TOSHIBA

MICROWAVE SEMICONDUCTOR

TECHNICAL DATA

MICROWAVE POWER GaAs FET TIM6472-35SL

FEATURES:

- IM3 = -45 dBc at Po 35.0 dBm
- HIGH POWER
 P1dB = 45.5 dBm at 6.4 to 7.2 GHz
- HIGH EFFICIENCY η add = 37% at 6.4 to 7.2 GHz
- HIGH GAIN

 $G_{1dB} = 8.0dB$ at 6.4 to 7.2 GHz

- BROAD BAND INTERNALLY MATCHED
- HERMETICALLY SEALED PACKAGE

RF PERFORMANCE SPECIFICATIONS (Ta = 25° C)

CHARACTERISTICS	SYMBOL	CONDITION	UNIT	MIN.	TYP.	MAX.
Output Power at 1 dB Compres- sion Point	P1dB		dBm	45.0	45.5	_
Power Gain at 1 dB Compression Point	G1dB	$V_{DS} = 10V$	dВ	7.0	8.0	_
Drain Current	IDS	$f = 6.4 \sim 7.2 GHz$	A	-	8.0	9.0
Gain Flatness	△G		đВ	-	-	±0.8
Power Added Efficiency	ηadd		ď	1	37	-
3rd Order Intermodulation Distortion	IM3	Note 1	dBc	-42	-45	-
Channel Temperature Rise	$\Delta ext{T}_{ ext{ch}}$	VDS×IDS×Rth(c-c)	${\mathbb C}$	-		100

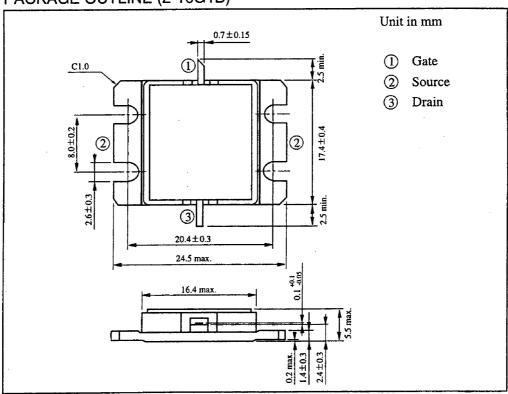
ELECTRICAL CHARACTERISTICS (Ta = 25° C)

CHARACTERISTICS	SYMBOL	CONDITION	UNIT	MIN.	TYP.	MAX.
Trans- conductance	gm	VDS = 3V IDS = 10.5A	mS	-	6500	_
Pinch-off Voltage	VGSoff	$V_{DS} = 3V$ $I_{DS} = 140mA$	Λ,	-1.0	-2.5	-4.0
Saturated Drain Current	IDSS	VDS = 3V VGS = 0V	A	-	20	26
Gate-Source Breakdown Voltage	Vgso	IGS = -420 μ A	V	-5	_	-
Thermal Resistance	Rth(c-c)	Channel to Case	°C/W	_	1.0	1.3

Note 1: 2 tone Test Pout = 35dBm Single Carrier Level.

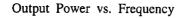
Recommended Gate Resistance(Rg) : Rg = Rg1(10 Ω) + Rg2(18 Ω) = 28 Ω (MAX.)

[★] The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infrigements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.

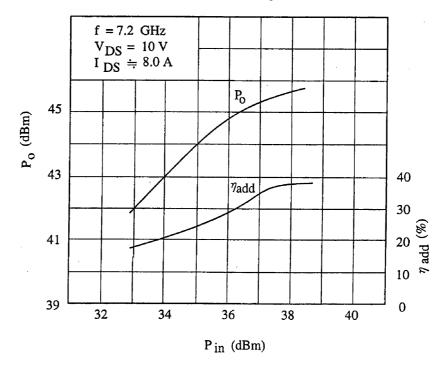

[★] The information contained herein may be changed without prior notice. It is therefore advisable to contact TOSHIBA before proceeding with the design of eqipment incorporating this product.

-TIM6472-35SL-

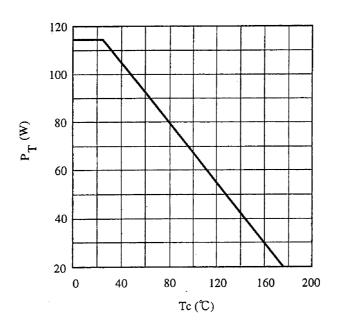
ABSOLUTE MAXIMUM RATINGS (Ta = 25℃)

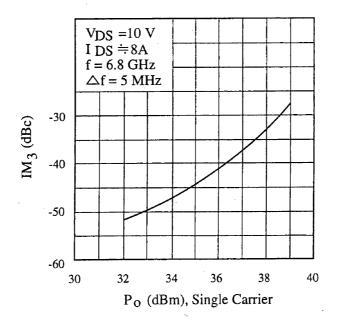

CHARACTERISTICS	SYMBOL	UNIT	RATING	
Drain-Source Voltage	Vos	V	15	
Gate-Source Voltage	Vgs	V	-5	
Drain Current	Ios	Ą	26	
Total Power Dissipation (Tc=25C)	P_{T}	W	115	
Channel Temperature	T_{ch}	ر ر	175	
Storage Temperature	Tstg	ပ	-65~175	

PACKAGE OUTLINE (2-16G1B)


HANDLING PRECAUTIONS FOR PACKAGED TYPE

RF PERFORMANCES




Output Power vs. Input Power

POWER DISSIPATION VS. CASE TEMPERATURE

IM₃ VS. OUTPUT POWER CHARACTERISTICS

