5 to - 0.5	V
Storage temperature	T _{STG}	-65 to + 150	c
Lead temperature(Soldering)	Τι	Less than 300	c

DC Characteristics

Characteristics	Symbol	Condition	Min	Тур	Max	Unit
Operating current	I _{DD}	CK = 25 MHz		40		mA
Input voltage high	ViH		0.9V ₀₀			V
Output voltage low	Vil				0.1V _{DD}	٧
Input Leakage current	l ₁			1		μА
Output voltage high	V _{OH}	I _{OH} = -100 μA	V _{DD} =0.2			٧
Output voltage low	Vol	I _{OL} = 0.5 mA			0.5	٧
Output current in high impedance state	l _{oz}				5	μА

AC Characteristics

AC Characteristics	Symbol	Min	Тур	Max	Unit
Clock cycle time	T _{cY}	1000	40		
Clock pulse width	P _{ww}	16			
EA,R/WB delay from CK1	E _{AD}		8		
EXT pre-charge delay from CK1	T _{1P}		10		
EXT floating delay from CK1	T _{1F}		10		
EXT data output delay from CK1	T _{RD}		14		
EXT data output hold from CK1	Тхн	6			
EXT data input setup time	T _{XRS}	4			ns
EXT data input hold time	T_{xrh}	6			Ţ,
ESB delay time	Tewro		6		
PA delay from CK1	T _{PAD}		6		
PD input setup time	T _{PDS}		4		
PD input hold time	TpDH	6			
SS setup time	T _{CTLS}	2.5			
SS hold time	TctlH	6			