SK50GH128T

IGBT module

SK50GH128T

Target Data

Features

- One screw mounting module
- Fully compatible with SEMITOP®1,2,3
- Improved thermal performances by aluminium oxide substrate
- SPT IGBT Technology
- CAL technology FWD
- Integrated NTC Temperature sensor

Typical Applications

Voltage regulator

Absolute Maximum Ratings $T_c = 25$ °C, unless otherwise specified					
Symbol	Conditions		Values	Units	
IGBT				·	
V _{CES}	T _j = 25 °C		1200	V	
I _C	$T_{j} = 125 ^{\circ}\text{C}$ $T_{s} = 25 ^{\circ}$	С	70	Α	
	T _s = 70 °	С	50	Α	
I _{CRM}	I_{CRM} = 2 x I_{Cnom} , $t_p \le 1 ms$		100	Α	
V_{GES}			20	V	
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; T_j = 125 VCES < 1200 V	C,C	10	μs	
Inverse D	iode				
I _F	$T_{j} = 150 ^{\circ}\text{C}$ $T_{s} = 25 ^{\circ}$		67	Α	
	T _s = 70 °	С	50	Α	
I _{FRM}	$I_{FRM}\text{=}~2~x~I_{Fnom}$, $t_{p}\leq1\text{ms}$		150	Α	
I _{FSM}	$t_p = 10 \text{ ms}$; half sine wave $T_j = 125$,C	550	Α	
Module					
I _{t(RMS)}				Α	
T_{vj}			-40 +150	°C	
T _{stg}			-40 +125	°C	
V _{isol}	AC, 1 min.	_	2500	V	

Characteristics $T_c =$			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT						_	
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 2 \text{ mA}$		4,5	5,5	6,5	V	
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C			0,1	mA	
		T _j = 125 °C		0,2		mA	
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 125 °C			200	nA	
V _{CE0}		T _j = 25 °C		1,1	1,3	V	
		T _j = 125 °C		1	1,2	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		12		mΩ	
		T _j = 125°C		22		$m\Omega$	
V _{CE(sat)}	I _{Cnom} = 50 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,9	2,3	V	
		$T_j = 125^{\circ}C_{chiplev}$		2,1		V	
C _{ies}				4,5		nF	
C _{oes}	$V_{CE} = , V_{GE} = V$	f = MHz		0,33		nF	
C _{res}				0,21		nF	
t _{d(on)}						ns	
t _r	$R_{Gon} = 15 \Omega$	V _{CC} = 600V		_		ns	
E _{on}	D 45.0	I _{Cnom} = 50A		6		mJ	
t _{d(off)}	R_{Goff} = 15 Ω	T _j = 125 °C				ns	
t _f ⊏				4,6		ns m l	
E _{off}		1		4,0		mJ	
$R_{th(j-s)}$	per IGBT			0,51		K/W	

SK50GH128T

IGBT module

SK50GH128T

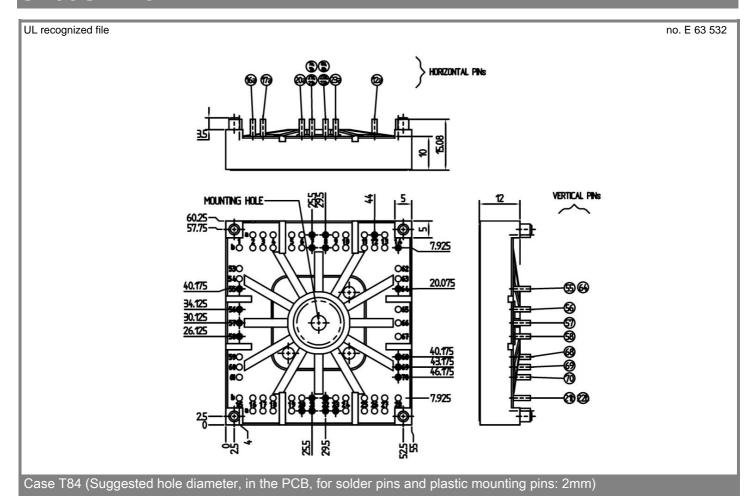
Target Data

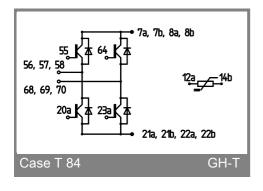
Features

- · One screw mounting module
- Fully compatible with SEMITOP®1,2,3
- Improved thermal performances by aluminium oxide substrate
- SPT IGBT Technology
- CAL technology FWD
- Integrated NTC Temperature sensor

Typical Applications

Voltage regulator


Characte	ristics					
Symbol	Conditions		min.	typ.	max.	Units
Inverse D						•
$V_F = V_{EC}$	I_{Fnom} = 100 A; V_{GE} = 0 V			2		V
		$T_j = 125 ^{\circ}C_{\text{chiplev.}}$		1,8		V
V_{F0}		T _j = 125 °C		1	1,2	V
r _F		T _j = 125 °C		16	22	mΩ
I _{RRM} Q _{rr}	I _{Fnom} = 100 A	T _j = 125 °C				Α μC
E _{rr}	V _{CC} =600V			4		mJ
R _{th(j-s)D}	per diode			0,7	0,85	K/W
	eling Diode					
$V_F = V_{EC}$	$I_{Fnom} = A; V_{GE} = V$	$T_j = {^{\circ}C_{chiplev.}}$				V
V_{F0}		T _j = °C				V
r _F		$T_j = ^{\circ}C$ $T_i = ^{\circ}C$				V
I _{RRM}	I _{Fnom} = A	T _j = °C				A
Q _{rr}						μC mJ
E _{rr}	a an alia da					
	per diode					K/W
M_s	to heat sink				3,5	Nm
w				60		g
Temperat	ture sensor				•	
R ₁₀₀	T_s = 100°C (R_{25} =5kΩ)			493±5%		Ω


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

SK50GH128T

3 02-07-2007 DIL © by SEMIKRON