

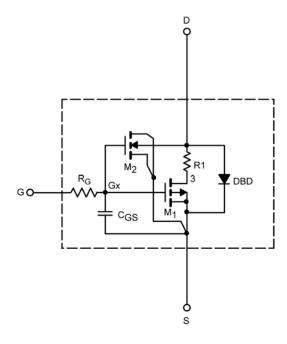
SPICE Device Model Si1469DH

Vishay Siliconix

P-Channel 12-V (G-S) MOSFET

CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-V to 5-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

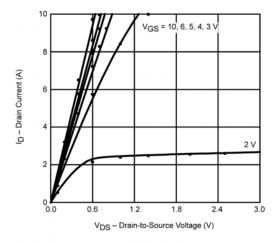
A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

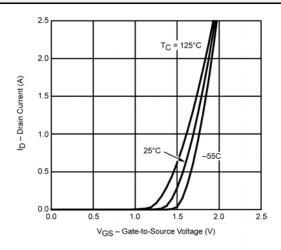
SUBCIRCUIT MODEL SCHEMATIC

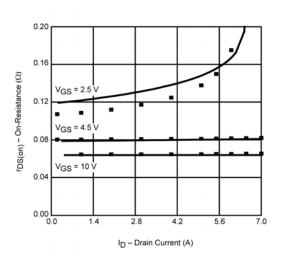
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

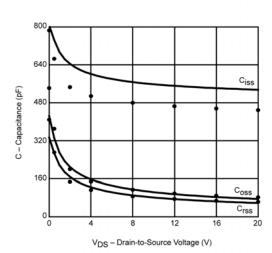
SPICE Device Model Si1469DH

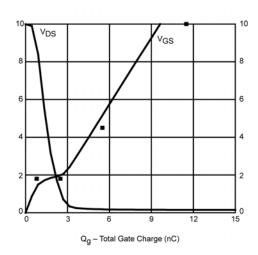
Vishay Siliconix

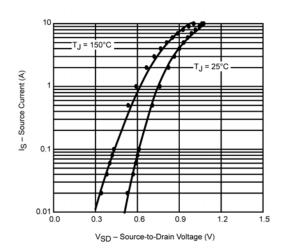

SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static	-	•	•	-	
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	1.1		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \le -5 \text{ V}, V_{GS} = -4.5 \text{ V}$	37		Α
Drain-Source On-State Resistance ^a	r _{DS(on)}	$V_{GS} = -10 \text{ V}, I_{D} = -2 \text{ A}$	0.064	0.065	Ω
		$V_{GS} = -4.5 \text{ V}, I_D = -1.8 \text{ A}$	0.079	0.081	
		$V_{GS} = -2.5 \text{ V}, I_D = -1.5 \text{ A}$	0.124	0.126	
Forward Transconductance ^a	9 _{fs}	$V_{DS} = -10 \text{ V}, I_{D} = -2 \text{ A}$	9	6	S
Diode Forward Voltage ^a	V _{SD}	I _S = -2 A	-0.84	-0.83	V
Dynamic ^b	•	•	•		
Input Capacitance	C _{iss}	V _{DS} = -10 V, V _{GS} = 0 V, f = 1 MHz	558	470	pF
Output Capacitance	C _{oss}		104	105	
Reverse Transfer Capacitance	C _{rss}		82	80	
Total Gate Charge	Qg	$V_{DS} = -10 \text{ V}, V_{GS} = -4.5 \text{ V}, I_{D} = -2.5 \text{ A}$	5	5.5	nC
Gate-Source Charge	Q_{gs}		0.80	0.80	
Gate-Drain Charge	Q_{gd}		1.7	1.7	


Notes a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.




SPICE Device Model Si1469DH Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.