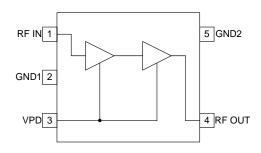
rfmd.com

RF2362

PCS CDMA/TDMA 3V PA DRIVER AMPLIFIER


Package Style: SOT 5-Lead Package

Features

- Low Noise and High Intercept Point
- Adjustable Bias Current
- Power Down Control
- Single 2.5V to 6.0V Power Supply
- 150 MHz to 2500 MHz Operation
- Extremely Small SOT23-5 Package

Applications

- TDMA/CDMA/FM PCS Tx Amplifier
- Low Noise Transmit Driver Amplifier
- 2.4 GHz WLAN Systems
- General Purpose Amplification
- Commercial and Consumer Systems

Functional Block Diagram

Product Description

The RF2362 is a low noise CDMA/TDMA PA driver amplifier with a very high dynamic range designed for transmit digital PCS applications at 1880 MHz. The device functions as an outstanding PA driver amplifier in the transmit chain of digital subscriber units where low transmit noise power is a concern. The IC includes a power down feature that can be used to completely turn off the device. The IC is featured in a standard SOT 5-lead plastic package.

Ordering Information

RF2362 PCS CDMA/TDMA 3V PA Driver Amplifier RF2362PCBA-41X Fully Assembled Evaluation Board

Optimum Technology Matching® Applied

▼ GaAs HBT	☐ SiGe BiCMOS	☐ GaAs pHEMT	☐ GaN HEMT
☐ GaAs MESFET	☐ Si BiCMOS	☐ Si CMOS	
☐ InGaP HBT	☐ SiGe HBT	☐ Si BJT	

Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage	-0.5 to +8.0	V _{DC}
Input RF Level	+10	dBm
Operating Ambient Temperature	-40 to +85	°C
Storage Temperature	-40 to +150	°C

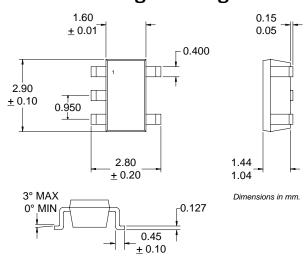
Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

RoHS status based on EUDirective 2002/95/EC (at time of this document revision).

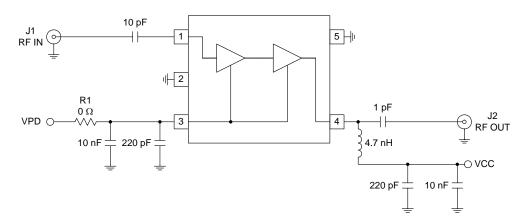
The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Dovometer		Specification		Unit	Condition	
Parameter	Min.	Тур.	Max.	Unit	Condition	
Overall						
RF Frequency Range		150 to 2500		MHz		
1880 MHz Performance					Schematic per Evaluation Board, T = 25 °C, RF=1880MHz, V _{PD} =2.8V	
Gain	19	20.1	21.5	dB	V _{CC} =3.5V	
	19	20.1	21.5	dB	V _{CC} =3.0V	
	19	20.1	21.5	dB	V _{CC} =2.7V	
Output IP3	+24	+25.5	+35	dBm	V _{CC} =3.5V	
		+25.0		dBm	V _{CC} =3.0V	
		+24.5		dBm	V _{CC} =2.7V	
Noise Figure		2.2	2.5	dB	V _{CC} =3.5V	
		2.2	2.5	dB	V _{CC} =3.0V	
		2.2	2.5	dB	V _{CC} =2.7V	
Reverse Isolation		32		dB	V _{CC} =3.5V	
		32		dB	V _{CC} =3.0V	
		32		dB	V _{CC} =2.7V	
Input VSWR		1.8:1	2.0:1			
Output VSWR		1.6:1	2.0:1		Using External LC network used on Evaluation Board	
P _{1dB}	14	14.5		dBm	V _{CC} =3.5V	
	12.5	14		dBm	V _{CC} =3.0V	
	11	13.5		dBm	V _{CC} =2.7V	
Power Supply					T = 25 °C	
Voltage (V _{CC})		2.5 to 6.0		V		
Voltage (V _{PD})	2.7	2.8	2.9	V		
Current Consumption		35	43	mA	V_{CC} =3.5V; V_{PD} =2.8V; V_{PD} + V_{CC} -Current Consumption from V_{PD} is 8.5 mA Typ. @ V_{PD} = 2.8V and 12 mA Max @ V_{PD} = 2.9 V	
		32	38	mA	V _{CC} =3.0V; V _{PD} =2.7V; V _{PD} + V _{CC}	
	29	37	43	mA	V _{CC} =2.7V; V _{PD} =2.9V; V _{PD} + V _{CC}	
Power Down			10	μΑ	$V_{CC} = 3.5 \text{ V}; V_{PD} \le 0.9 \text{ V}$	

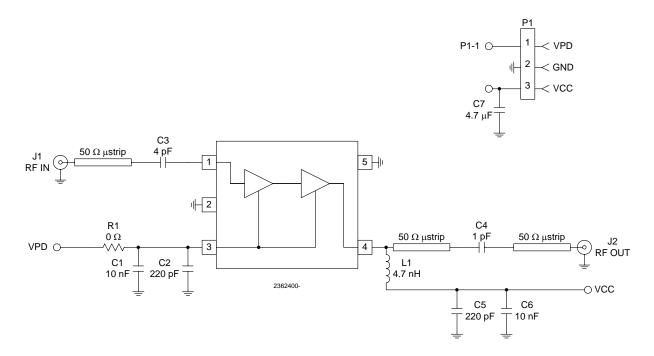


rfmd.com

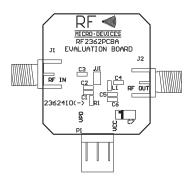
Pin	Function	Description	Interface Schematic
1	RF IN	RF input pin. This pin is DC-coupled and matched to 50Ω at $1880\text{MHz}.$	PD TO OUTPUT STAGE
2	GND1	Ground connection. For best performance, keep traces physically short and connect immediately to ground plane.	
3	VPD	Power Down for the IC. V_{PD} = 2.8V +/- 0.1V turns on the part. V_{PD} <0.9V turns off the part. External RF bypassing is required. The trace length between the pin and the bypass capacitors should be minimized. The ground side of the bypass capacitors should connect immediately to ground plane. Nominal current required for V_{PD} = 2.8V is 8.5 mA typical and 12 mA Max (@ V_{PD} = 2.9 V).	PD PD
4	RF OUT	Amplifier Output pin. This pin is an open-collector output. It must be biased to either V_{CC} or pin 4 through a choke or matching inductor. This pin is typically matched to 50Ω with a shunt bias/matching inductor and series blocking/matching capacitor. Refer to application schematics.	
5	GND2	Ground connection. For best performance, keep traces physically short and connect immediately to ground plane.	



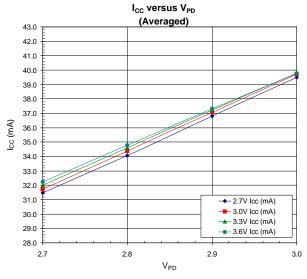
Package Drawing

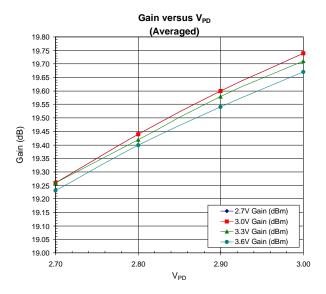


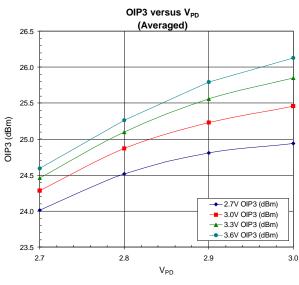
Application Schematic: ~1880 MHz Operation, Internal Collector Bias

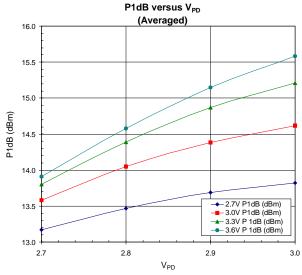

Evaluation Board Schematic

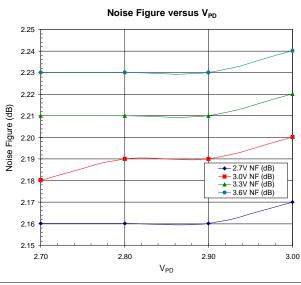
Evaluation Board Layout Board Size 1" x 1"


Board Thickness 0.014"; Board Material FR-4









Rev A6 DS070816

RoHS* Banned Material Content

RoHS Compliant: No
Package total weight in grams (g): 0.014
Compliance Date Code: N/A
Bill of Materials Revision: Pb Free Category: Contains Pb

Bill of Materials	Parts Per Million (PPM)					
	Pb	Cd	Hg	Cr VI	PBB	PBDE
Die	0	0	0	0	0	0
Molding Compound	0	0	0	0	0	0
Lead Frame	0	0	0	0	0	0
Die Attach Epoxy	0	0	0	0	0	0
Wire	0	0	0	0	0	0
Solder Plating	4732	0	0	0	0	0

This RoHS banned material content declaration was prepared solely on information, including analytical data, provided to RFMD by its suppliers, and applies to the Bill of Materials (BOM) revision noted

^{*} DIRECTIVE 2002/95/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment

