

Absolute Maximum Rating						
Input Supply Voltage	Vin	+7	V			
Enable Input Voltage	Vce	Gnd-0.3 ~ Vin+0.3	V			
Output Current	lo	Pd / (Vin – Vout)				
Power Dissipation	P _D	Internal Limited (note)				
Thermal Resistance	Ѳја	260	°C/W			
Operating Ambient Temperature Range	Та	-40 ~ +85	°C			
Operating Junction Temperature Range	Tj	-40 ~ +125	°C			
Storage Temperature Range	T _{STG}	-65 ~ +150	°C			
Lead Soldering Temperature (260 °C)		10	S			
ESD Classification	НВМ	2k	V			

Caution: Stress above the listed absolute rating may cause permanent damage to the device.

Note: Pd(max) = [Tj(max) – Ta] / Oja, where Oja depends on the printed circuit layout

Electrical Characteristics (Ta = 25 °C, Vin= Vin(min), Vce≥2V, unless otherwise specified.)

Parameter	Conditions		Min	Тур	Max	Unit	
Input Voltage			Note 1		7	V	
Bandgap Reference	Voo= VBG, Io= 10mA		0.99 Vo	1.176	1.01 Vo	V	
Vout Temperature Coefficient				25		ppm/ °C	
Maximum Output Current	Vin=Vo+1V,		300			mA	
Output Current Limit	Vout=0V			800		mA	
Short Circuit Current (note 3)	Vout< 0.8V			150		mA	
Line Regulation	Vo+1V ≤Vin≤ Vo	+2V,	Vout≥2.0V			0.3	%
	lo= 1mA		Vout<2.0V			0.1	
Load Regulation	1mA≤I _L ≤300mA			0.2	1.0	%	
Dropout Voltage	lo=300mA,		Vout≥2.0V		300	400	
	Vout=Vo - 2%		Vout<2.0V		800	1300	mV
Quiescent Current	Vin≤0.4V (shutdown)			2		uA	
Quiescent Current	Vout≥0.4V, Io=0mA			30	35	uA	
Ground Pin Current	lo= 1mA ~ 300mA			30	35	uA	
Power Supply Rejection Ratio	lo=100mA, At f=1kHz, At f=10kHz,			60		dB	
				50			
Over Temperature Shutdown				150		°C	
Output Noise	lo=10mA, f=10Hz~100kHz, Co=2.2uF			30		uVrms	
Enable Input							
Enable Input Logic-High Voltage	Vin= 2.7V to 7V			Vin/2+0.8V	Vin	V	
Enable Input Logic-Low Voltage	Vin= 2.7V to 7V		0	Vin/2-0.8V		V	
Enable Input Current	Ven≤ 0.4V				3	uA	
	Ven= Vin					0.1	

Electrical Characteristics (Ta = 25 °C, Vin= Vin(min), Vce≥2V, unless otherwise specified.)						
Power Good						
PG Low Threshold	% of Vo (PG ON)	89.5	-	85	%	
PG High Threshold	% of Vo (PG OFF)		-	96.5		
PG leakage current	V _{PG} = 7V			1	uA	
PG voltage rating	Vo in regulation			7	V	
PG voltage low	lsink = 0.4mA			0.4	V	
Delay Time to PG (note 2)	Vin= 5V		8		mS	
	Vin= 3V		4			

Note 1: Vin(min) = Vout + Vdropout

Note 2: Guaranteed by design, not 100% tested.

Note 3: Short circuit current and current limit value will be increased as input voltage is larger than Vin(min)

Detail Description

Description

The TS9004 series of CMOS regulators contain a P-MOS pass transistor, voltage reference, error amplifier, over current protection, thermal shutdown and power good function.

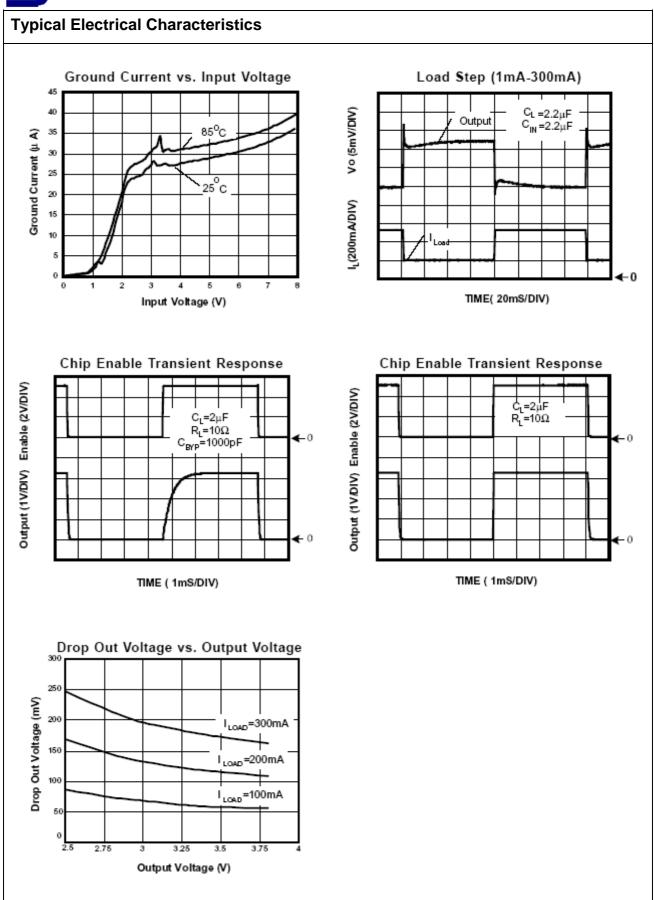
The TS9004 series switches from voltage mode to current mode when the load exceeds the rated output current. This prevents over stress. The TS9004 also incorporates current fold-back to reduce power dissipation when the output is short circuit. This feature becomes active when the output drops below 0.8V, and reduces the current flow by 65%. Full current is restored when the voltage exceeds 0.8V.

The internal P-channel pass transistor receives data from the error amplifier, over current shutdown, short output protection and thermal protection circuits. During normal operation, the error amplifier compares the output voltage to a precision reference. Over current and thermal shutdown circuits become active when the junction temperature exceeds 150 °C, or the current exceeds 300mA. During thermal shutdown, the output voltage remains low. Normal operation is restored when the junction temperature drops below 120 °C.

Enable

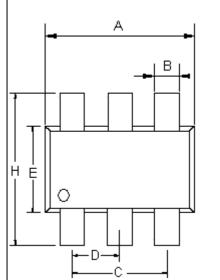
The Chip Enable pin normally floats high. When actively, pulled low, the PMOS pass transistor shut off, and all internal circuits are powered down. In this state, the quiescent current is less than 1uA. This pin behaves much like an electronic switch.

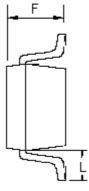
External Capacitor


The TS9004 series is stable with an output capacitor to ground of 2.2uF or greater. It can keep stable even with higher or poor ESR capacitors. A second capacitor is recommended between the input and ground to stabilize Vin. The input capacitor should be larger than 0.1uF to have a beneficial effect. All capacitors should be placed in close proximity to the pins. A "quiet" ground termination is desirable.

Power Good

The TS9002 includes the Power Good feature. When the output is not within = +/-15% of the specified voltage, it pulls low. This can occur on other condition:


- Input voltage too low
- Temperature during over
- Current during over



SOT-26 Mechanical Drawing

	SOT-26 DIMENSION					
DIM	MILLIMETERS		INCHES			
	MIN	MAX	MIN	MAX		
А	2.70	3.00	0.106	0.118		
В	0.25	0.50	0.010	0.020		
С	1.90(typ)		0.075(typ)			
D	0.95(typ)		0.037(typ)			
Е	1.50	1.70	0.059	0.067		
F	1.05	1.35	0.041	0.053		
Н	2.60	3.00	0.102	0.118		
L	0.60(typ)		0.024(typ)			