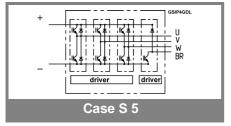

SKiiP 232GDL120-410CTV ...

7-pack - integrated intelligent Power System


Power section - 3 phase bridge SKiiP 232GDL120-410CTV

Features

- SKiiP technology inside
- Low loss IGBTs
- · CAL diode technology
- Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 2 System)
- IEC 68T.1 (climate) 40/125/56 (SKiiP[®] 2 power section)
- with assembly of suitable MKP capacitor per terminal (SEMIKRON type is recommended)

Absolute Maximum Ratings		T _s = 25 °C unless otherwise specified				
Symbol	Conditions	Values	Units			
IGBT						
V_{CES}		1200	V			
V _{CES} V _{CC} 1)	Operating DC link voltage	900	V			
V_{GES}		± 20	V			
I _C	T _s = 25 (70) °C	200 (150)	Α			
Inverse diode						
$I_F = -I_C$	T _s = 25 (70) °C	200 (150)	Α			
I _{FSM}	$T_i = 150 ^{\circ}\text{C}, t_p = 10 \text{ms}; \text{sin}.$	1440	Α			
I²t (Diode)	Diode, T _j = 150 °C, 10 ms	10	kA²s			
T_{j} , (T_{stg})		- 40 (- 25) + 150 (125)	°C			
V _{isol}	AC, 1 min. (mainterminals to heat sink)	3000	V			

Characteristics $T_s = 25 ^{\circ}\text{C}$ unless otherwise specified							specified	
Symbol Conditions				min.	typ.	max.	Units	
IGBT	Condition	13			1111111.	ιyp.	IIIax.	Ullits
_	li = 175 A T	F = 25 /4	125) °C		İ	2,6 (3,1)	3,1	ΙV
V _{CEsat} V _{CEO}	$I_C = 175 A, T_i = 25 (125)$		123) C			,	ا,5 1,5 (1,6)	V
r _{CE}	$T_i = 25 (125)$, ,	9 (11,5)	mΩ
	,					(10)	0.4	mA
I _{CES}	$V_{GE} = 0 \text{ V}, \text{ V}$		ES [,]			(10)	0,4	IIIA
	$T_j = 25 (125)$							
$E_{on} + E_{off}$	I _C = 175 A, \						53	mJ
	T _j = 125 °C,						93	mJ
R _{CC' + EE'}	terminal chip	o, T _j = 12	25 °C			0,5		mΩ
L _{CE}	top, bottom					15		nH
C _{CHC}	per phase, A	AC-side				1,4		nF
Inverse o	diode							
$V_F = V_{EC}$	I _F = 150 A, T	r _i = 25 (1	25) °C			2,1 (1,9)	2,6	V
V _{TO}	$T_i = 25 (125)$) [°] C				1,3 (1)	1,4 (1,1)	V
r _T		T _i = 25 (125) °C				5 (6)	6,8 (7,8)	mΩ
E _{rr}	I _C = 175 A, \	$V_{\rm CC} = 60$	0 V				6	mJ
	$T_j = 125 ^{\circ}C$,	$V_{CC} = 9$	00 V				8	mJ
Mechani	cal data				•			
M _{dc}	DC terminals	s, SI Uni	ts		6		8	Nm
M _{ac}	AC terminals, SI Units				13		15	Nm
W	SKiiP® 2 System w/o heat sink					3,5		kg
w	heat sink					8,5		kg
Thermal	characteri	istics (P16 hea	t sink; 27	75 m ³ /h);	"_" refer	ence to	
	ture senso		•	•	,	r		
R _{th(j-s)I}	per IGBT						0,129	K/W
R _{th(j-s)D}	per diode						0,375	K/W
R _{th(s-a)}	per module						0,036	K/W
Z _{th}	R _i (mK/W) (max. values)				tau _i (s)			
	1	2	3	4	1	2	3	4
$Z_{th(j-r)I}$	14	99	15		1	0,13	0,001	
$Z_{\text{th(j-r)D}}$	41	289	45		1	0,13	0,001	
Z _{th(r-a)}	1,7	24	7,6	2,6	494	165	20	0,03

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

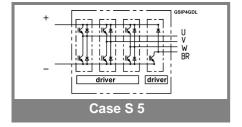
SKiiP 232GDL120-410CTV ...

SKiiP® 2

7-pack - integrated intelligent Power System

7-pack integrated gate driver - 3 phase **SKiiP 232GDL120-410CTV**

Gate driver features


- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- Short circuit protection
- Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 68T.1 (climate) 25/85/56 (SKiiP® 2 gate driver)

Absolute Maximum Ratings					
Symbol	Conditions	Values	Units		
V_{S1} V_{S2}	stabilized 15 V power supply unstabilized 24 V power supply	18 30	V V		
V_{iH}	input signal voltage (high)	15 + 0,3	V		
dv/dt	secondary to primary side	75	kV/μs		
V_{isoIIO}	input / output (AC, r.m.s., 2s)	3000	Vac		
V _{isol12}	output 1 / output 2 (AC, r.m.s., 2s)	1500	Vac		
f _{max}	switching frequency	20	kHz		
$T_{op} (T_{stg})$	operating / storage temperature	- 25 + 85	°C		

Characteristics			(T _a = 25 °C)		
Symbol	Conditions	min.	typ.	max.	Units
V_{S1}	supply voltage stabilized	14,4	15	15,6	V
V_{S2}	supply voltage non stabilized	20	24	30	V
I _{S1}	V _{S1} = 15 V	340+36	340+360*f/f _{max} +3,5*(I _{AC} /A)		
I _{S2}	V _{S2} = 24 V	250+250	250+250*f/f _{max} +2,6*(I _{AC} /A)		
V_{iT+}	input threshold voltage (High)	11,2			V
V_{iT-}	input threshold voltage (Low)			5,4	V
R _{IN}	input resistance		10		kΩ
t _{d(on)IO}	input-output turn-on propagation time		1,2		μs
t _{d(off)IO}	input-output turn-off propagation time		1,6		μs
tpERRRESET	error memory reset time	9			μs
t _{TD}	top / bottom switch : interlock time		2,3		μs
I _{analogOUT}	8 V corresponds to max. current of 15 V supply voltage		200		Α
I _{Vs1outmax}	(available when supplied with 24 V)			50	mA
I _{A0max}	output current at pin 13/20/22/24/26			5	mA
V _{0I}	logic low output voltage			0,6	V
V _{0H}	logic high output voltage			30	V
I _{TRIPSC}	over current trip level (I _{analog OUT} = 10 V)		250		Α
I _{TRIPLG}	ground fault protection		58		Α
T _{tp}	over temperature protection	110		120	°C
U _{DCTRIP}	trip level of U _{DC} -protection	900			V
	(U _{analog OUT} = 9 V); (option)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

