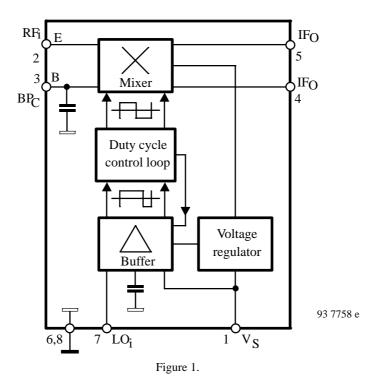
2-GHz Single Balanced Mixer

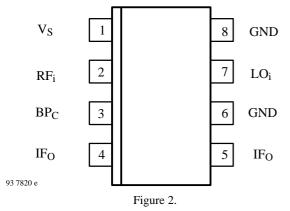
Description

The U2796B-FP is a 2-GHz down conversion mixer for telecommunication systems, e.g. cellular radio, CT1, CT2, DECT, PCN, using TEMIC Semiconductors advanced bipolar technology. The U2796B is well suited

for the receiver portion of the RF circuit. Single balanced structure has been chosen for the best noise performance and low current consumption. The IIP3 is programmable.


Features

- Supply voltage range: 2.7 to 5.5 V
- Exellent isolation characteristics
- Low current consumption: 3.2 mA without R_{IP3}
- IIP3 programmable
- Input frequency operating range up to 2 GHz
- RF characteristic nearly independent of supply voltage


Benefits

- Stand alone product
- Low current consumption extends talk time
- 3-V operation requires small space for batteries

Block Diagram

Pin Description

Pin	Symbol	Function
1	Vs	Supply voltage
2	RF	RF input and IIP3 programming port
3	BP _C	By-pass capacitor
4	IFo	IF output
5	IFo	IF output
6	GND	Ground
7	LOi	Local oscillator input
8	GND	Ground

Absolute Maximum Ratings

Parameters	Symbol	Value	Unit
Supply voltage Pin 1	Vs	6	V
Input voltage Pins 2, 3, 4, 5 and 7	Vi	0 to V _S	V
Junction temperature	Tj	125	°C
Storage temperature	T _{stg}	-40 to + 125	°C

Operating Range

Parameters	Symbol	Value	Unit	
Supply voltage range Pin 1	VS	2.7 to 5.5	V	
Ambient temperature	T _{amb}	-40 to + 85	°C	

Thermal Resistance

Parameters	Symbol	Value	Unit	
Junction ambient SO8	R _{thJA}	175	K/W	

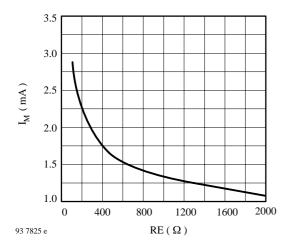
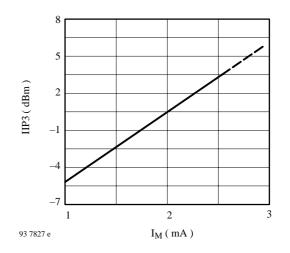
Electrical Characteristics

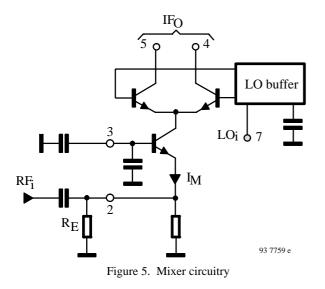
Test conditions (unless otherwise specified): $V_S = 3 \text{ V}, f_{LO} = 900 \text{ MHz}; I_M = 1.2 \text{ mA}, T_{amb} = 25^{\circ}\text{C}.$ System impedance $Z_O = 50 \Omega$

Parameters	Test conditions / Pin		Symbol	Min.	Тур.	Max.	Unit
Supply voltage		Pin 1	Vs	2.7		5.5	V
Supply current	$R_{IP3} = \infty$,	Pin 1	IS	2.8	3.2	3.7	mA
Conversion power gain	$RL = 3 k\Omega, R_{IP3} = \infty$ f _{LO} = 900 MHz		PG _C		9		dB
Figure 4	$f_{LO} = 1700 \text{ MHz}$ $f_{IF} = 45 \text{ MHz}$				9		
Isolation							
LO-spurious at RF _{in}	$Pi_{LO} = -10 \text{ dBm}$ Figure 5	Pin 7 to 2	IS _{LORF}			-35	dBm
RF to LO	$Pi_{RF} = -25 \text{ dBm}$ $f_{LO} = 900 \text{ MHz}$	Pin 2 to 7	IS _{RFLO}	30	40		dB
Figure 6 $f_{LO} = 1700 \text{ MHz}$				20			
Operating frequencies							
RF frequency		Pin 2	RFi	2000			MHz
LO _{in} frequency		Pin 7	LOi	2000			MHz
IFout frequency	F _{out} frequency Pins 4 and 5		IFo	300			MHz
Input level	·						
RF input (-1 dB comp.)	$RL = 50 \Omega$,	Pin 2	Pi _{RF}		-15		dBm
3rd order intercept point	$Pi_{LO} = -10 \text{ dBm}$ Figure 2	$R_{IP3} = \infty$ Pin 2	IIP3		-4		dBm
LO input		Pin 7	P _{iLO}		-6	0	dBm
Impedances							
RF input		Pin 2	Z _{iRF}		25		Ω
LO input		Pin 7	Zi _{LO}		50		Ω
IF output	F	ins 4 and 5	Z _{oIF}		>10 kΩ// 0.9 pF		
Noise figure (DSB)	$Pi_{LO} = 0dBm, R$ $f_{LO} = 900 MHz$	$L > 3 k\Omega$	NF50		9		dB
Figure 7	$f_{LO} = 1700 \text{ MHz}$	Z			12]
Voltage standing wave ratio LO		Pin 7	VSWR- LO		1.3	2	

Note: I_M = Internal mixer current (see figure 2)

U2796B


Figure 3. Mixer current (I_M) versus RE

EMIC

Semiconductors

Figure 4. Third-order input intercept IIP3 point versus I_M

U2796B

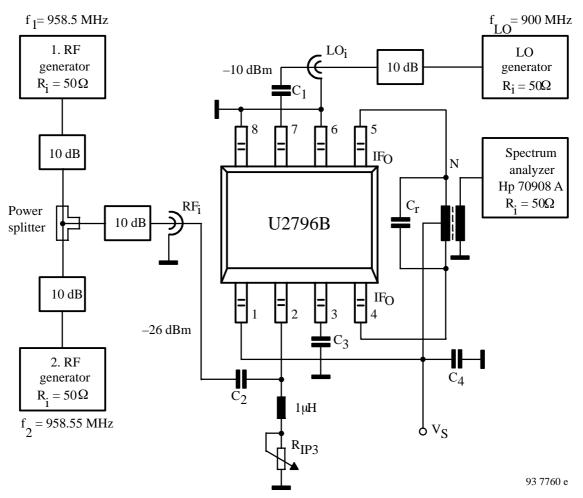


Figure 6. Test circuit-conversion power gain (PG_C) and 3rd order input intercept point (IIP3)

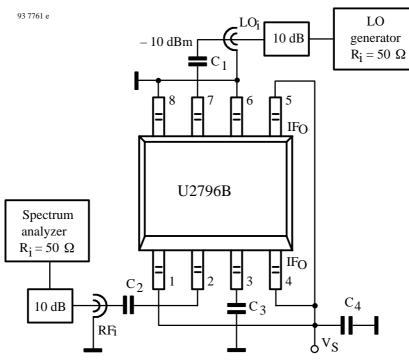


Figure 7. Test circuit-isolation LO to RF

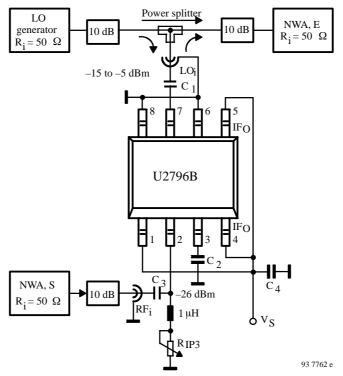


Figure 8. Test circuit-isolation RF to LO

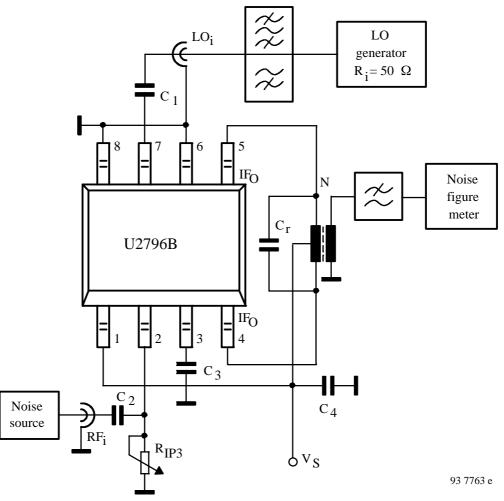


Figure 9. Test circuit-noise figure

Note:

- 1. The noise floor of the LO generator might influence the noise figure test result. In order to avoid this, either a band pass or a high pass filter with $f_{C} > f_{IF}$ should be implemented.
- 2. If IF output network does not provide sufficient suppression of the LO component, a low pass filter should be inserted to avoid overdriving the noise figure meter.
- 3. For best noise performance 0 dBm LO power level is required.

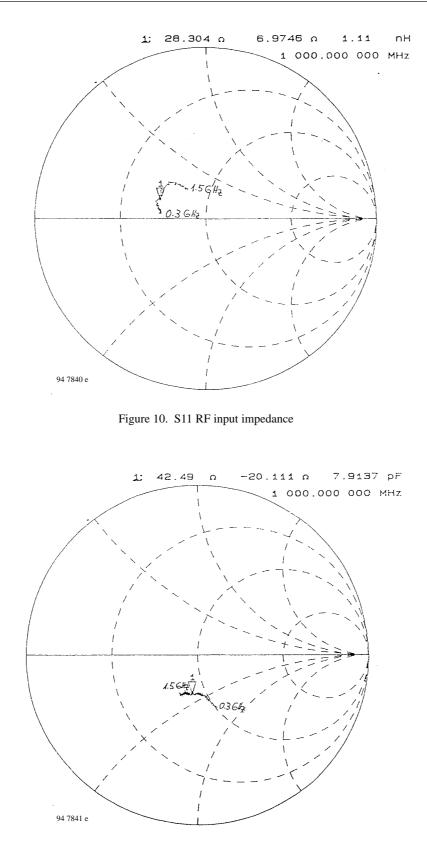
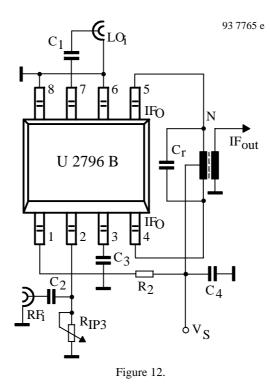



Figure 11. S11 LO input impedance

Application Circuit

Recommended Values for the Evaluator

 C_1 and $C_2 = 150$ pF, C_3 and $C_4 = 100$ nF. C_r is calculated for resonance with the balun at f_{IF} , or as a high pass filter for f_{LO} . The output balun transformer ratio > = 8:1 for Z_O $= 50 \ \Omega \ R_2$ increases the IF output level and is calculated from:

$$R_{2} = \frac{V_{s} (4,5) - V_{s} (1)}{I_{s} (1)}$$

For example V_S (4,5) = 4 V, V_S (1) = 3 V, I_S (1) = 2.2 mA $R_2 \approx 470 \Omega$, where I_S (1) is the current consumption without the mixer stage.

Application Hint

The output transformer at the pins 4 and 5 can be replaced by LC-circuits like one of the following proposals, which are saving space compared to the transformer and are suitable for higher IF frequencies. When applying one of these solutions, it has to be checked whether the requirements on noise figure and gain can be achieved.

The second circuit was dimensioned for approximately 130 MHz and a load resistance of 50 Ω . If for instance the

impedance of a subsequent filter is 1 k Ω , the capacitive voltage divider may be left out.

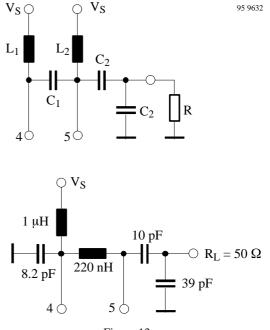
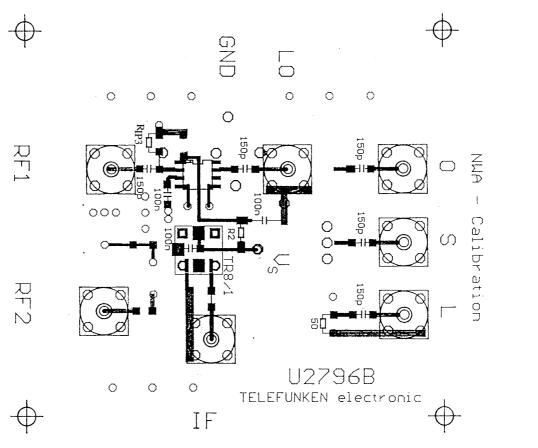



Figure 13.

Rev. A2, 15-Oct-98

Evaluation Board

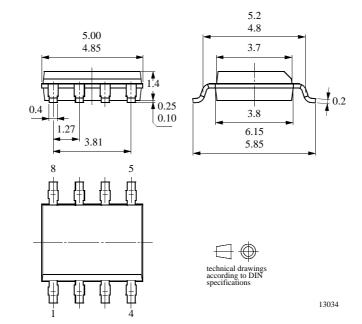

93 7826 e

Figure 14.

Dimensions in mm

Package SO8

Dimensions in mm

10 (11)

Preliminary Information

Rev. A2, 15-Oct-98

Ozone Depleting Substances Policy Statement

It is the policy of **TEMIC Semiconductor GmbH** to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

TEMIC Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

TEMIC Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

> TEMIC Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2594, Fax number: 49 (0)7131 67 2423