
### SK100GH128T



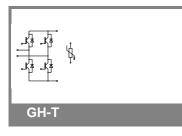
# SEMITOP<sup>®</sup>4

### **IGBT** module

#### SK100GH128T

Target Data

#### Features


- One screw mounting module
- Fully compatible with SEMITOP<sup>®</sup>1,2,3
- Improved thermal performances
  by aluminium oxide substrate
- SPT IGBT Technology
- CAL technology FWD
- Integrated NTC Temperature sensor

### **Typical Applications**

Voltage regulator

| Absolute Maximum Ratings $T_c = 25 \text{ °C}$ , unless otherwise specified |                                                                        |                         |          |       |  |  |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------|----------|-------|--|--|
| Symbol                                                                      | Conditions                                                             |                         | Values   | Units |  |  |
| IGBT                                                                        |                                                                        |                         |          |       |  |  |
| V <sub>CES</sub>                                                            | T <sub>j</sub> = 25 °C                                                 |                         | 1200     | V     |  |  |
| I <sub>C</sub>                                                              | T <sub>j</sub> = 125 °C                                                | T <sub>s</sub> = 25 °C  | 120      | Α     |  |  |
|                                                                             |                                                                        | T <sub>s</sub> = 70 °C  | 80       | А     |  |  |
| I <sub>CRM</sub>                                                            | $I_{CRM}$ = 2 x $I_{Cnom}$ , $t_p \le 1ms$                             |                         | 200      | А     |  |  |
| V <sub>GES</sub>                                                            |                                                                        |                         | 20       | V     |  |  |
| t <sub>psc</sub>                                                            | $V_{CC}$ = 600 V; $V_{GE} \le 20$ V;<br>VCES < 1200 V                  | T <sub>j</sub> = 125 °C | 10       | μs    |  |  |
| Inverse D                                                                   | Diode                                                                  |                         | ·        |       |  |  |
| I <sub>F</sub>                                                              | T <sub>j</sub> = 150 °C                                                | T <sub>s</sub> = 25 °C  | 67       | А     |  |  |
|                                                                             |                                                                        | T <sub>s</sub> = 70 °C  | 50       | А     |  |  |
| I <sub>FRM</sub>                                                            | $I_{FRM}\text{=}2 \text{ x } I_{Fnom} \text{ , } t_p \leq 1 \text{ms}$ |                         | 150      | А     |  |  |
| I <sub>FSM</sub>                                                            | t <sub>p</sub> = 10 ms; half sine wave                                 | T <sub>j</sub> = 125 °C | 550      | А     |  |  |
| Module                                                                      | _                                                                      |                         |          |       |  |  |
| I <sub>t(RMS)</sub>                                                         |                                                                        |                         |          | А     |  |  |
| Τ <sub>vj</sub>                                                             |                                                                        |                         | -40 +150 | °C    |  |  |
| T <sub>stg</sub>                                                            |                                                                        |                         | -40 +125 | °C    |  |  |
| V <sub>isol</sub>                                                           | AC, 1 min.                                                             |                         | 2500     | V     |  |  |

| Characteristics T <sub>c</sub> =       |                                                   |                                                    | 25 °C, unless otherwise specified |      |      |          |  |
|----------------------------------------|---------------------------------------------------|----------------------------------------------------|-----------------------------------|------|------|----------|--|
| Symbol                                 | Conditions                                        |                                                    | min.                              | typ. | max. | Units    |  |
| IGBT                                   | _                                                 |                                                    |                                   |      |      |          |  |
| V <sub>GE(th)</sub>                    | $V_{GE} = V_{CE}, I_C = 4 \text{ mA}$             |                                                    | 4,5                               | 5,5  | 6,5  | V        |  |
| I <sub>CES</sub>                       | $V_{GE}$ = 0 V, $V_{CE}$ = $V_{CES}$              | T <sub>j</sub> = 25 °C                             |                                   |      | 0,2  | mA       |  |
|                                        |                                                   | T <sub>j</sub> = 125 °C                            |                                   | 0,4  |      | mA       |  |
| I <sub>GES</sub>                       | V <sub>CE</sub> = 0 V, V <sub>GE</sub> = 20 V     | T <sub>j</sub> = 125 °C                            |                                   |      | 400  | nA       |  |
| V <sub>CE0</sub>                       |                                                   | T <sub>j</sub> = 25 °C                             |                                   | 1,1  | 1,3  | V        |  |
|                                        |                                                   | T <sub>j</sub> = 125 °C                            |                                   | 1    | 1,2  | V        |  |
| r <sub>CE</sub>                        | V <sub>GE</sub> = 15 V                            | T <sub>j</sub> = 25°C                              |                                   | 6    |      | mΩ       |  |
|                                        |                                                   | T <sub>j</sub> = 125°C                             |                                   | 11   |      | mΩ       |  |
| V <sub>CE(sat)</sub>                   | I <sub>Cnom</sub> = 100 A, V <sub>GE</sub> = 15 V |                                                    |                                   | 1,9  | 2,3  | V        |  |
|                                        |                                                   | T <sub>j</sub> = 125°C <sub>chiplev.</sub>         |                                   | 2,1  |      | V        |  |
| C <sub>ies</sub>                       |                                                   |                                                    |                                   | 9    |      | nF       |  |
| C <sub>oes</sub>                       | $V_{CE}$ = , $V_{GE}$ = V                         | f = MHz                                            |                                   | 0,66 |      | nF       |  |
| C <sub>res</sub>                       |                                                   |                                                    |                                   | 0,42 |      | nF       |  |
| t <sub>d(on)</sub>                     | D 45.0                                            |                                                    |                                   |      |      | ns       |  |
| t <sub>r</sub><br>F                    | R <sub>Gon</sub> = 15 Ω                           | V <sub>CC</sub> = 600V<br>I <sub>Cnom</sub> = 100A |                                   | 11,6 |      | ns<br>mJ |  |
| E <sub>on</sub><br>t <sub>d(off)</sub> | R <sub>Goff</sub> = 15 Ω                          | $T_{i} = 125 \text{ °C}$                           |                                   | 11,0 |      | ns       |  |
| t <sub>f</sub>                         | Gui                                               | 1                                                  |                                   |      |      | ns       |  |
| E <sub>off</sub>                       |                                                   |                                                    |                                   | 8,6  |      | mJ       |  |
| R <sub>th(j-s)</sub>                   | per IGBT                                          |                                                    |                                   | 0,34 |      | K/W      |  |



### SK100GH128T



## SEMITOP<sup>®</sup>4

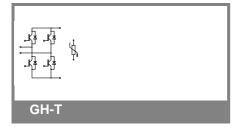
### **IGBT** module

#### SK100GH128T

Target Data

#### Features

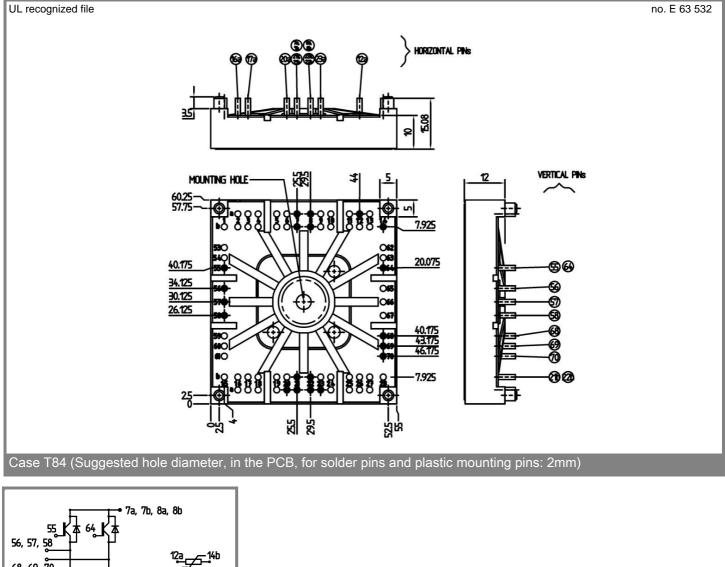
- One screw mounting module
- Fully compatible with SEMITOP<sup>®</sup>1,2,3
- Improved thermal performances by aluminium oxide substrate
- SPT IGBT Technology
- CAL technology FWD
- Integrated NTC Temperature sensor


### **Typical Applications**

Voltage regulator

| Characte                            | ristics                                          |                                            |      |        |      |         |
|-------------------------------------|--------------------------------------------------|--------------------------------------------|------|--------|------|---------|
| Symbol                              | Conditions                                       |                                            | min. | typ.   | max. | Units   |
| Inverse D                           | Diode                                            |                                            |      |        |      |         |
| $V_F = V_{EC}$                      | I <sub>Fnom</sub> = 100 A; V <sub>GE</sub> = 0 V | T <sub>j</sub> = 25 °C <sub>chiplev.</sub> |      | 2      |      | V       |
|                                     |                                                  | $T_j = 125 \ ^{\circ}C_{chiplev.}$         |      | 1,8    |      | V       |
| V <sub>F0</sub>                     |                                                  | T <sub>j</sub> = 125 °C                    |      | 1      | 1,2  | V       |
| r <sub>F</sub>                      |                                                  | T <sub>j</sub> = 125 °C                    |      | 16     | 22   | mΩ      |
| I <sub>RRM</sub><br>Q <sub>rr</sub> | I <sub>Fnom</sub> = 100 A                        | T <sub>j</sub> = 125 °C                    |      |        |      | A<br>µC |
| E <sub>rr</sub>                     | V <sub>CC</sub> =600V                            |                                            |      | 4      |      | mJ      |
| R <sub>th(j-s)D</sub>               | per diode                                        |                                            |      | 0,7    | 0,85 | K/W     |
| Freewhee                            | eling Diode                                      |                                            |      |        |      |         |
| $V_F = V_{EC}$                      | $I_{Fnom}$ = A; $V_{GE}$ = V                     | $T_j = °C_{chiplev.}$                      |      |        |      | V       |
| V <sub>F0</sub>                     |                                                  | T <sub>j</sub> = °C                        |      |        |      | V       |
| r <sub>F</sub>                      |                                                  | $T_j = °C$ $T_j = °C$                      |      |        |      | V       |
| I <sub>RRM</sub><br>Q <sub>rr</sub> | I <sub>Fnom</sub> = A                            | T <sub>j</sub> = °C                        |      |        |      | A<br>µC |
| E <sub>rr</sub>                     |                                                  |                                            |      |        |      | mJ      |
|                                     | per diode                                        |                                            |      |        |      | K/W     |
| M <sub>s</sub>                      | to heat sink                                     |                                            |      |        | 3,5  | Nm      |
| w                                   |                                                  |                                            |      | 60     |      | g       |
| Tempera                             | ture sensor                                      |                                            |      |        |      |         |
| R <sub>100</sub>                    | T <sub>s</sub> = 100°C (R <sub>25</sub> =5kΩ)    |                                            |      | 493±5% |      | Ω       |

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.



02-07-2007 DIL

## SK100GH128T

#### no. E 63 532



68, 69, 70

Case T 84

20a K k 23a k

21a, 21b, 22a, 22b