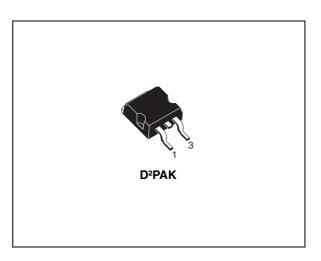


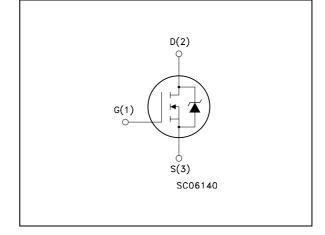
# STB20NM60D

### **General features**

| Туре       | V <sub>DSS</sub> | R <sub>DS(on)</sub> | ۱ <sub>D</sub> | Pw  |
|------------|------------------|---------------------|----------------|-----|
| STB20NM60D | 600V             | <0.29Ω              | 20A            | 45W |


- High dv/dt and avalanche capabilities
- 100% Avalanche tested
- Low input capacitance and gate charge
- Low gate input resistance
- Tight process control and high manufacturing yields

## Description


The FDmesh<sup>™</sup> associates all advantages of reduced on-resistance and fast switching with an intrinsic fast-recovery body diode. It is therefore strongly recommended for bridge topologies, in particular ZVS phase-shift converters.

## Applications

Switching application



## Internal schematic diagram



### Order codes

| Part number | Marking  | Package            | Packaging   |
|-------------|----------|--------------------|-------------|
| STB20NM60D  | B20NM60D | D <sup>2</sup> PAK | Tape & reel |

## Contents

| 1 | Electrical ratings                      | 3  |
|---|-----------------------------------------|----|
| 2 | Electrical characteristics              | 4  |
|   | 2.1 Electrical characteristics (curves) | 6  |
| 3 | Test circuit                            | 8  |
| 4 | Package mechanical data                 | 9  |
| 5 | Packaging mechanical data               | 11 |
| 6 | Revision history                        | 12 |



### 1

### Table 1. Absolute maximum ratings

**Electrical ratings** 

| Symbol                             | Parameter                                             | Value       | Unit    |
|------------------------------------|-------------------------------------------------------|-------------|---------|
| V <sub>DS</sub>                    | Drain-source voltage (V <sub>GS</sub> = 0)            | 600         | V       |
| V <sub>DGR</sub>                   | Drain-gate voltage (R <sub>GS</sub> = 20 kΩ)          | 600         | V       |
| V <sub>GS</sub>                    | Gate- source voltage                                  | ± 30        | V       |
| I <sub>D</sub>                     | Drain current (continuous) at $T_C = 25^{\circ}C$     | 20          | А       |
| Ι <sub>D</sub>                     | Drain current (continuous) at $T_C = 100^{\circ}C$    | 12.6        | А       |
| I <sub>DM</sub> <sup>(1)</sup>     | Drain current (pulsed)                                | 80          | А       |
| P <sub>TOT</sub>                   | Total dissipation at $T_{C} = 25^{\circ}C$            | 192         | W       |
|                                    | Derating factor                                       | 1.20        | W/°C    |
| dv/dt (2)                          | Peak diode recovery voltage slope                     | 20          | V/ns    |
| T <sub>j</sub><br>T <sub>stg</sub> | Operating junction temperature<br>Storage temperature | – 65 to 150 | °C<br>℃ |

1. Pulse width limited by safe operating area

2.  $I_{SD} \leq$  20A, di/dt  $\leq$  400A/µs,  $V_{DD} =$  80% $V_{(BR)DSS}$ 

#### Table 2. Thermal resistance

| Symbol    | Parameter                                         | Value | Unit |
|-----------|---------------------------------------------------|-------|------|
| Rthj-case | Thermal resistance junction-case Max              | 0.65  | °C/W |
| Rthj-amb  | Thermal resistance junction-ambient Max           | 62.5  | °C/W |
| т         | Maximum lead temperature for soldering<br>purpose | 300   | °C   |

#### Table 3.Avalanche data

| Symbol          | Parameter                                                                                               | Value | Unit |
|-----------------|---------------------------------------------------------------------------------------------------------|-------|------|
| I <sub>AR</sub> | Avalanche current, repetitive or not-repetitive (pulse width limited by $T_j$ max)                      | 10    | А    |
| E <sub>AS</sub> | Single pulse avalanche energy<br>(starting $T_j = 25 \text{ °C}, I_D = I_{AR}, V_{DD} = 35 \text{ V}$ ) | 700   | mJ   |



## 2 Electrical characteristics

(T<sub>CASE</sub>=25°C unless otherwise specified)

|                      | On/on states                                             |                                                                         |     |      |          |          |
|----------------------|----------------------------------------------------------|-------------------------------------------------------------------------|-----|------|----------|----------|
| Symbol               | Parameter                                                | Test condictions                                                        | Min | Тур  | Max      | Unit     |
| V <sub>(BR)DSS</sub> | Drain-source breakdown<br>voltage                        | $I_{D} = 250 \mu A, V_{GS} = 0$                                         | 600 |      |          | V        |
| I <sub>DSS</sub>     | Zero gate voltage<br>drain current (V <sub>GS</sub> = 0) | $V_{DS}$ = Max rating<br>$V_{DS}$ = Max rating, T <sub>C</sub> = 125 °C |     |      | 1<br>10  | μΑ<br>μΑ |
| I <sub>GSS</sub>     | Gate-body leakage<br>current (V <sub>DS</sub> = 0)       | $V_{GS} = \pm 30V$                                                      |     |      | ±10<br>0 | μA       |
| V <sub>GS(th)</sub>  | Gate threshold voltage                                   | $V_{DS} = V_{GS}, I_D = 250 \mu A$                                      | 3   | 4    | 5        | V        |
| R <sub>DS(on)</sub>  | Static drain-source on resistance                        | V <sub>GS</sub> = 10V, I <sub>D</sub> = 10A                             |     | 0.26 | 0.29     | Ω        |

#### Table 4. On/off states

#### Table 5. Dynamic

|                                                          | Bynamio                                                                 |                                                                    |     |                   | -   |                |
|----------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------|-----|-------------------|-----|----------------|
| Symbol                                                   | Parameter                                                               | Test condictions                                                   | Min | Тур               | Max | Unit           |
| 9 <sub>fs</sub> <sup>(1)</sup>                           | Forward transconductance                                                | $V_{DS} > I_{D(on)} \times R_{DS(on)max,}$<br>$I_{D} = 10A$        |     | 9                 |     | S              |
| C <sub>iss</sub><br>C <sub>oss</sub><br>C <sub>rss</sub> | Input capacitance<br>Output capacitance<br>Reverse transfer capacitance | V <sub>DS</sub> = 25V, f = 1 MHz, V <sub>GS</sub> = 0              |     | 1300<br>500<br>35 |     | pF<br>pF<br>pF |
| C <sub>oss eq.</sub> <sup>(2)</sup>                      | Equivalent output capacitance                                           | $V_{GS} = 0V, V_{DS} = 0V \text{ to } 480V$                        |     | 190               |     | pF             |
| R <sub>G</sub>                                           | Gate input resistance                                                   | f=1 MHz Gate DC Bias = 0<br>Test signal level = 20mV<br>open drain |     | 2.7               |     | Ω              |
| Qg                                                       | Total gate charge                                                       | $V_{DD} = 480V, I_D = 20A,$                                        |     | 37                | 52  | nC             |
| Q <sub>gs</sub>                                          | Gate-source charge                                                      | $V_{GS} = 10V$                                                     |     | 10                |     | nC             |
| Q <sub>gd</sub>                                          | Gate-drain charge                                                       | (see Figure 13)                                                    |     | 17                |     | nC             |

1. Pulsed: Pulse duration = 300  $\mu$ s, duty cycle 1.5 %

2.  $C_{\rm oss~eq.}$  is defined as a constant equivalent capacitance giving the same charging time as  $C_{\rm oss}$  when  $V_{\rm DS}$  increases from 0 to 80%



|                                                          | •                                                     |                                                                                                                   |      |               |      |                |
|----------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------|---------------|------|----------------|
| Symbol                                                   | Parameter                                             | Test condictions                                                                                                  | Min. | Тур.          | Max. | Unit           |
| t <sub>d(on)</sub><br>t <sub>r</sub>                     | Turn-on delay time<br>Rise time                       | $\begin{split} V_{DD} &= 300V, \ I_D = 10A \\ R_G &= 4.7\Omega \ V_{GS} = 10V \\ (see \ Figure \ 12) \end{split}$ |      | 25<br>12      |      | ns<br>ns       |
| t <sub>r(Voff)</sub><br>t <sub>f</sub><br>t <sub>c</sub> | Off-voltage rise time<br>Fall time<br>Cross-over time | $V_{DD} = 480 \text{ V}, I_D = 20\text{A}, R_G = 4.7\Omega, V_{GS} = 10\text{V}$<br>(see Figure 12)               |      | 8<br>22<br>30 |      | ns<br>ns<br>ns |

#### Table 6. Switching times

#### Table 7.Source drain diode

| Symbol                                             | Parameter                                             | Test condictions                               | Min | Тур. | Max      | Unit   |
|----------------------------------------------------|-------------------------------------------------------|------------------------------------------------|-----|------|----------|--------|
| I <sub>SD</sub><br>I <sub>SDM</sub> <sup>(1)</sup> | Source-drain current<br>Source-drain current (pulsed) |                                                |     |      | 20<br>80 | A<br>A |
| V <sub>SD</sub> <sup>(2)</sup>                     | Forward on voltage                                    | $I_{SD} = 20 \text{ A}, V_{GS} = 0$            |     |      | 1.5      | V      |
| t <sub>rr</sub>                                    | Reverse recovery time                                 | I <sub>SD</sub> = 20 A, T <sub>j</sub> = 25°C  |     | 240  |          | ns     |
| Q <sub>rr</sub>                                    | Reverse recovery charge                               | di/dt =100A/µs,V <sub>DD</sub> =60V            |     | 1800 |          | nC     |
| I <sub>RRM</sub>                                   | Reverse recovery current                              | (see Figure 17)                                |     | 16   |          | А      |
| t <sub>rr</sub>                                    | Reverse recovery time                                 | I <sub>SD</sub> = 20 A, T <sub>j</sub> = 150°C |     | 396  |          | ns     |
| Q <sub>rr</sub>                                    | Reverse recovery charge                               | di/dt =100A/µs,V <sub>DD</sub> =60V            |     | 2960 |          | nC     |
| I <sub>RRM</sub>                                   | Reverse recovery current                              | (see Figure 17)                                |     | 20   |          | А      |

1. Pulse width limited by safe operating area

2. Pulsed: Pulse duration = 300  $\mu$ s, duty cycle 1.5 %.



### 2.1 Electrical characteristics (curves)

#### Figure 1. Safe operating area





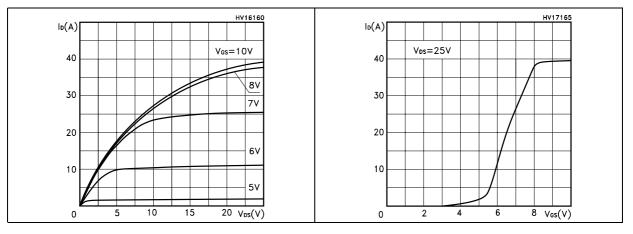



Figure 2.

к

10<sup>0</sup>

10-

 $10^{-2}$ 

Figure 4.

 $10^{-5}$ 

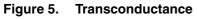
 $\delta = 0.5$ 

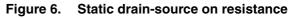
0.2

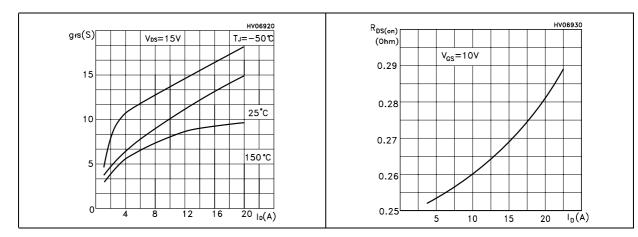
 $10^{-4}$ 

0.05 0.01 PULSE

 $10^{-3}$ 


**Transfer characteristics** 

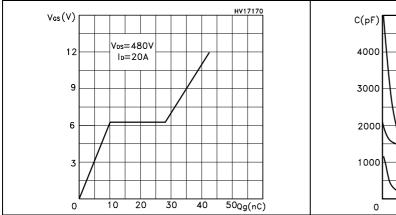

10-2


**Thermal impedance** 

 $Z_{th} = k R_{t}$  $\delta = t_{p} / \tau$ 

 $10^{-1} t_{p}(s)$ 








нуобаео

150 T√℃)

100



#### Figure 7. Gate charge vs gate-source voltage Figure 8. Capacitance variations

Figure 9. Normalized gate threshold voltage vs temperature

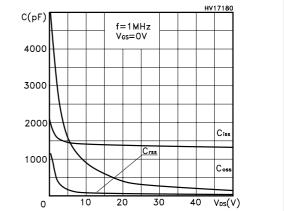



Figure 10. Normalized on resistance vs temperature

VGs=10∨ ID=10A

Ros(on)

(norm)

2.5

2

1.5

1

0.5

0

-50

0

50

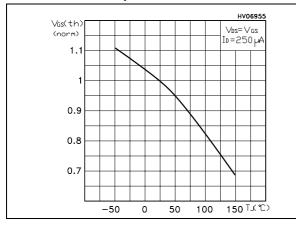




Figure 11. Source-drain diode forward characteristics





## 3 Test circuit

Figure 12. Switching times test circuit for resistive load

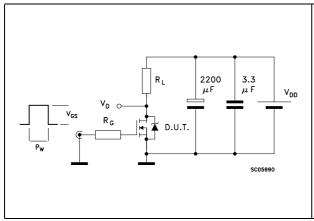
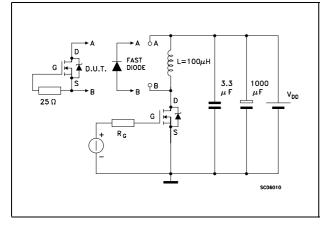
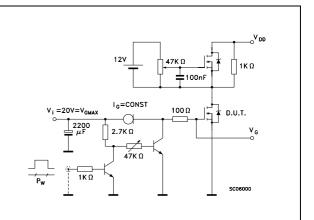
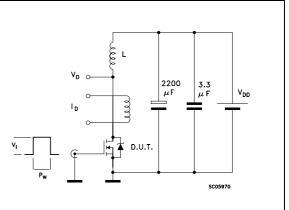
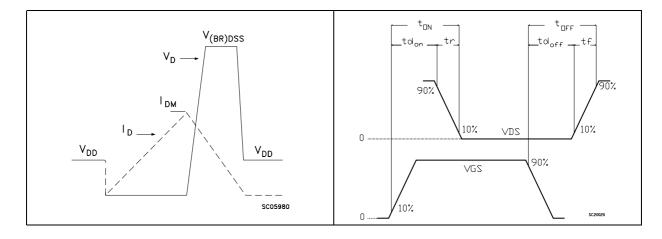




Figure 14. Test circuit for inductive load switching and diode recovery times







Figure 15. Unclamped inductive load test



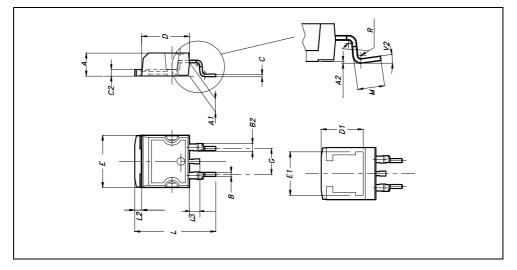


57

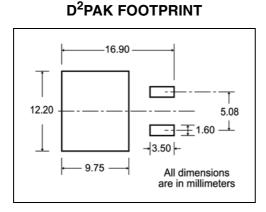




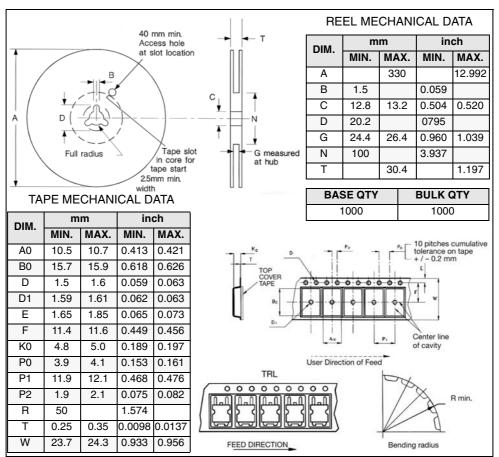
## 4 Package mechanical data


In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com




57

| DIM  |      | mm. |       |       | inch    |       |  |
|------|------|-----|-------|-------|---------|-------|--|
| DIM. | MIN. | ТҮР | MAX.  | MIN.  | TYP. MA |       |  |
| А    | 4.4  |     | 4.6   | 0.173 |         | 0.181 |  |
| A1   | 2.49 |     | 2.69  | 0.098 |         | 0.106 |  |
| A2   | 0.03 |     | 0.23  | 0.001 |         | 0.009 |  |
| В    | 0.7  |     | 0.93  | 0.027 |         | 0.036 |  |
| B2   | 1.14 |     | 1.7   | 0.044 |         | 0.067 |  |
| С    | 0.45 |     | 0.6   | 0.017 |         | 0.023 |  |
| C2   | 1.23 |     | 1.36  | 0.048 |         | 0.053 |  |
| D    | 8.95 |     | 9.35  | 0.352 |         | 0.368 |  |
| D1   |      | 8   |       |       | 0.315   |       |  |
| Е    | 10   |     | 10.4  | 0.393 |         |       |  |
| E1   |      | 8.5 |       |       | 0.334   |       |  |
| G    | 4.88 |     | 5.28  | 0.192 |         | 0.208 |  |
| L    | 15   |     | 15.85 | 0.590 |         | 0.625 |  |
| L2   | 1.27 |     | 1.4   | 0.050 |         | 0.055 |  |
| L3   | 1.4  |     | 1.75  | 0.055 |         | 0.068 |  |
| М    | 2.4  |     | 3.2   | 0.094 |         | 0.126 |  |
| R    |      | 0.4 |       |       | 0.015   | 1     |  |
| V2   | 0º   |     | 4º    |       |         |       |  |


### D<sup>2</sup>PAK MECHANICAL DATA



## 5 Packaging mechanical data



#### TAPE AND REEL SHIPMENT



\* on sales type



# 6 Revision history

| Date        | Revision | Changes       |
|-------------|----------|---------------|
| 08-Jun-2006 | 1        | First release |



#### Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

