

M62382FP

5 V Type 12-bit 4ch Composite Multiplying D/A Converter

REJ03D0882-0300 Rev.3.00 Mar 25, 2008

Description

The M62382FP is a semiconductor integrated circuit of 5 V CMOS structure with 12-bit 4 channels of built-in multiplying D/A converters and 8-bit 8 channels of built-in multiplying D/A converters. 8-bit D/A converters, when used in combination with 12-bit D/A converters, can operate in a wider range. Parallel data input under the 2 modes (A, B) of channel assignment allows for easier usage.

Features

- Built-in low power 12-bit 4 channels D/A converters
- 8-bit D/A converter with buffer making full swing between V_{CC} and GND.

- 2 modes (A, B) of channel assignment
- Zero level function

Built-in function of retaining arbitrary assigned data in 12-bit D/A converter. In normal use, output voltage can be switched to the voltage corresponding to the formerly assigned data by the setting of Z01, making it possible to calibrate the data (output voltage value).

Application

High precision measurement equipments such as memory testers, industrial measurement equipments, medical equipments, standard equipments in general

Block Diagram

Pin Arrangement

Pin Description

Pin No.	Pin Name	Function					
1, 25, 51, 75	VrefL (12)	12-bit D/A converter lower reference voltage input terminal					
2, 24, 52, 74	DAout (12)	12-bit D/A converter output terminal					
3, 23, 53, 73	VrefU (12)	12-bit D/A converter upper reference voltage input terminal					
5, 9, 17, 21,	VrefL (8)	8-bit D/A converter lower reference voltage input terminal					
55, 59, 67, 71							
6, 10, 16, 20,	DAout (8)	8-bit D/A converter output terminal					
56, 60, 66, 70							
7, 11, 15, 19,	VrefU (8)	8-bit D/A converter upper reference voltage input terminal					
57, 61, 65, 69							
27, 49	V _{cc}	Analog power supply terminal					
12, 14, 62, 64, 78	GND	Analog GND terminal					
47	V _{DD}	Digital power supply terminal					
28, 48, 98	V _{SS}	Digital GND terminal					
30, 31, 33, 34,	A00 to A08	Address terminal					
36, 37, 39, 40, 42							
79, 81, 82, 84, 85, 87,	D00 to D11	D/A data terminal					
89, 91, 92, 94, 95, 97							
43	LD	D/A LD terminal					
46	Z00	Zero level data assignment terminal					
45	Z01	Zero level data load terminal					
4, 8, 13, 18, 22, 29,	NC	Non-connection					
32, 35, 38, 41, 44, 50,							
54, 58, 63, 68, 72, 76,							
77, 80, 83, 86, 88, 90,							
93, 96, 99, 100							

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit
Digital supply voltage	V _{DD}	-0.3 to +7.0	V
Analog supply voltage	V _{cc}	–0.3 to +7.0	V
Digital input voltage	V _{DIN}	–0.3 to V_{DD} + 0.3 \leq 7.0	V
D/A reference voltage	Vref	–0.3 to V_{DD} + 0.3 \leq 7.0	V
D/A output voltage	VDAout	–0.3 to V_{DD} + 0.3 \leq 7.0	V
Operating temperature	Topr	-20 to +85	°C
Storage temperature	Tstr	-40 to +125	°C

Electrical Characteristics

<Digital Part>

 $(V_{DD} = V_{CC} = 5 \text{ V}, V_{SS} = \text{GND} (= 0 \text{ V}), \text{VrefU} = V_{CC}, \text{VrefL} = \text{GND}, \text{Ta} = -20 \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.})$

			Limits			
Item	Symbol	Min	Тур	Max	Unit	Conditions
Digital supply current	I _{DD}		—	3.0	mA	$f_{LD} = 1 \text{ MHz}, V_{DIN} = V_{SS}, \text{ or } V_{DD}$
Input leak current	I _{ILK}	-10	—	+10	μΑ	$V_{\text{DIN}} = V_{\text{SS}}$ to V_{DD}
Input capacitive load	CIN		—	1.2	рF	

<Analog Part>

$(V_{DD} = V_{CC} = 5 V, V_{SS} =$	GND (= 0 V), VrefU = V_{CC}	, VrefL = GND, Ta = -20 to	+85°C, unless otherwise noted.)
		,	

		Limits					
Item	Symbol	Min	Тур	Max	Unit		Conditions
Analog supply current	I _{CC}	—	1.6	6.0	mA	D/A output	= 1/2 MSB
Reference current for D/A	Iref	_	0.7	2.0	mA	12-bit D/A	D/A data for maximum
converter (U to L)							current of D/A reference,
			0.1	0.4	mA	8-bit D/A	each circuit current from
							VrefU to VrefL
Buffer amplifier output drive	IOA	±1.5	—		mA	Upper side	saturation voltage = 0.3 V
range						Lower side	saturation voltage = 0.3 V
Output resistance	Ro		2.2		kΩ	12-bit D/A:	R-2R ladder output
			10		Ω	8-bit D/A: E	Buffer amplifier output
Differential nonlinearity error	S _{DL}	-1.5	_	+1.5	LSB	12-bit D/A	VrefU = 5.0 V, VrefL = 0.0 V
		-1.0		+1.0		8-bit D/A	Ta = 25°C
Nonlinearity error	S _{NL}	-2.0	5	+2.0	LSB	12-bit D/A	VrefU = 5.0 V, VrefL = 0.0 V
		-1.0		+1.0		8-bit D/A	Ta = 25°C
Zero code error	SZERO	-3.0	_	+3.0	LSB	VrefU = 5.0	V, VrefL = 0.0 V
						Ta = 25°C	
Full code error	S _{FULL}	-3.0	-	+3.0	LSB	VrefU = 5.0) V, VrefL = 0.0 V
						Ta = 25°C	
Temperature coefficient of	ΔNL/t			0.05	LSB/°C	VrefU = 5.0) V, VrefL = 0.0 V
nonlinearity error						S _{NL 12-bit D/A}	/ 60°C (Ta = 25 to 85°C)
Cross talk between the	СТ		75	—	dB	12-bit D/A	Vin = -10 dBm
channels	GL) —	65	—		8-bit D/A	f = 100 Hz to 1 kHz
Power supply rejection ratio	PSRR	—	65	—	dB	12-bit D/A	$V_{CCin} = V_{CC} - 10 \text{ dBm}$
	•	—	55	_		8-bit D/A	f = 100 Hz to 1 kHz
Temperature coefficient of	ТСо		20	—	ppm/°C		
D/A output							
Settling time of 12-bit D/A	t _{STDA}	—	1.4	—	μS	Without loa	$d(I_{OA} = 0 mA)$
Settling time of 8-bit D/A	t _{stDA}	—	70	_	μS	Until output	t takes 1/2 LSB of the final
						value	

Recommended Operating Condition

 $(Ta = 25 \text{ to } 75^{\circ}C)$

		Limits				
Item	Symbol	Min	Тур	Max	Unit	Conditions
Analog power supply voltage	V _{cc}	4.5	5.0	5.5	V	
Digital power supply voltage	V _{DD}	4.5	5.0	5.5	V	
H side D/A reference voltage	VrefH	$V_{CC}-0.5$		Vcc	V	
L side D/A reference voltage	VrefL	GND		0.5	V	
H level digital input voltage	VIH	2		V_{DD}	V	
L level digital input voltage	VIL	GND		0.8	V	
D/A data set up time	t _{DDCH}	10		—	ns	Driving 12-bit and 8-bit D/A
						converters at same time
Address data set up time	t _{ADCH}	150		—	ns	Driving 12-bit and 8-bit D/A
						converters at same time
D/A data hold time	t _{DCHD}	t _{LDH} + 35		—	ns	Driving 12-bit and 8-bit D/A
						converters at same time
Address data hold time	t _{ACHD}	t _{LDH} + 10	_	_ (ns	Driving 12-bit and 8-bit D/A
						converters at same time
Load signal H level hold time	t _{LDH}	100		_	ns	Driving 12-bit and 8-bit D/A
						converters at same time
Z00 signal H level hold time	t _{ZSH}	15	_	4	ns	

Timing Chart

Zero Level Setting (input/output): Z00, Z01

Digital Format

D/A select for offset

D/A select for gain

1. Channel Select Setting (A01, A02)

Setting Select	A01	A00
CH1 select	0	0
CH2 select	0	1
CH3 select	1	0
CH4 select	1	1

2. Channel Assign Mode Setting (A02)

4. D/A Converter Select Setting (A04)

Channel Assign Mode Setting	A02
A channel assign mode	0
B channel assign mode	1

A04

0

1

3. 8-bit D/A Converter Select Setting (A03)

8-bit D/A Converter Select Setting

A03 D/A Converter Select Setting 0 12-bit D/A converter select 1 8-bit D/A converter select

5. Channel Select Setting B (A05, A06, A07, A08)

Setting Select	A05	A06	A07	A08
CH1 select	1	0	0	0
CH2 select	0	1	0	0
CH3 select	0	0	1	0
CH4 select	0	0	0	1

12-bit D/A

D00	D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D/A Output
0	0	0	0	0	0	0	0	0	0	0	0	VrefL12
1	0	0	0	0	0	0	0	0	0	0	0	(VrefU12 – VrefL12) / 4096 × 1
0	1	0	0	0	0	0	0	0	0	0	0	(VrefU12 – VrefL12) / 4096 × 2
1	1	0	0	0	0	0	0	0	0	0	0	(VrefU12 – VrefL12) / 4096 × 3
:	:	:	:	:	:	:	:	:	:	:	:	:
0	0	1	1	1	1	1	1	1	1	1	1	(VrefU12 – VrefL12) / 4096 × 4092
1	0	1	1	1	1	1	1	1	1	1	1	(VrefU12 – VrefL12) / 4096 × 4093
0	1	1	1	1	1	1	1	1	1	1	1	(VrefU12 – VrefL12) / 4096 × 4094
1	1	1	1	1	1	1	1	1	1	1	1	(VrefU12 – VrefL12) / 4096 × 4095

8-bit D/A

D00	D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D/A Output
0	0	0	0	0	0	0	0	_	_	_	_	VrefL8
1	0	0	0	0	0	0	0	_	_	_	_	(VrefU8 – VrefL8) / 256 × 1
0	1	0	0	0	0	0	0	_	_	_	_	(VrefU8 – VrefL8) / 256 × 2
1	1	0	0	0	0	0	0	_	_	_	_	(VrefU8 – VrefL8) / 256 × 3
:	:	:	:	:	:	:	:	:	:	:	:	:
0	0	1	1	1	1	1	1	_	_	_	_	(VrefU8 – VrefL8) / 256 × 252
1	0	1	1	1	1	1	1	_	_	_	_	(VrefU8 – VrefL8) / 256 × 253
0	1	1	1	1	1	1	1	_	_	_	_	(VrefU8 – VrefL8) / 256 × 254
1	1	1	1	1	1	1	1	_	_	_	_	(VrefU8 – VrefL8) / 256 × 255

8-bit D/A Converter for Reference Voltage Power Supply

Ultra High Precision D/A Converter

Application Circuit

Caution

This IC has four different kinds of terminals, which are to be applied by constant voltage when used. (V_{CC} , V_{DD} , VrefU, VrefL)

D/A converter precision may be worsened when ripple voltage or spike is duplicated on these four terminals.

So please be sure to put capacitor between each terminal and GND for stabilized D/A converter operation.

Package Dimensions

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for the intersect on the information in this document.
 The product date. diagrams, charts, programs, algorithms, and application circuit examples.
 An information included in this document is used. When exporting the products or the technology described herein, you should follow the applicable export control laws and regulations, and proceedures required by such laws and regulations.
 An information included in this document, included in this document, but Renesas as more the applicable export control laws and regulations, and proceedures required by such laws and regulations.
 Renesas has used reasonable care in compiling the information in this document, but Renesas assumes no liability Mathesever for any damages incurred as a set estil of errors or omissions in the information included in this document. Dut Renesas as products for the technology described herein you should follow the applicability of such assay and the substallity of the sub

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510