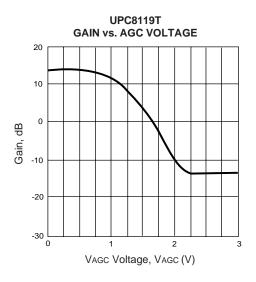
# **1.9 GHz AGC AMPLIFIER**

### **FEATURES**

• FREQUENCY RESPONSE: 800 MHz to 1.9 GHz

NEC

- **SUPPLY VOLTAGE RANGE:** 2.7~3.3 ∨
- VAGC: 0.6~2.3 V
- SUPER SMALL SURFACE MOUNT PACKAGE
- TAPE AND REEL PACKAGING OPTION AVAILABLE
- GAIN CONTROL RANGE UP TO 40 dB


### DESCRIPTION

The UPC8119T is a Silicon Monolithic Microwave Integrated Circuit which is manufactured using the NESAT III process. The NESAT III process produces transistors with fT approaching 20 GHz. This device is suitable as an Automatic Gain Control Amplifier stage in cellular radios, GPS receivers, PCN, and test/measurement equipment.

NEC's stringent quality assurance and test procedures assure the highest reliability and performance.

## **ELECTRICAL CHARACTERISTICS** (TA = $25^{\circ}$ C, Vcc = 3.0 V, ZS = ZL = $50 \Omega$ )

| PART NUMBER<br>PACKAGE OUTLINE |                                                                                                                    |                   |          | UPC8119T<br>T06    |                  |  |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------|----------|--------------------|------------------|--|
| SYMBOLS                        | PARAMETERS AND CONDITIONS                                                                                          | UNITS             | MIN      | <b>TYP</b> 11      | <b>MAX</b><br>15 |  |
| Icc                            | Circuit Current (no signal)                                                                                        | mA                | 7.5      |                    |                  |  |
| GCR                            | Gain Control <sup>2</sup> f = 950 MHz, PIN = -30 dBm<br>f = 1440 MHz, PIN = -30 dBm<br>f = 1900 MHz, PIN = -30 dBm | dB<br>dB<br>dB    | 40<br>35 | 50<br>45<br>22     |                  |  |
| Gрмах                          | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                               | dB<br>dB<br>dB    | 10<br>10 | 12.5<br>13<br>12.5 | 15<br>16         |  |
| P1dB                           | Output Power at 1 dB compression, f = 950 MHz, Gрмах<br>f = 1440 MHz, Gрмах<br>f = 1900 MHz, Gрмах                 | dBm<br>dBm<br>dBm | 0<br>+1  | +3<br>+4<br>+3     |                  |  |
| NF                             | Noise Figure f = 950 MHz, GPмах<br>f = 1440 MHz, GPмах<br>f = 1900 MHz, GPмах                                      | dB<br>dB<br>dB    |          | 8.5<br>7.5<br>7.2  | 11.5<br>10.5     |  |
| RLIN                           | Input Return Loss f = 950 MHz, Gрмах<br>f = 1440 MHz,Gрмах                                                         | dB<br>dB          | 3<br>3   | 6<br>6             |                  |  |
| ISOL                           | Isolation f = 950 MHz, GPMAX<br>f = 1440 MHz, GPMAX                                                                | dB<br>dB          | 27<br>31 | 32<br>36           |                  |  |



# ABSOLUTE MAXIMUM RATINGS<sup>1</sup> (TA = 25°C)

| SYMBOLS                   | PARAMETERS            | UNITS | RATINGS     |
|---------------------------|-----------------------|-------|-------------|
| Vcc Supply Voltage        |                       | V     | 3.6         |
| VAGC Gain Control Voltage |                       | V     | 3.6         |
| Тор                       | Operating Temperature | °C    | -40 to +85  |
| Тѕтс                      | Storage Temperature   | °C    | -55 to +150 |

Notes:

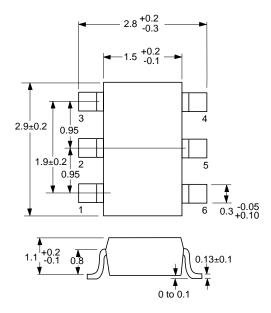
1. Operation in excess of any one of these conditions may result in permanent damage.

# **RECOMMENDED OPERATING CONDITIONS**

| SYMBOLS                    | PARAMETERS            | UNITS | MIN | TYP | MAX  |
|----------------------------|-----------------------|-------|-----|-----|------|
| Vcc                        | Supply Voltage        | V     | 2.7 | 3.0 | 3.3  |
| VAGC                       | Gain Control Voltage  | V     | 0.6 | -   | 2.4  |
| Тор                        | Operating Temperature | °C    | -40 | 25  | +85  |
| PIN                        | Input Level           | dBm   | -   | -   | -181 |
| f Operating Frequency      |                       | MHz   | 100 | -   | 1900 |
| IAGC AGC Pin Drive Current |                       | mA    | 0.5 | -   | -    |

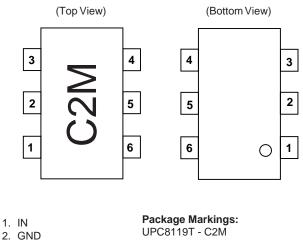
Note:

1. Padj  $\leq$  -60 dBc @  $\Delta f = \pm 50$  kHz.


Wave form condition:  $\pi/4$  QPSK modulation signal, data rate = 42 kbps, roll off ratio = 0.5, PN9 pattern.

# **PIN FUNCTIONS**

| Pin No. | Symbol | Pin Voltage                                    | Description                                                                                                                              | Equivalent Circuit |
|---------|--------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 1       | IN     | _                                              | RF input pin. Input RF signal with 50 $\Omega$ source impedance through a coupling capacitor. External matching circuit is not required. |                    |
| 2<br>3  | GND    | 0                                              | Ground pin. This pin must be connected to<br>system ground. Form ground pattern as wide<br>as possible to minimize ground impedance.     |                    |
| 4       | Out    | Same as<br>Vcc through<br>external<br>inductor | RF output pin. The output is an open<br>collector with high impedance. External<br>matching circuit is required.                         |                    |
| 5       | Vcc    | 2.7~3.3                                        | Supply voltage pin. This pin should be<br>connected with a bypass capacitor (e.g.,<br>1000 pF) to minimize ground impedance.             |                    |
| 6       | Vagc   | 0~3.3                                          | Gain Control pin. The gain slope vs.<br>increasing AGC voltage is summarized<br>below:                                                   | 6                  |
|         |        |                                                | Device         Gain Slope vs. VAGC           UPC8119T         Down                                                                       |                    |


# OUTLINE DIMENSIONS (Units in mm)

#### PACKAGE OUTLINE T06

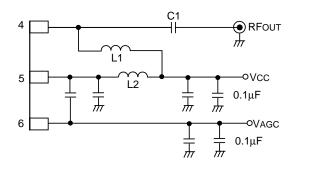




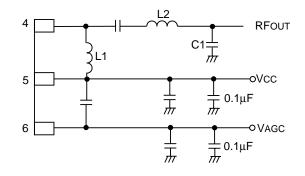
# LEAD CONNECTIONS



- 3. GND
- 4. OUT
- 5. Vcc


6. VAGC

### **ORDERING INFORMATION**


| PART NUMBER | QUANTITY |  |
|-------------|----------|--|
| UPC8119T-E3 | 3K/Reel  |  |

# **TEST CIRCUIT**

#### 900 MHz



1900 MHz



| Fout | L1    | L2        | C1    | Unless Noted               |
|------|-------|-----------|-------|----------------------------|
| 900  | 6.8nH | 15nH      | 1.5pF | All Other<br>Caps = 1000pF |
| 1900 | 100nH | 5nH (TRL) | 2.2pF |                            |

#### Life Support Applications

These NEC products are not intended for use in life support devices, appliances, or systems where the malfunction of these products can reasonably be expected to result in personal injury. The customers of CEL using or selling these products for use in such applications do so at their own risk and agree to fully indemnify CEL for all damages resulting from such improper use or sale.

EXCLUSIVE NORTH AMERICAN AGENT FOR NEC RF, MICROWAVE & OPTOELECTRONIC SEMICONDUCTORS
CALIFORNIA EASTERN LABORATORIES • Headquarters • 4590 Patrick Henry Drive • Santa Clara, CA 95054-1817 • (408) 988-3500 • Telex 34-6393 • FAX (408) 988-0279
DATA SUBJECT TO CHANGE WITHOUT NOTICE
Internet: http://WWW.CEL.COM

#### 01/17/2002