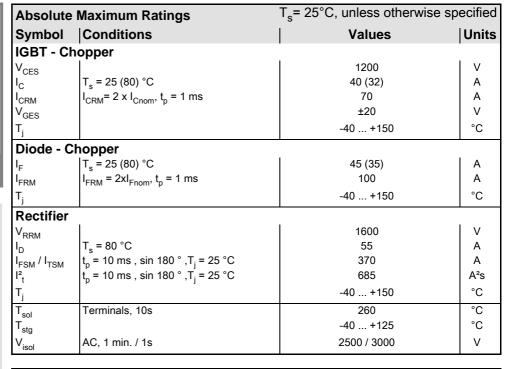


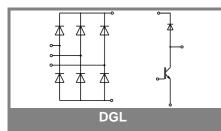
SEMITOP[®] 3

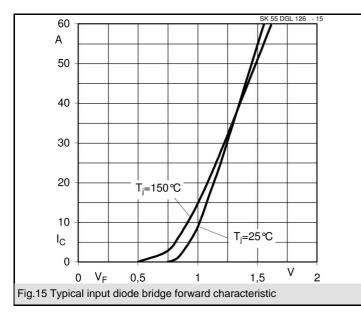
3-phase bridge rectifier + brake chopper

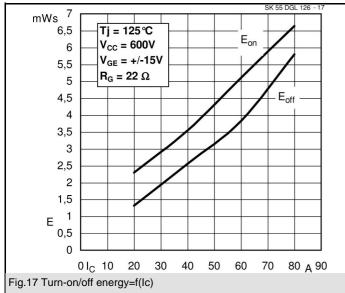
SK 55 DGL 126

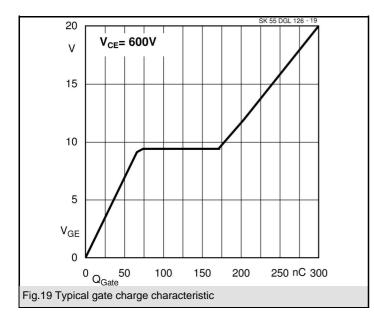

Preliminary Data

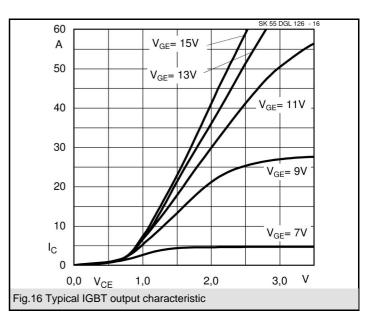
Features

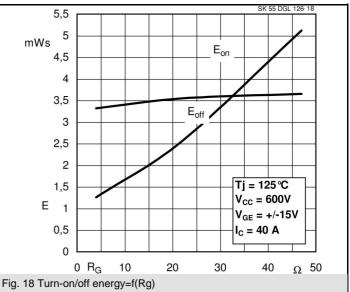

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded alumium oxide ceramic (DCB)
- Trench IGBT technology
- CAL Technology FWD

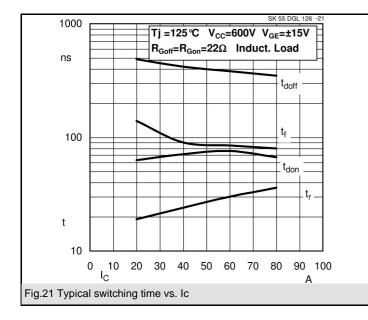

Typical Applications

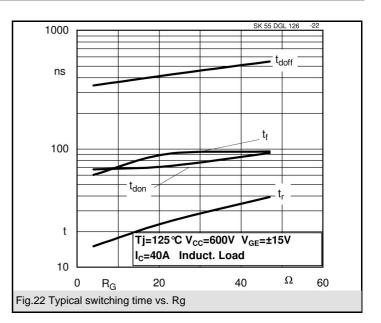

Rectifier

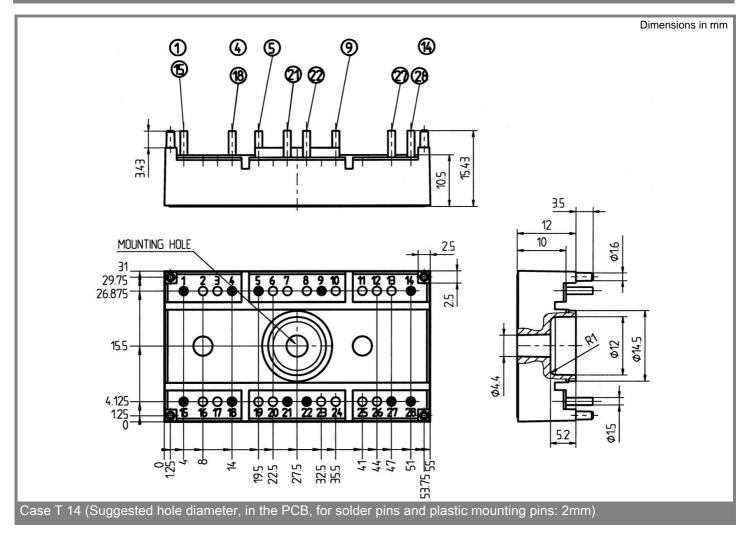


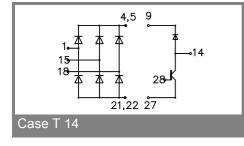

Characteristics		T _s = 25°C	T _s = 25°C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units	
IGBT - Ch	opper					
V _{CEsat}	I _C = 35 A, T _i = 25 (125) °C		1,7 (2)	2,1	V	
V _{GE(th)}	$V_{GE} = V_{CE}, I_{C} = 1,5 \text{ mA}$	5	5,8	6,5	V	
V _{CE(TO)}	T _j = 25 °C (125) °C		1 (0,9)	1,2	V	
r _T	T _j = 25 °C (125) °C		20 (31)	26	mΩ	
Cies	$V_{CE} = 25 V_{GE} = 0 V, f = 1 MHz$		2,4		nF	
C _{oes}	V _{CE} = 25 V _{GE} = 0 V, f = 1 MHz		0,5		nF	
C _{res}	$V_{CE} = 25 V_{GE} = 0 V, f = 1 MHz$		0,4		nF	
R _{th(j-s)}	per IGBT			1,05	K/W	
t _{d(on)}	under following conditions		85		ns	
t,	V_{CC} = 600 V, V_{GE} = ± 15 V		30		ns	
t _{d(off)}	I _C = 30 A, T _j = 125 °C		430		ns	
t _f	$R_{Gon} = R_{Goff} = 22 \Omega$		90		ns	
E _{on}	inductive load		4,6		mJ	
E _{off}			4,3		mJ	
Diode - C	hopper					
V _F = V _{EC}	I _F = 45 A, T _i = 25 (125) °C		1,5 (1,5)	1,77 (1,77)	V	
V _(TO)	T _i = °C (125) °C		(0,92)		V	
r _T	T _j = °C (125) °C		(13,4)		mΩ	
R _{th(j-s)}	per diode			1,2	K/W	
I _{RRM}	under following conditions		30		А	
Q _{rr}	I _F = 50 A, V _R = 600 V		10		μC	
Err	V _{GE} = 0 V, T _i = 125 °C				mJ	
	di _{F/dt} = 500 Å/µs					
Diode rec	tifier	•				
V _F	I _F = 25 A, T _i = 25 °C			1,25	V	
V _(TO)	T _i = 150 °C		0,8		V	
r _T	T _i = 150 °C		13		mΩ	
R _{th(j-s)}	per diode		2		K/W	
	tur sensor					
R _{ts}	%, T _r = () °C		()		Ω	
Mechanic	al data					
w			30		g	
		1			1 -	











This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.