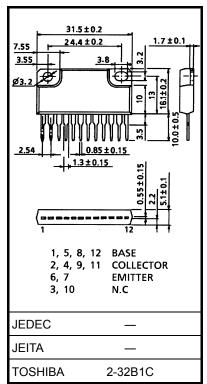
TOSHIBA Power Transistor Module Silicon Triple Diffused Type (Four Darlington Power Transistors inOne)

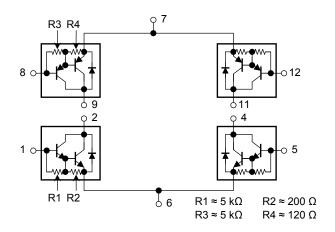
MP4507

High Power Switching Applications
Hammer Drive, Pulse Motor Drive and Inductive
Load Switching

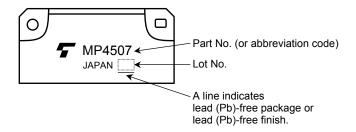

- Package with heat sink isolated to lead (SIP 12 pins)
- High collector power dissipation (4-device operation) : $P_T = 5$ W ($T_a = 25^{\circ}$ C)
- High collector current: IC (DC) = ± 5 A (max)
- High DC current gain: $h_{FE} = 1000$ (min) ($V_{CE} = \pm 3$ V, $I_{C} = \pm 3$ A)

Maximum Ratings (Ta = 25°C)

Characteristi	Cumbal	Rat	Unit			
Characteristi	Symbol	NPN	PNP	Offic		
Collector-base voltage	V _{CBO}	100	-100	V		
Collector-emitter voltage		V _{CEO}	100	-100	V	
Emitter-base voltage		V _{EBO}	5	-5	>	
Collector current	DC	IC	5	-5	Α	
	Pulse	I _{CP}	8 -8			
Continuous base current	Continuous base current			-0.1	Α	
Collector power dissipati	Collector power dissipation			3.0		
(1-device operation)		PC	,	W		
Collector power dissipation	Ta = 25°C	PC	5.0		W	
(4-device operation)	Tc = 25°C	10	25			
Isolation voltage	V _{Isol}	1000		V		
Junction temperature	Tj	150		°C		
Storage temperature ran	T _{stg}	-55 to 150		°C		


Industrial Applications

Unit: mm


Weight: 6.0 g (typ.)

Array Configuration

1

Marking

Thermal Characteristics

Characteristics	Symbol	Max	Unit
Thermal resistance fromchannel to ambient (4 devices operation, Ta = 25°C)	ΣR _{th (j-a)}	25	°C/W
Thermal resistance from channel to case (4 devices operation, Tc = 25°C)	ΣR _{th (j-c)}	5.0	°C/W
Maximum lead temperature for soldering purposes (3.2 mm from case for 10 s)	TL	260	°C

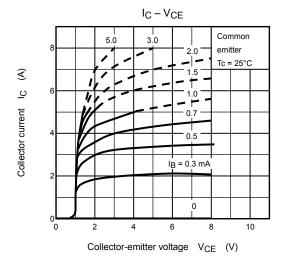
Electrical Characteristics (Ta = 25°C) (NPN transistor)

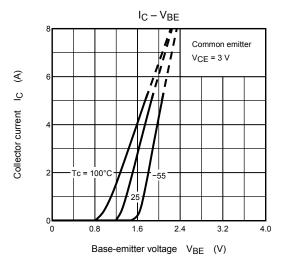
Charac	eteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Collector cut-off current		I _{CBO}	V _{CB} = 100 V, I _E = 0 A	_	_	10	μΑ
Collector cut-off cu	rrent	I _{CEO}	V _{CE} = 100 V, I _B = 0 A	_	_	10	μA
Emitter cut-off curr	ent	I _{EBO}	V _{EB} = 5 V, I _C = 0 A	0.3	_	2.0	mA
Collector-base brea	akdown voltage	V (BR) CBO	I _C = 1 mA, I _E = 0 A	100	_	_	V
Collector-emitter bi	reakdown voltage	V (BR) CEO	I _C = 30 mA, I _B = 0 A	100	_	_	V
DC surrent sein		h _{FE (1)}	V _{CE} = 3 V, I _C = 0.5 A	1000	_	_	
DC current gain		h _{FE (2)}	V _{CE} = 3 V, I _C = 3 A	1000	_	_	_
Caturation voltage	Collector-emitter	V _{CE} (sat)	I _C = 3 A, I _B = 12 mA	_	_	2.0	V
Saturation voltage	Base-emitter	V _{BE (sat)}	I _C = 3 A, I _B = 12 mA	_	_	2.5	
Transition frequency		f _T	V _{CE} = 3 V, I _C = 0.5 A	3	_	_	MHz
Collector output capacitance		C _{ob}	V _{CB} = 50 V, I _E = 0 A, f = 1 MHz	_	40	_	pF
	Turn-on time	t _{on}	Output Input B1 C 20 µs B2 W VCC = 30 V	_	0.5	_	
	Storage time	t _{stg}		_	3.0	_	μs
	Fall time	t _f	$I_{B1} = -I_{B2} = 12 \text{ mA, duty cycle} \le 1\%$	_	2.0	_	

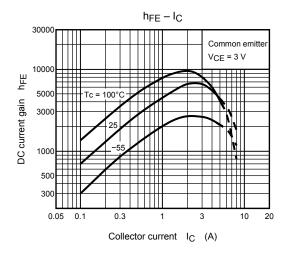
Emitter-Collector Diode Ratings and Characteristics (Ta = 25°C)

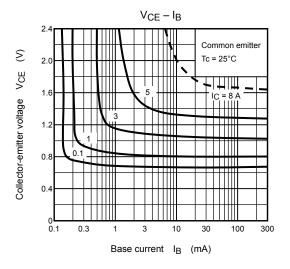
Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Forward current	I _{FM}	_	_	_	5	Α
Surge current	I _{FSM}	t = 1 s, 1 shot	_	_	8	Α
Forward voltage	V _F	I _F = 1 A, I _B = 0 A	_	_	2.0	٧
Reverse recovery time	t _{rr}	$I_F = 5 \text{ A}, V_{BE} = -3 \text{ V}, dI_F/dt = -50 \text{ A/}\mu\text{s}$	_	1.0	_	μs
Reverse recovery charge	Q _{rr}		_	8	_	μC

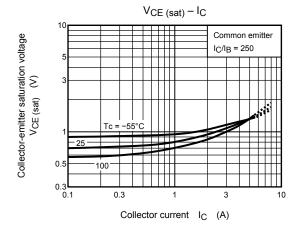
Electrical Characteristics (Ta = 25°C) (PNP transistor)

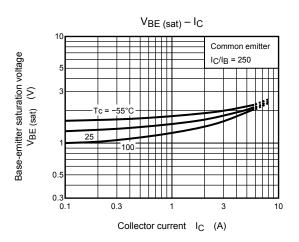

Characteristics		Symbol	Test Condition	Min	Тур.	Max	Unit
Collector cut-off cu	rrent	I _{CBO}	V _{CB} = -100 V, I _E = 0 A	_	_	-10	μΑ
Collector cut-off cu	rrent	I _{CEO}	V _{CE} = -100 V, I _B = 0 A	_	_	-10	μA
Emitter cut-off curr	ent	I _{EBO}	$V_{EB} = -5 \text{ V}, I_C = 0 \text{ A}$	-0.3	_	-2.0	mA
Collector-base brea	akdown voltage	V (BR) CBO	I _C = -1 mA, I _E = 0 A	-100	_	_	V
Collector-emitter b	reakdown voltage	V (BR) CEO	I _C = -30 mA, I _B = 0 A	-100	_	_	٧
DC surrent sein		h _{FE (1)}	$V_{CE} = -3 \text{ V}, I_{C} = -0.5 \text{ A}$	1000	_	_	
DC current gain		h _{FE} (2)	V _{CE} = -3 V, I _C = -3 A	1000	_	_	_
Caturation valtage	Collector-emitter	V _{CE (sat)}	I _C = -3 A, I _B = -12 mA	_	_	-2.0	V
Saturation voltage	Base-emitter	V _{BE (sat)}	I _C = -3 A, I _B = -12 mA	_	_	-2.5	
Transition frequency		f _T	V _{CE} = -3 V, I _C = -0.5 A	3	_	_	MHz
Collector output ca	Collector output capacitance		V _{CB} = -50 V, I _E = 0 A, f = 1 MHz	_	40	_	pF
Switching time Storag	Turn-on time	t _{on}	Output IB2	_	0.5	_	
	Storage time	t _{stg}	Input 32 20 μs IB1 W 30	_	3.0	_	μs
	Fall time	t _f	$V_{CC} = -30 \text{ V}$ $-I_{B1} = I_{B2} = 12 \text{ mA}, \text{ duty cycle} \le 1\%$	_	2.0	_	

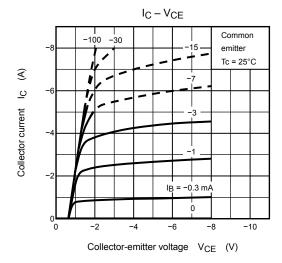

Emitter-Collector Diode Ratings and Characteristics (Ta = 25°C)

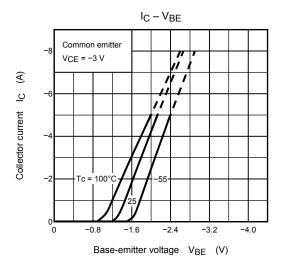

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Forward current	I _{FM}	_	_	_	5	Α
Surge current	I _{FSM}	t = 1 s, 1 shot	_	_	8	Α
Forward voltage	V _F	I _F = 1 A, I _B = 0 A	_	_	2.0	V
Reverse recovery time	t _{rr}	I _F = 5 A, V _{BE} = 3 V, dI _F /dt = -50 A/μs	_	1.0	_	μs
Reverse recovery charge	Q _{rr}			8	_	μC

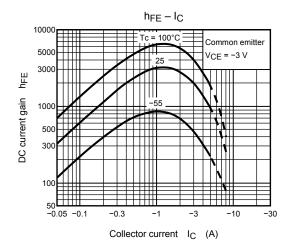

3 2004-07-01

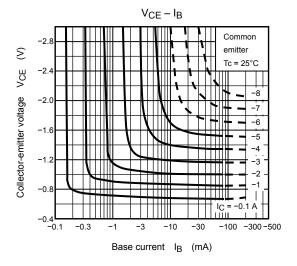

(NPN transistor)

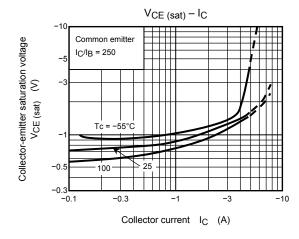


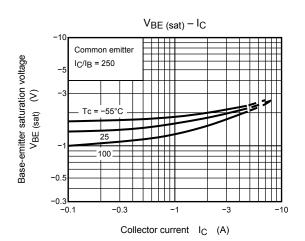


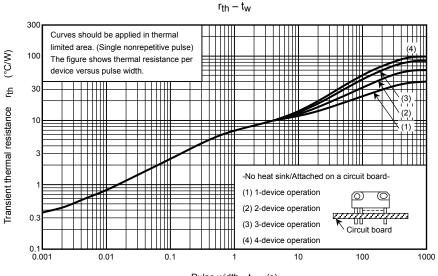


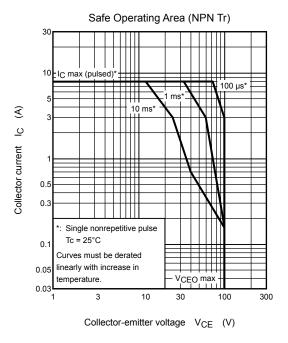


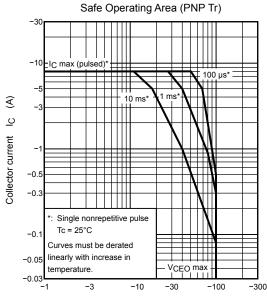



(PNP transistor)

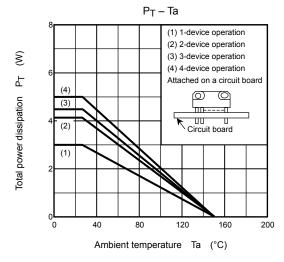


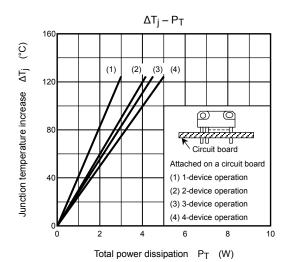






5





Collector-emitter voltage V_{CE} (V)

6 2004-07-01

RESTRICTIONS ON PRODUCT USE

20070701-EN

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which
 manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.