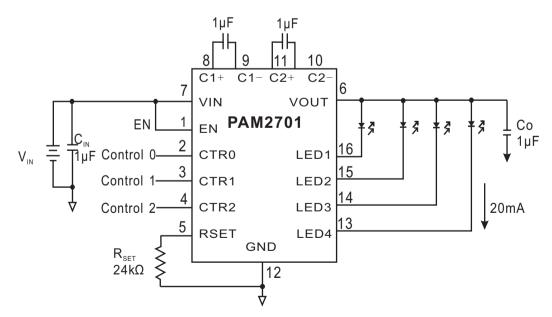


Features

- Peak Efficiency: 90%
- Individual Current Regulation
- 3-bit Digital Output Control
- Two modes of operation:1x and 1.5x
- Current Matching with a Max Tolerance of 3%
- Output Current up to 30mA per LED
- Total LED Current up to 4*30mA=120mA
- Fixed Frequency of 1MHz
- Open LED Protection
- Space Saving Package QFN 3mmx3mm and QFN 4mmx4mm
- Pb-Free Package

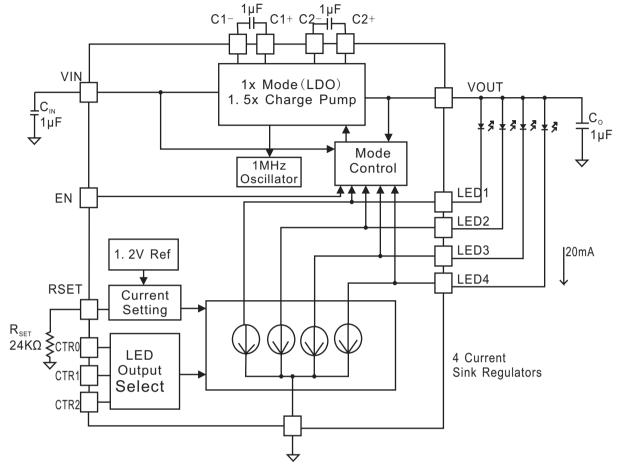
Applications

- Cellular Phones
- LED Backlighting
- LCD Modules
- Handheld Devices
- Digital Cameras
- PDAs
- PMPs
- MP3 Players


Description

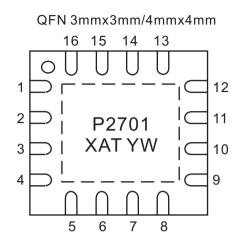
The PAM2701 is a 4-channel charge pump white LED driver, capable of driving up to 4 LEDs in parallel. The device operates in either 1x mode or 1.5x fractional mode, and it can switch from 1x mode to 1.5x mode automatically when the input voltage decreased. Its internal 4 current sink regulators ensure both the LED current matching and the brightness uniformity. The LED current can be programmed by an external resistor, R_{SET} , connected between the RSET pin and ground. LED current of up to 30mA are supported by the input supply voltage over a range of 2.7V to 5.5V, making the device optimized for Li-Ion battery applications.

The PAM2701 has a fixed switching frequency of 1MHz, allowing the use of very small value ceramic capacitors. The enable input pin allows the device to be set in shutdown mode, and the current consumption is reduced to less than 1μ A.


LED dimming can be done by several methods including using a DC voltage to set the RSET pin current, adding a switched resistor in parallel with R_{SET} or applying a PWM signal to CTRx pin or EN pin.

Typical Application

Block Diagram


Table 1:LED Enable Logic

Control Lines			LED Outputs			
CTR2	CTR1	CTR0	LED4	LED3	LED2	LED1
0	0	0	-	-	-	ON
0	0	1	-	-	ON	-
0	1	0	-	ON	-	-
0	1	1	ON	-	-	-
1	0	0	-	-	ON	ON
1	0	1	-	ON	ON	ON
1	1	0	ON	ON	ON	ON
1	1	1	-	-	-	-

Note:1=logic high(or V_{IN}) 0=logic low(or GND) - =LED output off

Pin Configuration & Marking Information

- X: Internal Code A: Assembly Code T: Testing Code Y: Year
- W: Week

Pin Number	Name	Function	
1	EN	Enable Input, Active High	
2	CTR0	Digital Control Input 0	
3	CTR1	Digital Control Input 1	
4	CTR2	Digital Control Input 2	
5	RSET	Set Resistance	
6	VOUT	Charge pump output connected to the LED anodes	
7	VIN	Supply Voltage	
8	C1+	Bucket Capacitor 1 Terminal	
9	C1-	Bucket Capacitor 1 Terminal	
10	C2-	Bucket Capacitor 2 Terminal	
11	C2+	Bucket Capacitor 2 Terminal	
12	GND	Ground Reference	
13	LED4	LED4 Cathode Terminal	
14	LED3	LED3 Cathode Terminal	
15	LED2	LED2 Cathode Terminal	
16	LED1	LED1 Cathode Terminal	

Absolute Maximum Ratings

These are stress ratings only and functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability. All voltages are with respect to ground.

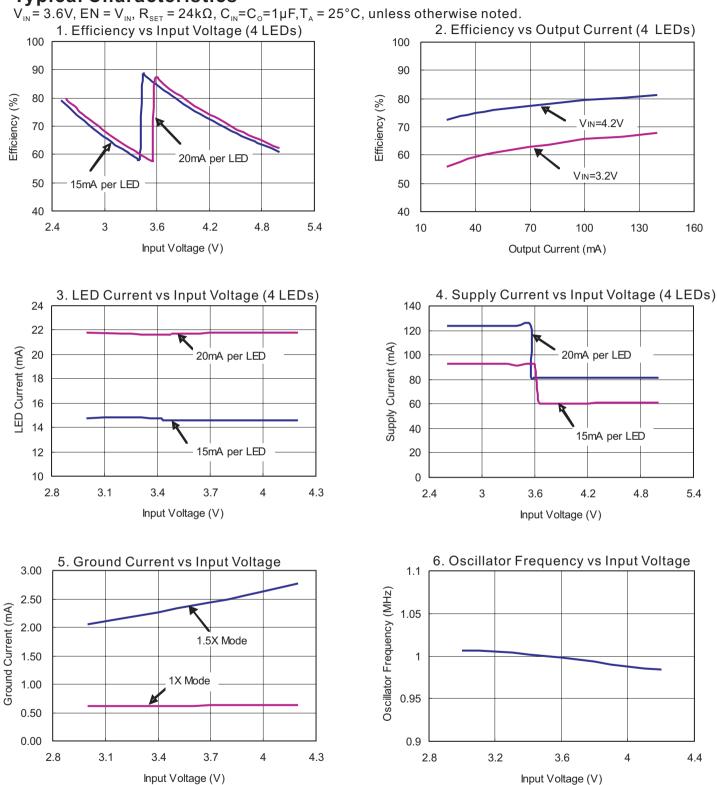
	Storage Temperature Range
EN, CTRx Pin Voltage0.3V to V_{IN} RSET Pin Voltage0.3V to V_{IN}	Lead Temperature300°C ESD Ratings
Ambient Temperature Range40°C to 85°C	Human Body Model(HBM)2000V

Recommended Operating Conditions

$V_{\mbox{\tiny IN}}2.7V$ to $5.5V$	Input/Output/Bucket Capacitors1±20%µF(TYP.)
Max. Supply Voltage (for Max. duration of	Ambient Temperature40°C to 85°C
30 minutes)6.4V	I _{LED} per LED0mA to 30mA

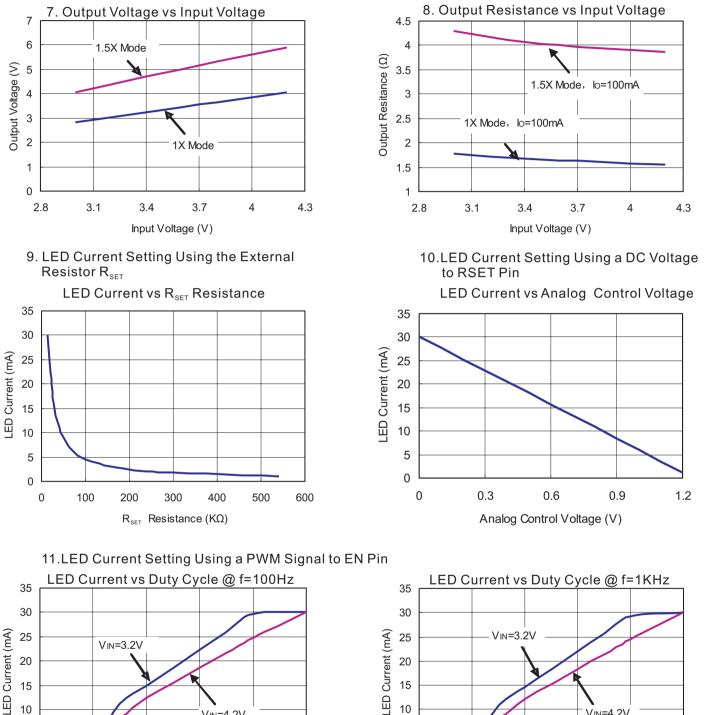
Thermal Information

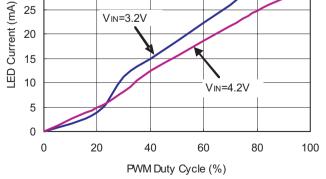
Parameter	Symbol	Package	Maximum	Unit
Thermal Resistance		QFN 3*3mm	34	°C/M
(Junction to Ambient)	θ_{JA}	QFN 4*4mm	25	°C/W
Bower Dissipation D @T −25°	P _D	QFN 3*3mm	2.9	W
Power Dissipation, P _D @T _A =25°C		QFN 4*4mm	4.0	vv


Electrical Characteristic

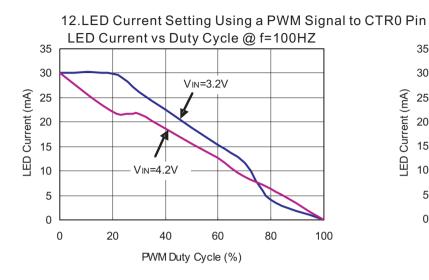
 $T_A = 25^{\circ}C$, $V_{IN} = 3.5V$, $C_{IN} = C_0 = 1\mu$ F, unless otherwise noted.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Input Voltage Range	V _{IN}		2.7		5.5	V
Shutdown Current	I _{SD}	V _{EN} =0V Shutdown Mode		0.05	1	μA
Quisseent Current		1x Mode, No Load		0.6	1.2	mA
Quiescent Current	Ι _Q	1.5x Mode, No Load		2.5	5	mA
RSET Regulated Voltage	V _{RSET}		1.19	1.23	1.25	V
		R _{SET} =90kΩ		5.0		mA
Programmed LED Current	I _{LED}	R _{SET} =29.3kΩ		15.0		mA
		R _{SET} =14.7kΩ		30.0		mA
LED Current Accuracy	I _{LED-ACC}			±5		%
LED Channel Matching	I _{LED-DEV}	(I _{LED} -I _{LEDAVG})/I _{LEDAVG}		±3		%
Output Desistance (Open Leen)	Р	1x Mode, I _o =100mA		1.7		Ω
Output Resistance (Open Loop)	Ro	1.5x Mode, I _o =100mA		4.3		Ω
Charge Pump Frequency	f _{osc}			1.0		MHz
V_{IN} at Mode Transition from 1x	V _{IN-Tran}	I _{LED} =15mA		3.45		V
to 1.5x		I _{LED} =20mA		3.60		V
1x to 1.5x Mode Transition	т			10		
Dropout Delay	T _{DROP}			10		μs
Input Leakage Current	I _{EN-CTR}	On Inputs EN,CTR0,1&2			1	μA
High Detect Threshold	V _{EN-CTRH}	On Inputs EN,CTR0,1&2	1.5			V
Low Detect Threshold	V _{EN-CTRL}	On Inputs EN,CTR0,1&2			0.4	V

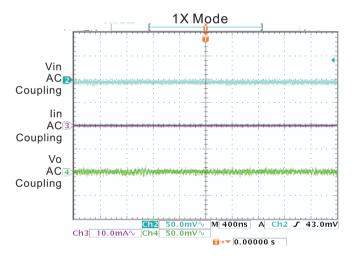


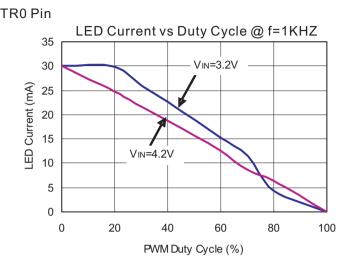

Typical Characteristics

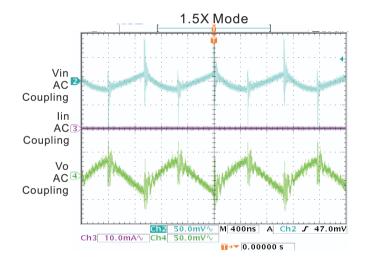
Typical Characteristics


www.poweranalog.com

VIN=4.2V


PWM Duty Cycle (%)




Typical Characteristics

13.Output Ripple

Application Information

Detailed Description

As shown in the block diagram on page 2, the main components within the PAM2701 include a fractional charge pump, mode selection circuit, output selection logic, LED current setting detection circuit, and 4 current sense circuits.

The fractional charge pump multiplies the input voltage a multiple of 1X and 1.5X times the input voltage. The charge pump switches at a fixed 1MHz when the mode is 1.5X. The charge pump does not switch during 1X mode, saving power and improving efficiency.

The mode selection circuit automatically selects the mode as 1X or 1.5X based on circuit conditions such as LED voltage, input voltage and load current. 1X is the more efficient mode than 1.5X mode.

Table 1 on page 2 shows the output selection logic control over the LED outputs for on and off functions with 8 different output states.

The current set and detection circuit uses an external resistor and a 1.20V reference to program the LED current.

4 current regulating circuits sink matched currents from the LEDs. LEDs with matched forward voltage will produce the best possible matched currents. For best matching performance it is recommended that the Vf between LEDs be under 250mV.

The unused LED channels can be turned off by CTR0, CTR1 and CTR2, and connecting the respective LED pins to VOUT pin, in which case, the corresponding LED driver sink current is only about 20μ A.

Methods for Setting LED Current

There are 4 methods for setting and adjusting the LED current outlined here. The methods are:

- 1) R_{SET} only
- 2) Analog Reference V_{SET}
- 3) PWM Input at CTR0
- 4) PWM Input at EN

Method 1: LED Current Setting with an External Resistor $R_{\mbox{\tiny SET}}$

The most basic means of setting the LED current is connecting a resistor from R_{SET} to GND, as shown in the application circuit on Page 1.

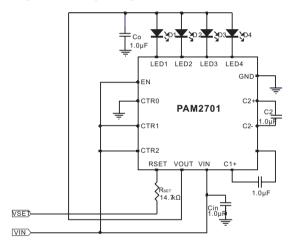
The resistor R_{SET} establishes the reference current needed for a constant LED current. Values of R_{SET} for a fixed LED current are given in Table 2, "Typical R_{SET} Resistance vs. LED Current".

Table 2: R _{SET}	Resistance Selection
---------------------------	-----------------------------

l _{LED} (mA)	R _{set} (kΩ)	Standard	Value %
ILED(IIIA)	riset(k77)	Value (kΩ)	Difference
30	14.7	14.7	00%
20	21.8	22.0	0.9%
15	29.3	29.4	0.3%
10	44.1	44.2	0.2%
9	49.4	49.9	1.0%
8	55.7	56.0	0.5%
7	64.2	63.4	0.3%
6	75.0	75.0	0.0%
5	90.0	88.7	-0.3%
4	114.2	115.0	0.7%
3	156.5	158.0	0.9%
2	238.0	237.0	-0.4%
1	540.0	536.0	-0.7%

Method 2: LED Current Setting with a DC Voltage to RSET Pin

Method 2 is for setting the LED current to control brightness. An example circuit is shown in Figure 1, employing a 14.7k resistor and an analog input DC voltage, V_{SET} , which varies from 1.2V to 0V to control LED current from 1mA to 30mA. Table 3 shows the resulting output. If necessary, the analog V_{SET} voltage can be sourced from a voltage higher than 1.20V, but the source must be divided down so that the V_{SET} mode will not exceed 1.20V. For lower current and higher resolution applications, a larger resistor may be used instead. PWM applications are also possible with this circuit by application of RC filtering (Consult with PAM for detail application support).



Application Information

Table 3: Analog Voltage for LED Current Control

V _{SET} (V)	I _{LED} (mA)	$V_{SET}(V)$	I _{LED} (mA)
0.0	30.0	0.7	13.3
0.1	27.7	0.8	10.9
0.2	25.3	0.9	8.4
0.3	22.9	1.0	6.0
0.4	20.5	1.1	3.6
0.5	18.1	1.2	1.1
0.6	15.7		

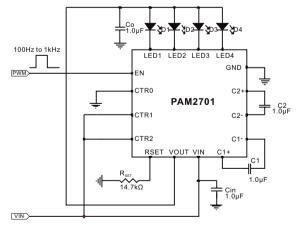
Figure 1: Analog Voltage for LED Current Control

Method 3: LED Current Setting with a PWM Signal to CTRx Pin

In circuit in Figure 2 four LEDs are turned on and off by a PWM signal on the CTR0. A resistor R_{SET} is used to set the on state current and the average LED current is then proportional to the percentage of on-time when the CTR0 pin is logic low. Average LED current is approximately equal to:

$$I_{AVG} = (t_{ON} * I_{LED_ON}) / (t_{ON} + t_{OFF})$$

It is recommended that PWM frequency is between 100Hz and 1kHz. Due to start up delay and ramp up time, frequency >1kHz will result in error in the average value of I_{LED} . Frequency <100Hz can cause the LEDs to blink visibly.

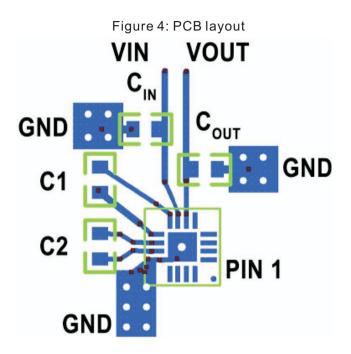

Method 4: LED Current Setting with a PWM Signal to EN Pin

The four LEDs are turned on and off by applying a PWM signal to the EN pin in circuit in Figure 3. The circuit is the same as one in method 3, using a resistor R_{SET} to set the on state current and the average LED current proportional to the percentage of on-time when the EN pin is logic low. Average LED current is approximately equal to:

$$I_{AVG} = (t_{ON} * I_{LED_ON}) / (t_{ON} + t_{OFF})$$

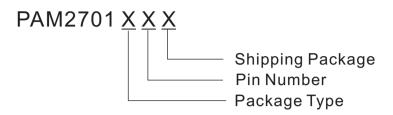
Similarly, it is recommended that PWM frequency is between 100Hz and 1kHz. Due to start up delay and ramp up time, frequency >1kHz will result in error in the average value of I_{LED} . Frequency <100Hz can cause the LEDs to blink visibly

Figure 3: PWM Signal at EN pin for LED Current Control



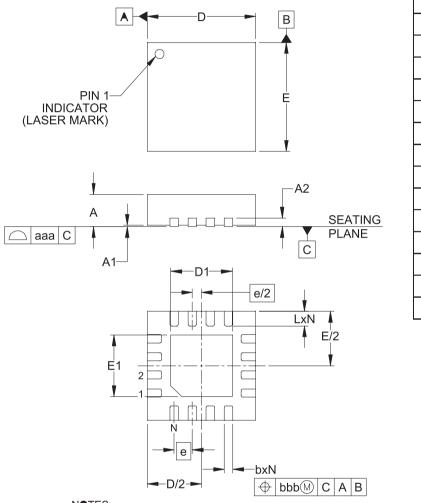
Application Information

PCB Layout


When the driver is in the 1.5X charge pump mode, the 1MHz switching frequency operation requires to minimize the trace length and impedance to ground on all 4 capacitors. A ground plane should cover the area on the bottom side of the PCB opposite to the IC and the bypass capacitors. Capacitors C_{IN} and Co should be short connected to ground with multiple vias as shown on Figure4.

Square copper area matches the QFN 16 exposed pad (GND) which is connected by a trace to the pin 12 pad (GND). A large via (metalized hole) centered in the square pad provides a low impedance connection to the ground plane on the opposite side of the PCB and allows the heat dissipation of the LED driver to achieve excellent thermal performance.

Ordering Information

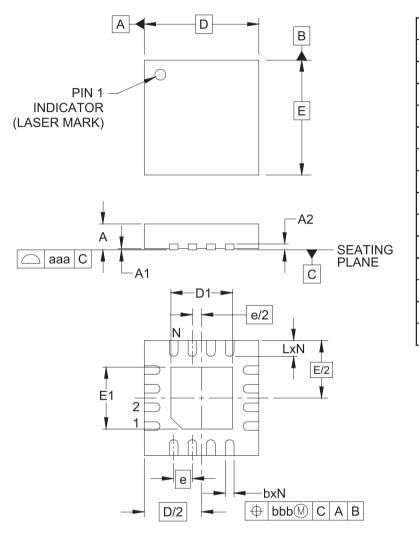

Package Type	Pin Number	Shipping Package
J: QFN 3mmx3mm	E: 16	R: Tape & Reel
K: QFN 4mmx4mm		

Part Number	Package Type	MOQ
PAM2701JER	Thin QFN-16 3mm×3mm	3,000 Units/Tape & Reel
PAM2701KER	Thin QFN-16 4mm×4mm	3,000 Units/Tape & Reel

Outline Dimension

3x3 mm TQFN 16

DIMENSIONS (Millieters)				
	MIN	TYP	MAX	
А	0.70	0.75	0.80	
A1	0.00	0.02	0.05	
A2		0.20		
b	0.18	0.25	0.30	
D	2.90	3.00	3.10	
D1	1.55	1.70	1.80	
Е	2.90	3.00	3.10	
E1	1.55	1.70	1.80	
е		0.50BSC	>	
L	0.30	0.40	0.50	
Ν	16			
aaa	0.08			
bbb		0.10		


NOTES:

- 1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
- 2. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.
- 3. DAP IS 1.90 x 1.90mm.

Outline Dimension

4x4mm QFN 16

DIMENSIONS (Millieters)			
	MIN	TYP	MAX
А	0.80	0.90	1.00
A1	0.00	0.02	0.05
A2	0.20		
b	0.25	0.30	0.35
D	3.90	4.00	4.10
D1	2.00	2.15	2.25
Е	3.90	4.00	4.10
E1	2.00	2.15	2.25
е	0.65BSC		
L	0.45	0.55	0.65
Ν	16		
aaa	0.08		
bbb	0.10		

NOTES:

- 1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
- 2. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.