- 768 × 1 Sensor-Element Organization - 400 Dot-Per-Inch (DPI) Sensor Pitch - High Linearity and Uniformity - Wide Dynamic Range . . . 4000:1 (72 dB) - Output Referenced to Ground - Low Image Lag ... 0.5% Typ - Operation to 8 MHz - Single 3-V to 5-V Supply - Rail-to-Rail Output Swing (AO) - No External Load Resistor Required - Replacement for TSL1406 #### **Description** The TSL1406R is a 400 dots-per-inch (DPI) linear sensor array consisting of two 384-pixel sections, each with its own output. The sections are aligned to form a contiguous 768×1 pixel array. The device incorporates a pixel data-hold function that provides simultaneous integration-start and integration-stop times for all pixels. Pixels measure 63.5 μm by 55.5 μm, with 63.5-μm center-to-center spacing and 8-μm spacing between pixels. Operation is simplified by internal logic that requires only a serial-input (SI) pulse and a clock. The device operates from a single 5-V power source. The two sections of 384 pixels each can be read out separately or can be cascaded to provide a single output for all 768 pixels (see Figure 9). The TSL1406RS is the same device mounted in a shorter package. These devices are intended for use in a wide variety of applications including mark and code reading, OCR and contact imaging, edge detection and positioning, and optical encoding. #### **Functional Block Diagram (each section)** The *LUMENOLOGY*® Company Copyright © 2002, TAOS Inc. 1 TAOS042 - AUGUST 2002 #### **Terminal Functions** | TERMINAL | | | | |----------|-----|-----|---| | NAME | NO. | 1/0 | DESCRIPTION | | AO1 | 6 | 0 | Analog output, section 1. | | AO2 | 12 | 0 | Analog output, section 2. | | CLK1 | 4 | I | Clock, section 1. CLK1 controls charge transfer, pixel output, and reset. | | CLK2 | 10 | I | Clock, section 2. CLK2 controls charge transfer, pixel output, and reset. | | GND | 5 | | Ground (substrate). All voltages are referenced to GND. | | HOLD1 | 3 | I | Hold signal. HOLD1 shifts pixel data to parallel buffer. HOLD1 is normally connected to SI1 and HOLD2 in serial mode, SI1 in parallel mode. | | HOLD2 | 9 | I | Hold signal. HOLD2 shifts pixel data to parallel buffer. HOLD2 is normally connected to SI2 in parallel mode. | | SI1 | 2 | I | Serial input (section 1). SI1 defines the start of the data-out sequence. | | SI2 | 8 | I | Serial input (section 2). SI2 defines the start of the data-out sequence. | | SO1 | 7 | 0 | Serial output (section 1). SO1 provides a signal to drive the SI2 input in serial mode. | | SO2 | 11 | 0 | Serial output (section 2). SO2 provides a signal to drive the SI input of another device for cascading or as an end-of-data indication. | | V_{DD} | 13 | | Supply voltage for both analog and digital circuitry. | | V_{PP} | 1 | | Normally grounded. | #### **Detailed Description** The sensor consists of 768 photodiodes, called pixels, arranged in a linear array. Light energy impinging on a pixel generates photocurrent that is then integrated by the active integration circuitry associated with that pixel. During the integration period, a sampling capacitor connects to the output of the integrator through an analog switch. The amount of charge accumulated at each pixel is directly proportional to the light intensity on that pixel and the integration time. The output and reset of the integrators are controlled by a 384-bit shift register and reset logic. An output cycle is initiated by clocking in a logic 1 on SI. Another signal, called HOLD, is generated from the rising edge of SI1 when SI1 and HOLD1 are connected together. This causes all 384 sampling capacitors to be disconnected from their respective integrators and starts an integrator reset period. As the SI pulse is clocked through the shift register, the charge stored on the sampling capacitors is sequentially connected to a charge-coupled output amplifier that generates a voltage on analog output AO. The integrator reset period ends 18 clock cycles after the SI pulse is clocked in. Then the next integration period begins. On the 384th clock rising edge, the SI pulse is clocked out on the SO1 pin (section 1) and becomes the SI pulse for section 2 (when SO1 is connected to SI2). The rising edge of the 385th clock cycle terminates the SO1 pulse, and returns the analog output AO of section 1 to high-impedance state. Similarly, SO2 is clocked out on the 768th clock pulse. Note that a 769th clock pulse is needed to terminate the SO2 pulse and return AO of Section 2 to the high-impedance state. Sections 1 and 2 may be operated in parallel or in serial fashion. TAOS042 - AUGUST 2002 AO is an op amp-type output that does not require an external pull-down resistor. This design allows a rail-to-rail output voltage swing. With $V_{DD} = 5$ V, the output is nominally 0 V for no light input, 2 V for normal white level, and 4.8 V for saturation light level. When the device is not in the output phase, AO is in a high-impedance state. The voltage developed at analog output (AO) is given by: $V_{out} = V_{drk} + (R_e) (E_e)(t_{int})$ where: $\begin{array}{ll} V_{out} & \text{is the analog output voltage for white condition} \\ V_{drk} & \text{is the analog output voltage for dark condition} \end{array}$ R_e is the device responsivity for a given wavelength of light given in V/(μJ/cm²) $\begin{array}{ll} E_e & \text{is the incident irradiance in μW/cm$}^2 \\ t_{int} & \text{is integration time in seconds} \end{array}$ A 0.1 μF bypass capacitor should be connected between V_{DD} and ground as close as possible to the device. TAOS042 - AUGUST 2002 #### Absolute Maximum Ratings† | Supply voltage range, V _{DD} | 0.3 V to 6 V | |--|--| | Input voltage range, V _I | \dots -0.3 V to V _{DD} + 0.3V | | Input clamp current, I_{IK} ($V_I < 0$) or ($V_I > V_{DD}$) | –20 mA to 20 mA | | Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{DD}$) | –25 mA to 25 mA | | Voltage range applied to any output in the high impedance or power-off state, Vo | $-0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$ | | Continuous output current, $I_O(V_O = 0 \text{ to } V_{DD})$ | –25 mA to 25 mA | | Continuous current through V _{DD} or GND | –40 mA to 40 mA | | Analog output current range, Io | –25 mA to 25 mA | | Maximum light exposure at 638 nm | 5 mJ/cm ² | | Operating free-air temperature range, T _A | 0°C to 70°C | | Storage temperature range, T _{stq} | –25°C to 85°C | | Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds | | [†] Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. #### Recommended Operating Conditions (see Figure 1 and Figure 2) | | MIN | NOM | MAX | UNIT | |--|-------|-----|----------|------| | Supply voltage, V _{DD} | 3 | 5 | 5.5 | V | | Input voltage, V _I | 0 | | V_{DD} | V | | High-level input voltage, V _{IH} | 2 | | V_{DD} | V | | Low-level input voltage, $V_{\rm IL}$ | 0 | | 0.8 | V | | Wavelength of light source, $\boldsymbol{\lambda}$ | 400 | | 1000 | nm | | Clock frequency, f _{clock} | 5 | | 8000 | kHz | | Sensor integration time, Serial, t _{int} | 0.098 | | 100 | ms | | Sensor integration time, Parallel, t _{int} | 0.050 | | 100 | ms | | Setup time, serial input, t _{su(SI)} | 20 | | | ns | | Hold time, serial input, t _{h(SI)} (see Note 1) | 0 | | | ns | | Operating free-air temperature, T _A | 0 | | 70 | °C | NOTE 1: SI must go low before the rising edge of the next clock pulse. ### Electrical Characteristics at f_{clock} = 1 MHz, V_{DD} = 5 V, T_A = 25°C, λ_p = 640 nm, t_{int} = 5 ms, R_L = 330 Ω , E_e = 12.5 μ W/cm² (unless otherwise noted) (see Note 2) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |------------------|--|---|-----|------|------|---------------------| | V _{out} | Analog output voltage (white, average over 768 pixels) | See Note 3 | 1.6 | 2 | 2.4 | V | | V_{drk} | Analog output voltage (dark, average over 256 pixels) | $E_e = 0$ | 0 | 0.1 | 0.3 | V | | PRNU | Pixel response nonuniformity | See Note 4 | | | ±15% | | | | Nonlinearity of analog output voltage | See Note 5 | | 0.4% | | FS | | | Output noise voltage | See Note 6 | | 1 | | mVrms | | R _e | Responsivity | See Note 7 | 20 | 30 | 38 | $V/$ $(\mu J/cm^2)$ | | V | | $V_{DD} = 5 \text{ V}, R_L = 330 \Omega$ | 4.5 | 4.8 | | V | | V_{sat} | Analog output saturation voltage | $V_{DD} = 3 \text{ V}, R_L = 330 \Omega$ | 2.5 | 2.8 | | | | C.F. | Saturation exposure | V _{DD} = 5 V, See Note 8 | | 155 | | - 1/a2 | | SE | | V _{DD} = 3 V, See Note 8 | | 90 | | nJ/cm ² | | DSNU | Dark signal nonuniformity | All pixels, $E_e = 0$, See Note 9 | | 0.05 | 0.15 | V | | IL | Image lag | See Note 10 | | 0.5% | | | | | Supply current | $V_{DD} = 5 \text{ V}, E_{e} = 0, R_{L} = 330 \Omega$ | | 18 | 27 | mA | | I _{DD} | | $V_{DD} = 3 \text{ V}, E_e = 0, R_L = 330 \Omega$ | | 16 | 25 | | | I _{IH} | High-level input current | $V_I = V_{DD}$ | | | 10 | μΑ | | I _{IL} | Low-level input current | V _I = 0 | | | 10 | μΑ | | C _i | Input capacitance, SI | | | 15 | | pF | | C _i | Input capacitance, CLK | | | 30 | | pF | NOTES: 2. All measurements made with a 0.1 μF capacitor connected between V_{DD} and ground. - 3. The array is uniformly illuminated with a diffused LED source having a peak wavelength of 640 nm. - 4. PRNU is the maximum difference between the voltage from any single pixel and the average output voltage from all pixels of the device under test when the array is uniformly illuminated. - 5. Nonlinearity is defined as the maximum deviation from a best-fit straight line over the dark-to-white irradiance levels, as a percent of analog output voltage (white). - 6. RMS noise is the standard deviation of a single-pixel output under constant illumination as observed over a 5-second period. - 7. $R_{e(min)} = [V_{out(min)} V_{drk(max)}] \div (E_e \times t_{int})$ - 8. $SE(min) = [V_{sat(min)} V_{drk(min)}] \times (E_e \times t_{int}) \div [V_{out(max)} V_{drk(min)}]$ - 9. DSNU is the difference between the maximum and minimum output voltage for all pixels in the absence of illumination. - 10. Image lag is a residual signal left in a pixel from a previous exposure. It is defined as a percent of white-level signal remaining after a pixel is exposed to a white condition followed by a dark condition: $$IL = \frac{V_{out (IL)} - V_{drk}}{V_{out (white)} - V_{drk}} \times 100$$ #### Timing Requirements (see Figure 1 and Figure 2) | | | MIN | NOM | MAX | UNIT | |---------------------------------|---|-----|-----|-----|------| | t _{su(SI)} | Setup time, serial input (see Note 11) | 20 | | | ns | | t _{h(SI)} | Hold time, serial input (see Note 11 and Note 12) | 0 | | | ns | | t _{pd(SO)} | Propagation delay time, SO | | 50 | | ns | | t _w | Pulse duration, clock high or low | 50 | | | ns | | t _r , t _f | Input transition (rise and fall) time | 0 | | 500 | ns | NOTES: 11. Input pulses have the following characteristics: $t_r = 6$ ns, $t_f = 6$ ns. 12. SI must go low before the rising edge of the next clock pulse. TAOS042 - AUGUST 2002 ### Dynamic Characteristics over recommended ranges of supply voltage and operating free-air temperature (see Figures 7 and 8) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |---------------------|--|--|-----|-----|-----|------| | ts | Analog output settling time to $\pm 1\%$ | $R_L = 330 \ \Omega$, $C_L = 50 \ pF$ | | 120 | | ns | | t _{pd(SO)} | Propagation delay time, SO1, SO2 | | | 50 | | ns | #### **TYPICAL CHARACTERISTICS** Figure 1. Timing Waveforms (serial connection) Figure 2. Operational Waveforms (each section) #### **TYPICAL CHARACTERISTICS** #### PHOTODIODE SPECTRAL RESPONSIVITY T_A = 25°C 0.8 Normalized Responsivity 0.6 0.4 0.2 300 400 500 600 700 800 900 1000 1100 λ – Wavelength – nm Figure 3 Figure 4 T_A - Free-Air Temperature - °C 30 40 50 60 70 0 10 20 #### TYPICAL CHARACTERISTICS #### **APPLICATION INFORMATION** Figure 9. Operational Connections #### **MECHANICAL DATA** NOTES: A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. Pixel centers are in line with center line of mounting holes. Figure 10. TSL1406R Mechanical Specifications NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. Figure 11. TSL1406RS Mechanical Specifications TAOS042 - AUGUST 2002 **PRODUCTION DATA** — information in this document is current at publication date. Products conform to specifications in accordance with the terms of Texas Advanced Optoelectronic Solutions, Inc. standard warranty. Production processing does not necessarily include testing of all parameters. #### **NOTICE** Texas Advanced Optoelectronic Solutions, Inc. (TAOS) reserves the right to make changes to the products contained in this document to improve performance or for any other purpose, or to discontinue them without notice. Customers are advised to contact TAOS to obtain the latest product information before placing orders or designing TAOS products into systems. TAOS assumes no responsibility for the use of any products or circuits described in this document or customer product design, conveys no license, either expressed or implied, under any patent or other right, and makes no representation that the circuits are free of patent infringement. TAOS further makes no claim as to the suitability of its products for any particular purpose, nor does TAOS assume any liability arising out of the use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. TEXAS ADVANCED OPTOELECTRONIC SOLUTIONS, INC. PRODUCTS ARE NOT DESIGNED OR INTENDED FOR USE IN CRITICAL APPLICATIONS IN WHICH THE FAILURE OR MALFUNCTION OF THE TAOS PRODUCT MAY RESULT IN PERSONAL INJURY OR DEATH. USE OF TAOS PRODUCTS IN LIFE SUPPORT SYSTEMS IS EXPRESSLY UNAUTHORIZED AND ANY SUCH USE BY A CUSTOMER IS COMPLETELY AT THE CUSTOMER'S RISK. LUMENOLOGY is a registered trademark, and TAOS, the TAOS logo, and Texas Advanced Optoelectronic Solutions are trademarks of Texas Advanced Optoelectronic Solutions Incorporated. TAOS042 - AUGUST 2002