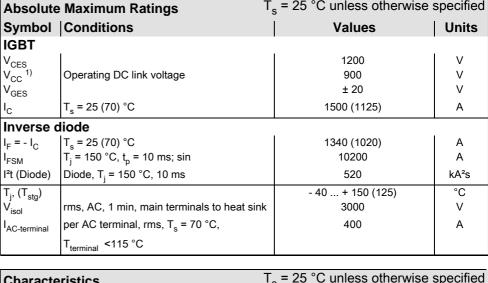
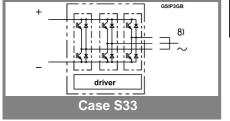

SKiiP 1513GB122-3DL


2-pack-integrated intelligent Power System

Power Section SKiiP 1513GB122-3DL

Data


Power section features

- SKiiP technology inside
- SPT (Soft Punch Trough) IGBTs
- CAL diode technology
- Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP® 3 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized File no. E63532
- 1) with assembly of suitable MKP capacitor per terminal
- 8) AC connection busbars must be connected by the user; copper busbars available on request

T_s = 25 °C unless otherwise specified

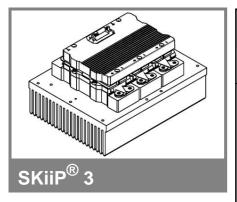
Characteristics			T _s = 25 °C unless otherwise specified				
Symbol	Symbol Conditions			min.	typ.	max.	Units
IGBT							
V _{CEsat}	I _C = 900 A, T _j = 25 (12) measured at terminal	5) °C;			2,3 (2,5)	2,6	V
V_{CEO}	T _i = 25 (125) °C; at teri	minal			1,1 (1)	1,3 (1,2)	V
r_{CE}	T _i = 25 (125) °C; at teri	minal			1,3 (1,7)	1,5 (1,9)	mΩ
I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CES}$ $T_i = 25 (125) ^{\circ}\text{C}$,			3,6 (108)		mA
E _{on} + E _{off}	$I_{\rm C}^{\rm J}$ = 900 A, $V_{\rm CC}$ = 600	V			270		mJ
	$T_j = 125 ^{\circ}\text{C}, V_{CC} = 900$	V			476		mJ
R _{CC+EE}	terminal chip, T _i = 25 °	С			0,17		mΩ
L _{CE}	top, bottom				4		nH
C _{CHC}	per phase, AC-side				5,1		nF
Inverse o	diode						
$V_F = V_{EC}$	$I_F = 900 \text{ A}, T_j = 25 \text{ (128)}$ measured at terminal	5) °C			1,95 (1,7)	2,1	V
V _{TO}	T _i = 25 (125) °C				1,1 (0,8)	1,2 (0,9)	V
r _T	T _i = 25 (125) °C				0,9 (1)	1 (1,2)	mΩ
E _{rr}	$I_{\rm C} = 900 \text{A}, V_{\rm CC} = 600 \text{M}$	V			72		mJ
	$T_j = 125 ^{\circ}\text{C}, V_{CC} = 900$	V			92		mJ
Mechani	cal data						
M_{dc}	DC terminals, SI Units			6		8	Nm
M _{ac}	AC terminals, SI Units			13		15	Nm
W	SKiiP® 3 System w/o h	eat sink			2,4		kg
W	heat sink				7,5		kg
Thermal characteristics (PX 16 heat sink with fan SKF 16B-230-1); "s" reference to heat sink; "r" reference to built-in temperature sensor (acc. IEC 60747-15)							
$R_{th(j-s)l}$	per IGBT					0,02	K/W
$R_{th(j-s)D}$	per diode					0,038	K/W
Z _{th}	R _i (mK/W) (max. value	tau _i (s)					
	1 2	3	4	1	2	3	4
$Z_{th(j-r)I}$	3,4 9,6	7	0	363	0,18	0,04	1
$Z_{th(j-r)D}$	12 12	18	20	30	5	0,25	0,04

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

210

85

11


0,4

20

 $\angle_{\text{th(r-a)}}$

5,5

SKiiP 1513GB122-3DL

2-pack-integrated intelligent Power System

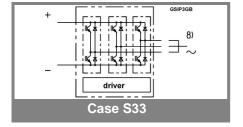
2-pack integrated gate driver SKiiP 1513GB122-3DL

Data

Gate driver features

- · CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and

DC-bus voltage (option)


- Short circuit protection
- · Over current protection
- Over voltage protection (option)
- Power supply protection against under voltage
- Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 60068-1 (climate) 40/85/56
- UL recognized file no. 242581

Absolute Maximum Ratings		T _a = 25 °C unless otherwise specified			
Symbol	Conditions	Values	Units		
V_{S2}	unstabilized 24 V power supply	30	V		
V_{i}	input signal voltage (high)	15 + 0,3	V		
dv/dt	secondary to primary side	75	kV/μs		
V_{isollO}	input / output (AC, rms, 2)	3000	V		
V _{isoIPD}	partial discharge extinction voltage, rms, Q _{PD} ≤10 pC;	1170	V		
V _{isol12}	output 1 / output 2 (AC, rms, 2 s)	1500	V		
f _{sw}	switching frequency	10	kHz		
f _{out}	output frequency for I _{peak(1)} =I _C	10	kHz		
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C		

Characte	eristics	(T _a = 25 °C			= 25 °C)
Symbol	Conditions	min.	typ.	max.	Units
V_{S2}	supply voltage non stabilized	13	24	30	V
I _{S2}	V _{S2} = 24 V	278+29*f/kHz+0,00015*(I _{AC} /A) ²		mA	
V _{iT+}	input threshold voltage (High)			12,3	V
V_{iT-}	input threshold voltage (Low)	4,6			V
R _{IN}	input resistance		10		kΩ
C_{IN}	input capacitance		1		nF
t _{d(on)IO}	input-output turn-on propagation time		1,3		μs
$t_{d(off)IO}$	input-output turn-off propagation time	1,3			μs
$\mathbf{t}_{\mathrm{pERRRESET}}$	error memory reset time	9			μs
t_{TD}	top / bottom switch interlock time		3,3		μs
I _{analogOUT}	max. 5mA; 8 V corresponds to 15 V supply voltage for external components		1500		А
I _{s1out}	max. load current			50	mA
I _{TRIPSC}	over current trip level				
	$(I_{analog} OUT = 10 V)$		1875		Α
T_tp	over temperature protection	110		120	°C
UDCTRIP	U_{DC} -protection ($U_{analog OUT} = 9 V$);	i	not mplemente	d	V
	(option for GB types)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

