

STSJ25NF3LL

N-CHANNEL 30V - 0.0085 Ω - 25A PowerSO-8[™] LOW GATE CHARGE STripFET[™] II POWER MOSFET

TYPE	V _{DSS}	R _{DS(on)}	I _D
STSJ25NF3LL	30 V	<0.0105 Ω	25 A

- TYPICAL R_{DS}(on) = 0.0085 Ω @ 10V
- TYPICAL Q_g = 24 nC @ 4.5 V
- CONDUCTION LOSSES REDUCED
- SWITCHING LOSSES REDUCED
- IMPROVED JUNCTION-CASE THERMAL RESISTANCE

DESCRIPTION

This Power MOSFET is the latest development of STMicroelectronics unique "Single Feature SizeTM" strip-based process. This silicon, housed in thermally improved SO-8TM package, exhibits optimal on-resistance versus gate charge tradeoff plus lower $R_{thj-c.}$

INTERNAL SCHEMATIC DIAGRAM

APPLICATIONS

 SPECIFICALLY DESIGNED AND OPTIMISED FOR HIGH EFFICIENCY CPU CORE DC/DC CONVERTERS FOR MOBILE PC_S

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	30	V
V _{DGR}	Drain-gate Voltage (R_{GS} = 20 k Ω)	30	V
V _{GS}	Gate- source Voltage	± 16	V
I _D	Drain Current (continuous) at $T_C = 25^{\circ}C$ (*)	25	A
I _D	Drain Current (continuous) at $T_C = 25^{\circ}C$ (#)	12	A
ID	Drain Current (continuous) at $T_C = 100^{\circ}C$	16	A
I _{DM} (●)	Drain Current (pulsed)	100	A
P _{tot}	Total Dissipation at $T_C = 25^{\circ}C$ Total Dissipation at $T_C = 25^{\circ}C$ (#)	70 3	W W

(•) Pulse width limited by safe operating area.

(*) Value limited by wires bonding

October 2003

NEW DATASHEET ACCORDING TO PCN DSG/CT/2C13 MARKING: 25NF3LL@

STSJ25NF3LL

THERMAL DATA

Rthj-c	Thermal Resistance Junction-case	Max	1.8	°C/W
Rthj-amb	(*)Thermal Resistance Junction-ambient	Max	42	°C/W
T _j	Maximum Operating Junction Temperature		150	°C
T _{stg}	Storage Temperature		-55 to 150	℃

(*) When mounted on FR-4 board with 0.5 in² pad of Cu.

ELECTRICAL CHARACTERISTICS ($T_{case} = 25 \text{ °C}$ unless otherwise specified)

OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0	30			V
IDSS	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating T_{C} = 125°C			1 10	μΑ μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 16 V			±100	nA

ON (*)

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	I _D = 250 μA	1			V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10 V V _{GS} = 4.5 V	I _D = 12.5 A I _D = 12.5 A		0.0085 0.011	0.0105 0.013	Ω Ω

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (*)	Forward Transconductance	V _{DS} =15 V I _D = 12.5 A		20		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25V, f = 1 MHz, V _{GS} = 0		1650 540 130		pF pF pF

ELECTRICAL CHARACTERISTICS (continued)

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time			23 156		ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V _{DD} =15V I _D =25A V _{GS} =4.5V (see test circuit, Figure 2)		24 8.5 12	33	nC nC nC

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(off)} t _f	Turn-off Delay Time Fall Time	$ \begin{array}{ll} V_{DD} = 15 \ V & I_D = 12.5 \ A \\ R_G = 4.7 \Omega, & V_{GS} = 4.5 \ V \\ (\text{Resistive Load, Figure 3}) \end{array} $		27 28		ns ns

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (●)	Source-drain Current Source-drain Current (pulsed)				25 100	A A
V _{SD} (*)	Forward On Voltage	$I_{SD} = 25 \text{ A}$ $V_{GS} = 0$			1.2	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$\begin{split} I_{SD} &= 25 \text{ A} & \text{di/dt} = 100 \text{A}/\mu\text{s} \\ V_{DD} &= 25 \text{ V} & \text{T}_{j} = 150^{\circ}\text{C} \\ (\text{see test circuit, Figure 3}) \end{split}$		40 50 2.5		ns nC A

(*)Pulsed: Pulse duration = $300 \ \mu$ s, duty cycle 1.5 %.

(•)Pulse width limited by safe operating area.

Safe Operating Area

Thermal Impedance

4/8

57

Normalized Gate Threshold Voltage vs Temperature

Normalized on Resistance vs Temperature

Normalized Breakdown Voltage vs Temperature.

Fig. 1: Switching Times Test Circuits For Resistive Load

Fig. 3: Test Circuit For Diode Recovery Behaviour

Fig. 2: Gate Charge test Circuit

A7/

PowerSO-8™ MECHANICAL DATA

DIM		mm.			inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
А			1.75			0.068		
a1	0.1		0.25	0.003		0.009		
a2			1.65			0.064		
a3	0.65		0.85	0.025		0.033		
b	0.35		0.48	0.013		0.018		
b1	0.19		0.25	0.007		0.010		
С	0.25		0.5	0.010		0.019		
c1			45°	(typ.)				
D	4.8		5.0	0.188		0.196		
E	5.8		6.2	0.228		0.244		
e		1.27			0.050			
e3		3.81			0.150			
e4		2.79			0.110			
F	3.8		4.0	0.14		0.157		
L	0.4		1.27	0.015		0.050		
М			0.6			0.023		
S	8° (max.)							

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

www.st.com