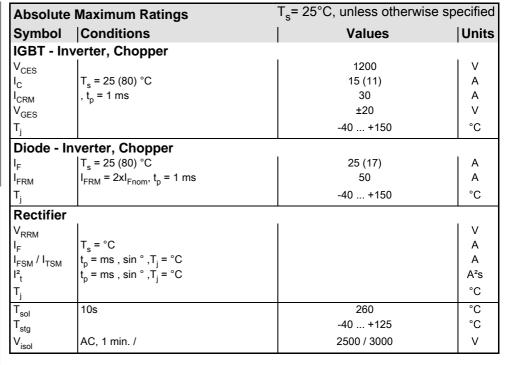


SEMITOP[®] 3

3-phase bridge inverter

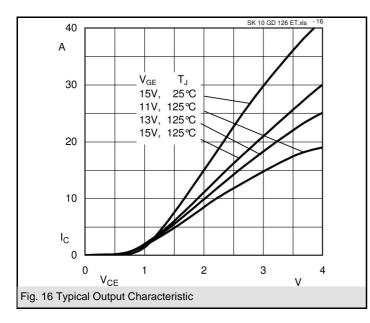
SK 10 GD 126 ET

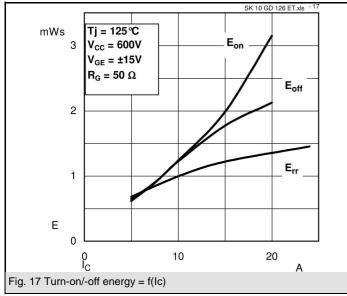

Preliminary Data

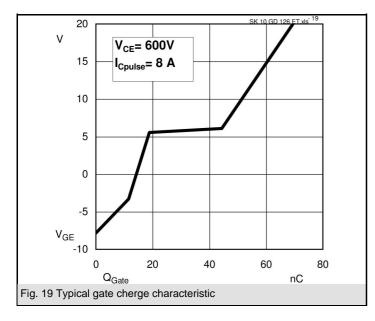
Features

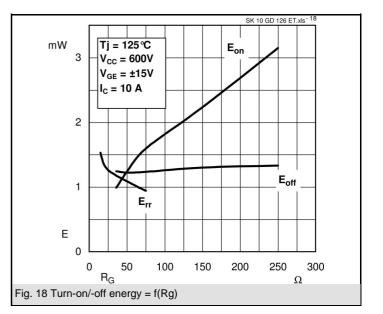
- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded alumium oxide ceramic (DCB)
- Trench technology IGBT
- CAL High Density FWD
- Integrated NTC temperature sensor

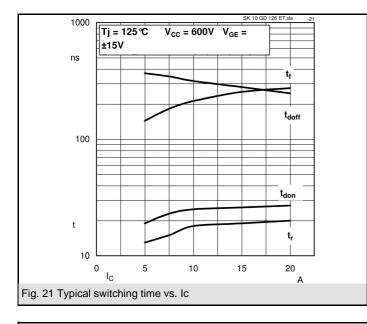
Typical Applications

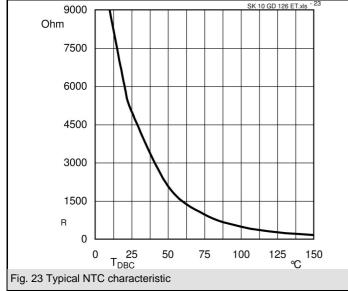

Inverter

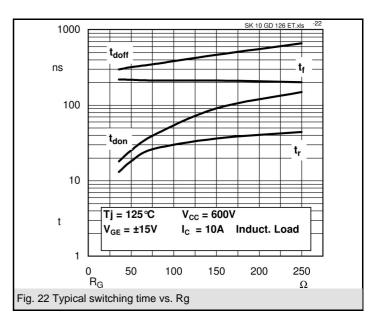


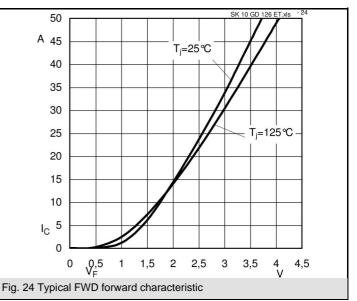

Characteristics		T _s = 25°C	T_s = 25°C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units	
IGBT - Inverter, Chopper						
V _{CEsat} V _{GE(th)}	$I_{c} = 8 \text{ A}, T_{j} = 25 (125) \text{ °C}$ $V_{GE} = V_{CE}, I_{c} = 0.3 \text{ mA}$	5	1,7 (2,2) 5,8	2,1 6,5	V V	
V _{CE(TO)} r _T C _{ies}	T _j = 25 °C (125) °C T _j = 25 °C (125) °C V _{CE} = 25 V _{CE} = 0 V, f = 1 MHz		1 (0,9) 87 (138) 0,7	1,2 113	V mΩ nF	
C _{oes} C _{res}	$V_{CE} = 25 V_{GE} = 0 V, f = 1 MHz$ $V_{CE} = 25 V_{GE} = 0 V, f = 1 MHz$ $V_{CE} = 25 V_{GE} = 0 V, f = 1 MHz$		0,2 0,1		nF nF	
R _{th(j-s)}	per IGBT			2	K/W	
$t_{d(on)}$ t_r $t_{d(off)}$ t_f E_{on}	under following conditions $V_{CC} = 600 \text{ V}, V_{GE} = \pm 15 \text{ V}$ $I_{C} = 8 \text{ A}, T_{j} = 125 \text{ °C}$ $R_{Gon} = R_{Goff} = 75 \Omega$ inductive load		85 30 430 90 1		ns ns ns ns mJ	
E _{off}			1		mJ	
	verter, Chopper $I_F = 8 A, T_j = 25 (125) °C$ $T_j = 25 °C (125) °C$ $T_j = 25 °C (125) °C$ per diode		1,9 (2) 1 (0,8) 40 (53)	2,2 1,1 (0,9) 47 2,1	V V mΩ K/W	
I _{RRM} Q _{rr} E _{rr}	under following conditions $I_F = 15 \text{ A}, V_R = 600 \text{ V}$ $V_{GE} = 0 \text{ V}, T_j = 125 \text{ °C}$ $di_{F/dt} = 300 \text{ A/}\mu \text{s}$		21 3,5 1,4		Α μC mJ	
Diode rec						
V _F V _(TO) r _T R _{th(j-s)}	$I_F = A, T_j = 25 \degree C$ $T_j = \degree C$ per diode				V V mΩ K/W	
Temperatur sensor						
R _{ts}	5 %, T _r = 25 (100) °C		5000(493)		Ω	
Mechanical data						
w M _s	Mounting torque		30	2,5	g Nm	

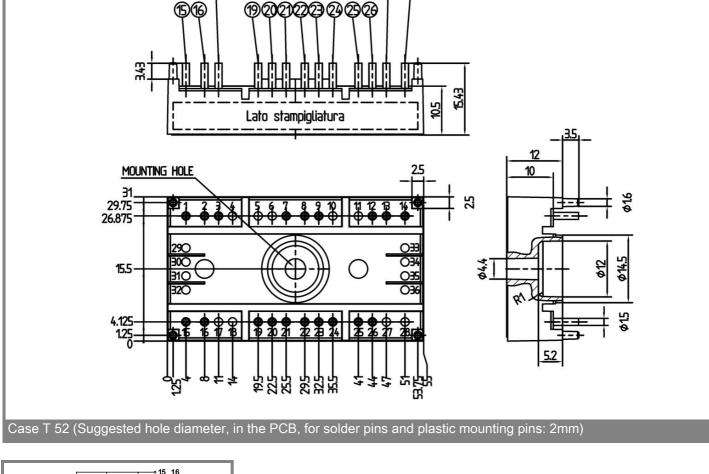


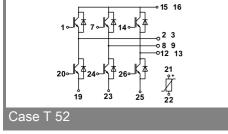

GD - ET










(123)

(789)

UL Recognized File no. E63 532

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.