POWER MANAGEMENT

Description

The SC1454 contains two ultra low dropout voltage regulators (ULDOs). It operates from an input voltage range of 2.25 V to 6.5 V , and a wide variety of output voltage options are available. One ULDO has a fixed output, and the other is either fixed (SETA pin grounded) or adjustable using external resistors. Each ULDO has an independent enable pin.

The SC1454 has a bypass pin to enable the user to capacitively decouple the bandgap reference for very low output noise ($50 \mu \mathrm{~V}_{\text {RMS }}$ typically).

Designed specifically for battery operated systems, the devices utilize CMOS technology to require very low operating currents (typically $130 \mu \mathrm{~A}$ with both outputs supplying 150 mA). In addition, the dropout voltage is typically 155 mV at 150 mA , helping to prolong battery life further. The devices are designed to provide 400 mA of peak current for applications which require high initial inrush current.

They have been designed to be used with low ESR ceramic capacitors to save cost and PCB area.

The SC1454 is available with a wide variety of voltage options as standard. It comes in the tiny 8 lead MSOP surface mount package.

Features

- Up to 150 mA per regulator output
- Low quiescent current
- Low dropout voltage
- Stable operation with ceramic caps
- Very low $50 \mu \mathrm{~V}_{\text {RMS }}$ output noise
- Wide selection of output voltages
- Tight load and line regulation
- Current and thermal limiting
- Reverse input polarity protection
- <1.5uA off-mode current
- Logic controlled enable

Applications

- Cellular telephones
- Palmtop/Laptop computers
- Battery-powered equipment
- Bar code scanners
- SMPS post regulator/dc to dc modules
- High efficiency linear power supplies

Typical Application Circuit

POWER MANAGEMENT

Absolute Maximum Ratings

Exceeding the specifications below may result in permanent damage to the device, or device malfunction. Operation outside of the parameters specified in the Electrical Characteristics section is not implied. Exposure to Absolute Maximum rated conditions for extended periods of time may affect device reliability.

Parameter	Symbol	Maximum	Units
Input Supply Voltage	$\mathrm{V}_{\mathbb{N}}$	-5 to +7	V
Enable Input Voltage	V_{EN}	-5 to $+\mathrm{V}_{\mathbb{N}}$	V
Operating Ambient Temperature Range	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature Range	T_{J}	-40 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-60 to +150	${ }^{\circ} \mathrm{C}$
Thermal Impedance Junction to Ambient ${ }^{(1)}$	θ_{JA}	206	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Impedance Junction to Ambient ${ }^{(2)}$	θ_{JA}	95	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Impedance Junction to Case	θ_{JC}	39	${ }^{\circ} \mathrm{C} / \mathrm{W}$
ESD Rating (Human Body Model)	ESD	2	kV

Notes:

(1) Minimum pad size.
(2) 1 square inch of $\mathrm{FR}-4$, double sided, 1oz. minimum copper weight.

Electrical Characteristics

Unless specified: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}+1 \mathrm{~V}, \mathrm{I}_{\text {OUTA }}=\mathrm{I}_{\text {OUTB }}=1 \mathrm{~mA}, \mathrm{C}_{\text {IN }}=\mathrm{C}_{\text {OUT }}=1.0 \mu \mathrm{~F}, \mathrm{~V}_{\text {ENA }}=\mathrm{V}_{\text {ENB }}=\mathrm{V}_{\text {IN }}$.
Values in bold apply over full operating temperature range.

Parameter	Symbol	Conditions	Min	Typ	Max	Units
IN						
Input Supply Voltage	$\mathrm{V}_{\mathbb{N}}$		2.25		6.50	V
Quiescent Current	$1{ }_{Q}$	$\begin{aligned} & V_{E N A}=0 \mathrm{~V}, \mathrm{~V}_{\text {ENB }}=\mathrm{V}_{\mathbb{N}}, \mathrm{l}_{\text {OUTB }}=150 \mathrm{~mA} \text { or } \\ & V_{E N B}=0 \mathrm{~V}, \mathrm{~V}_{\text {ENA }}=\mathrm{V}_{\mathbb{N}}, \mathrm{l}_{\text {OUTA }}=150 \mathrm{~mA} \end{aligned}$		100	150	$\mu \mathrm{A}$
					200	
		$V_{\text {ENA }}=V_{\text {ENB }}=V_{\mathbb{N}}, I_{\text {OUTA }}=I_{\text {OUTB }}=150 \mathrm{~mA}$		130	200	$\mu \mathrm{A}$
					250	
		$\mathrm{V}_{\mathbb{N}}=6.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ENA}}=\mathrm{V}_{\mathrm{ENB}}=0 \mathrm{~V}(\mathrm{OFF})$		0.2	1.0	$\mu \mathrm{A}$
					1.5	
OUTA, OUTB						
Output Voltage ${ }^{(1)}$	$V_{\text {OUT }}$	$\mathrm{l}_{\text {OUT }}=1 \mathrm{~mA}$	-1\%	$\mathrm{V}_{\text {out }}$	+1\%	V
		$0 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 150 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }}+1 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$	-2\%		+2\%	
Line Regulation ${ }^{(1)}$	$\mathrm{REG}_{(\mathrm{LNE})}$	$\mathrm{V}_{\text {OUT }}+1 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}$		2.5	10	mV
					12	
Load Regulation ${ }^{(1)}$	REG ${ }_{(\text {LOAD) }}$	$0.1 \mathrm{~mA} \leq \mathrm{l}_{\text {OUT }} \leq 150 \mathrm{~mA}$		-5	-20	mV
					-30	

POWER MANAGEMENT

Electrical Characteristics

Unless specified: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{I N}=\mathrm{V}_{\text {OUT }}+1 \mathrm{~V}, \mathrm{I}_{\text {OUTA }}=\mathrm{I}_{\text {OUTB }}=1 \mathrm{~mA}, \mathrm{C}_{\text {IN }}=\mathrm{C}_{\text {OUT }}=1.0 \mu \mathrm{~F}, \mathrm{~V}_{\text {ENA }}=\mathrm{V}_{\text {ENB }}=\mathrm{V}_{\text {IN }}$. Values in bold apply over full operating temperature range.

Parameter	Symbol	Conditions	Min	Typ	Max	Units
OUTA, OUTB (Cont.)						
Dropout Voltage ${ }^{(1)(2)}$	$V_{\text {D }}$	$\mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}$		1		mV
		$\mathrm{l}_{\text {OUT }}=50 \mathrm{~mA}$		52	70	
					90	
		$\mathrm{I}_{\text {OUT }}=150 \mathrm{~mA}$		155	210	
					270	
Current Limit	$I_{\text {LIM }}$		400			mA
Ripple Rejection	PSRR	$\mathrm{f}=120 \mathrm{~Hz}, \mathrm{C}_{\text {BYP }}=10 \mathrm{nF}$		61		dB
Output Voltage Noise	e_{n}	$\begin{gathered} \mathrm{f}=10 \mathrm{~Hz} \text { to } 100 \mathrm{kHz}, \mathrm{I}_{\text {out }}=50 \mathrm{~mA}, \\ C_{\text {BYP }}=10 \mathrm{nF}, \mathrm{C}_{\text {out }}=2.2 \mu \mathrm{~F}, 1.8 \mathrm{~V} \text { output } \end{gathered}$		27		$\mu \mathrm{V}_{\text {RMS }}$
		$\begin{gathered} \mathrm{f}=10 \mathrm{~Hz} \text { to } 100 \mathrm{kHz}, \mathrm{I}_{\text {OUT }}=50 \mathrm{~mA}, \\ \mathrm{C}_{\mathrm{BYP}}=10 \mathrm{nF}, \mathrm{C}_{\text {OUT }}=2.2 \mu \mathrm{~F}, 3.3 \mathrm{~V} \text { output } \end{gathered}$		55		
ENA, ENB						
Enable Input Threshold	$\mathrm{V}_{\text {IH }}$		1.6			V
	$\mathrm{V}_{\text {LI }}$				0.4	
Enable Input Bias Current ${ }^{(3)}$	$I_{\text {EN }}$	$0 \mathrm{~V} \leq \mathrm{V}_{\text {ENAAB }} \leq \mathrm{V}_{\mathbb{N}}$	-0.5		0.5	$\mu \mathrm{A}$
BYP						
Start-Up Rise Time	t_{r}	$\mathrm{C}_{\text {BYP }}=10 \mathrm{nF}$		1.25		ms
SETA						
Sense/Select Threshold	$\mathrm{V}_{\text {TH }}$		20	40	80	mV
SETA Reference Voltage	$\mathrm{V}_{\text {SETA }}$	$\mathrm{V}_{\mathbb{N}}=2.5 \mathrm{~V}, \mathrm{l}_{\text {OUT }}=1 \mathrm{~mA}$	-1\%	1.250	+1\%	V
		$0 \mathrm{~mA} \leq \mathrm{l}_{\text {OUT }} \leq 150 \mathrm{~mA}, 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathbb{N}} \leq 5.5 \mathrm{~V}$	-2\%		+2\%	
SETA Input Leakage Current ${ }^{(3)}$	$I_{\text {SETA }}$	$\mathrm{V}_{\text {SETA }}=1.3 \mathrm{~V}$		0.015	50	nA
Over Temperature Protection						
High Trip Level	T_{HI}			150		${ }^{\circ} \mathrm{C}$
Hysteresis	$\mathrm{T}_{\text {HYST }}$			20		${ }^{\circ} \mathrm{C}$

NOTES:

(1) Low duty cycle pulse testing with Kelvin connections required.
(2) Defined as the input to output differential at which the output drops 100 mV below the value measured at a differential of 1 V . Not measurable on outputs less than 2.25 V due to minimum V_{IN} constraints.
(3) Guaranteed by design.

POWER MANAGEMENT

Pin Configuration

Notes:
(1) Where X denotes voltage options - see Voltage Options table.
(2) Only available in tape and reel packaging. A reel contains 2500 devices.
(3) Lead free product. This product is fully WEEE and RoHS compliant.

Voltage Options

Replace X in the part number (SC1454XIMS) by the letter shown below for the corresponding voltage option:

\mathbf{X}	$\mathbf{V}_{\text {oUTA }}(\mathbf{V})$	$\mathbf{V}_{\text {outB }}(\mathbf{V})$
A	1.8	1.8
B	2.5	2.5
C	2.8	2.8
D	3.0	3.0
E	3.3	3.3
F	3.0	2.5
G	3.0	1.8
H	3.0	2.8
J	3.3	2.5
K	3.3	2.8

Pin Descriptions

Pin \#	Pin Name	Pin Function
1	OUTA	Regulator A output.
2	OUTB	Regulator B output.
3	GND	Ground pin.
4	SETA	Connecting this pin to ground results in the internally preset value for $\mathrm{V}_{\text {out. }}$ Connecting to an external resistor divider changes $\mathrm{V}_{\text {outa }}$ to: $\mathrm{V}_{\text {OUTA }}=1.250 \cdot\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right)$
5	ENB	Active high enable pin for output B. CMOS compatible input. Connect to $\mathbb{I N}$ if not being used.
6	BYP	Bypass pin for bandgap reference. Connect a 10 nF capacitor, $\mathrm{C}_{\text {BYp }}$, between this pin and ground for low noise operation.
7	ENA	Active high enable pin for output A. CMOS compatible input. Connect to $\mathbb{I N}$ if not being used.
8	\underline{N}	Input pin for both regulators.

POWER MANAGEMENT

Block Diagram

Marking Information

POWER MANAGEMENT

Applications Information

Theory Of Operation

The SC1454 is intended for applications where very low dropout voltage, low supply current and low output noise are critical. Furthermore, the SC1454, by combining two ultra low dropout (ULDO) regulators, along with enable controls and output voltage adjustability for one output, provides a very space efficient solution for multiple supply requirements.

The SC1454 contains two ULDOs, both of which are supplied by one input supply, between IN and GND. Each ULDO has its own active high enable pin (ENA/ENB). Pulling this pin low causes that specific ULDO to enter a very low power shutdown state.

The SC1454 contains an internal bandgap reference which is fed into the inverting input of two error amplifiers, one for each output. The output voltage of each regulator is divided down internally using a resistor divider and compared to the bandgap voltage. The error amplifier drives the gate of a low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \mathrm{P}$-channel MOSFET pass device.

Output A has both a fixed and adjustable output voltage mode. Grounding the SETA pin (pulling it below the Sense/ Select threshold of 40 mV) will connect the internal resistor divider to the error amplifier resulting with the internally preset output voltage. If SETA is pulled above this threshold, then the Sense/Select switch will connect the SETA pin to the error amplifier. Output A will then be regulated such that the voltage at SETA will equal $\mathrm{V}_{\text {SETA }}$, the SETA reference voltage (typically 1.250 V).

A bypass pin (BYP) is provided to decouple the bandgap reference to reduce output noise (on both outputs) and also to improve power supply rejection.

Each regulator has its own current limit circuitry to ensure that the output current will not damage the device during output short, overload or start-up. The current limit is guaranteed to be greater than 400 mA to allow fast charging of the output capacitor and high initial currents for DSP initialization.

The SC1454 has a fast start-up circuit to speed up the initial charging time of the bypass capacitor to enable the output voltage to come up quicker.

The SC1454 includes thermal shutdown circuitry to turn off the device if $\mathrm{T}_{\text {, exceeds }} 150^{\circ} \mathrm{C}$ (typical), with the device remaining off until T , drops by $20^{\circ} \mathrm{C}$ (typical). Reverse battery protection circuitry ensures that the device cannot be damaged if the input supply is accidentally reversed, limiting the reverse current to less than 1.5 mA .

Component Selection - General

Output capacitor - Semtech recommends a minimum capacitance of $1 \mu \mathrm{~F}$ at the output with an equivalent series resistance (ESR) of $<1 \Omega$ over temperature. While the SC1454 has been designed to be used with ceramic capacitors, it does not have to be used with ceramic capacitors, allowing the designer a choice. Increasing the bulk capacitance will further reduce output noise and improve the overall transient response.

Input capacitor - Semtech recommends the use of a $1 \mu \mathrm{~F}$ ceramic capacitor at the input. This allows for the device being some distance from any bulk capacitance on the rail. Additionally, input droop due to load transients is reduced, improving overall load transient response.

Bypass capacitor - Semtech recommends the use of a 10 nF ceramic capacitor to bypass the bandgap reference. Increasing this capacitor to 100 nF will further improve power supply rejection. Reducing this capacitor below 1 nF may result in output overshoot at turn-on.

Component Selection - Externally Setting Output

Referring to the circuit above, the output voltage of output A can be externally adjusted anywhere within the range from 1.25 V to $\left(\mathrm{V}_{\text {IN(MAX) }}-\mathrm{V}_{\mathrm{D}(\text { Max })}\right)$. The output voltage will be in accordance with the following equation:

$$
\mathrm{V}_{\text {OUTA }}=1.250 \cdot\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right)
$$

1% tolerance resistors are recommended. The values of

POWER MANAGEMENT

Applications Information (Cont.)

R1 and R2 should be selected such that the current flowing through them is $\geq 10 \mu \mathrm{~A}$ (thus $\mathrm{R} 2 \leq 120 \mathrm{k} \Omega$).

Thermal Considerations

The worst-case power dissipation for this part is given by:

$$
\begin{aligned}
& P_{\text {D(MAX) }}=\left(V_{\text {IN(MAX) }}-V_{\text {OUTA (MIN) }}\right) \cdot I_{\text {OUTA (MAX) }} \\
& +\left(V_{\text {IN(MAX) }}-V_{\text {OUTB (MN) }}\right) \cdot \bullet_{\text {OUTB(MAX) }} \\
& +\mathrm{V}_{\mathrm{IN}(\text { MAX })} \bullet_{\mathrm{l}_{\text {(MAX })}}
\end{aligned}
$$

For all practical purposes, equation (1) can be reduced to the following expression:

$$
\begin{align*}
& P_{\text {D(MAX) }}=\left.\left(V_{V_{\text {IN MAX }}}-V_{\text {OUTA (MIN) }}\right) \bullet\right|_{\text {OUTA (MAX) }} \tag{2}\\
& +\left(\mathrm{V}_{\text {IN(MAX) }}-\mathrm{V}_{\text {outb (MN) }}\right) \cdot \bullet_{\text {outb (MAX) }}
\end{align*}
$$

Looking at a typical application:
$\mathrm{V}_{\mathrm{IN}(\text { max })}=4.2 \mathrm{~V}$
$\mathrm{V}_{\text {OUTA }}=3 \mathrm{~V}-2 \%$ (worst case) $=2.94 \mathrm{~V}$
$V_{\text {outb }}=3.3 \mathrm{~V}-2 \%$ (worst case) $=3.234 \mathrm{~V}$
$I_{\text {OUTA }}=I_{\text {OUTB }}=150 \mathrm{~mA}$
$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$
Inserting these values into equation (2) above gives us:

$$
\begin{aligned}
\mathrm{P}_{\mathrm{D}(\text { MAX })} & =(4.2-2.94) \bullet 0.15+(4.2-3.234) \bullet 0.15 \\
& =0.189+0.145 \\
& =0.334 \mathrm{~W}
\end{aligned}
$$

Using this figure, we can calculate the maximum thermal
impedance allowable to maintain $\mathrm{T}_{J} \leq 125^{\circ} \mathrm{C}$:

$$
\begin{aligned}
\theta_{J A(\text { MAX })} & =\frac{\left(T_{J(\text { MAX })}-T_{A(\text { MAX })}\right)}{P_{\mathrm{D}}(\text { MAX }} \\
& =\frac{(125-85)}{0.334} \\
& =120^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
$$

(1) This target value can be achieved by using one square inch of board copper connected to the GND pin (pin 3), which connects directly to the device substrate. Increasing this area or the use of multi layer boards will lower the junction temperature and improve overall output voltage accuracy.

Layout Considerations

While layout for linear devices is generally not as critical as for a switching application, careful attention to detail will ensure reliable operation.

1) Attaching the part to a larger copper footprint will enable better heat transfer from the device, especially on PCBs where there are internal ground and power planes.
2) Place the input, output and bypass capacitors close to the device for optimal transient response and device behaviour.
3) Connect all ground connections directly to the ground plane. If there is no ground plane, connect to a common local ground point before connecting to board ground.

POWER MANAGEMENT

Typical Characteristics

Output Voltage vs. Output Current

vs. Junction Temperature, $\mathrm{V}_{\text {out }}=\mathbf{2 . 8 V}$

Output Voltage vs. Junction Temperature
vs. Output Current, $\mathrm{V}_{\text {out }}=1.5 \mathrm{~V}$

SETA Reference Voltage vs. Junction Temperature
vs. Output Current, $\mathrm{V}_{\mathrm{IN}}=\mathbf{2 . 5 V}$

Output Voltage vs. Junction Temperature
vs. Output Current, $\mathrm{V}_{\text {out }}=\mathbf{2 . 8 V}$

Output Voltage vs. Junction Temperature
vs. Output Current, $\mathrm{V}_{\text {out }}=5.5 \mathrm{~V}$

SETA Reference Voltage vs. Junction Temperature
vs. Output Current, $\mathrm{V}_{\mathrm{IN}}=6.5 \mathrm{~V}$

POWER MANAGEMENT

Typical Characteristics (Cont.)

Dropout Voltage vs. Output Current
vs. Junction Temperature

Line Regulation vs.
Junction Temperature

Current Limit vs. Junction Temperature
vs. Input Voltage

Dropout Voltage vs. Junction Temperature
vs. Output Current

Load Regulation vs.
Junction Temperature

Off-State Quiescent Current
vs. Junction Temperature

POWER MANAGEMENT

Typical Characteristics (Cont.)

Quiescent Current vs. Junction Temperature

vs. Output Current

Enable Input Voltage vs. Junction Temperature
vs. Input Voltage

Bypass Start-up Rise Time vs. Junction Temperature
vs. Input Voltage

Quiescent Current vs. Junction Temperature

vs. Input Voltage

Sense/Select Threshold Voltage vs.
Junction Temperature vs. Input Voltage

Output Spectral Noise Density vs. Frequency
vs. Output Voltage

POWER MANAGEMENT

Typical Characteristics (Cont.)

Output Spectral Noise Density vs. Frequency
vs. Output Capacitance

Output Spectral Noise Density vs. Frequency
vs. Output Current

PSRR vs. Frequency vs. Output Voltage

Output Spectral Noise Density vs. Frequency

vs. Bypass Capacitance

PSRR vs. Frequency vs. Output Voltage

POWER MANAGEMENT

Evaluation Board Schematic

Evaluation Board Gerber Plots

Top Copper
Bottom Copper

POWER MANAGEMENT

Evaluation Board Gerber Plots (Cont.)

Top Assembly

Evaluation Board Bill Of Materials

Quantity	Reference	Part/Description	Vendor	Notes
2	C1, C2	2.2μ F ceramic	Murata	GRM42-6X7R225K16
1	C3	10nF ceramic	Various	
1	C4	1μ F ceramic	Murata	GRM42-6X7R105K25
1	C5	220μ F, 10V	Various	
2	J1, J2	Test pin	Various	White
3	J3, J6, J7	Test pin	Various	Red
2	J4, J5	BNC socket	Various	V out ripple monitor
2	J8, J9	Test pin	Various	Orange
6	J10 - J15	Test pin	Various	Black
5	JP1, JP2, JP4 - JP6	Header, 3 pin	Various	
1	R1, R3	Header, 2 pin	Various	
2	R4	$10 \mathrm{k} \Omega, 1 / 10 \mathrm{~W}$	Various	
1	R5, R6	$250 \mathrm{k} \Omega, 25 T$	Bourns	Trimmer potentiometer
1	U1	62k $\Omega, 1 / 10 \mathrm{~W}$	Various	
2	U2, U3	150 mA load	Various	1W, may not be same value
1	SC1454xIMS	Semtech		
2	Si4410	Vishay		

POWER MANAGEMENT

Outline Drawing - MSOP-8

Land Pattern - MSOP-8

Contact Information

Semtech Corporation

Power Management Products Division
200 Flynn Road, Camarillo, CA 93012
Phone: (805)498-2111 FAX (805)498-3804

