

SEMISTART

Antiparallel thyristors for softstart

SKKQ 3000

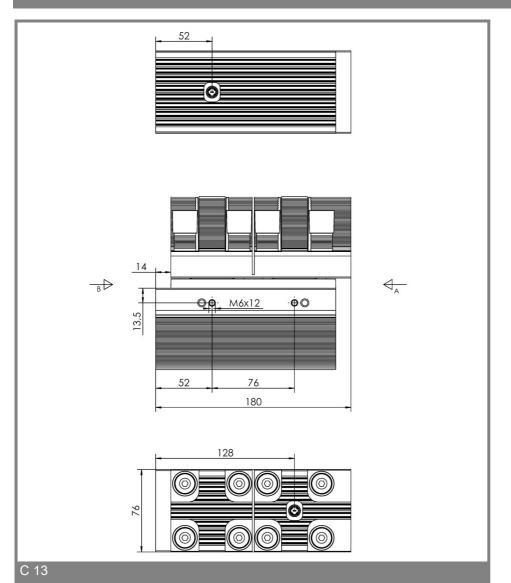
Preliminary Data

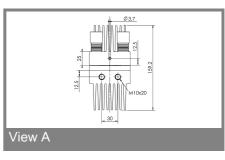
Features

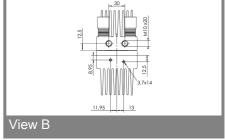
- · Compact design
- · Thyristor with amplifying gate
- Pressure contact technology

Typical Applications

Soft Starters


Remarks


- Please note: This module has no soft mold protection around the chip. It is therefore susceptible to environmental influences (dust, humidity, etc.). The humidity test according to IEC60068-2-67 is not passed by this product.
- T_{vjmax} up to 150°C is allowable for overload conditions, max. time period for the overload condition is 20s.


Absolute Maximum Ratings							
Symbol	Conditions	Values	Units				
I _{overload}	W1C; sin. 180°; 20 sec.; T _{vimax.} = 150 °C; T _{vistart} = 40°C	3080	Α				
I _{TSM}	$T_{vi} = 25^{\circ}C; 10 \text{ ms}$	30000	Α				
	$T_{vj} = 125$ °C; 10 ms	25500	Α				
I²t	T _{vi} = 25°C; 8,3 10 ms	4500000	A²s				
	T _{vj} = 125°C; 8,3 10 ms	3250000	A²s				
SKKQ 3000/14							
V_{RSM}		1500	V				
V_{RRM}, V_{DRM}		1400	V				
SKKQ 3000/18							
V_{RSM}		1900	V				
V_{RRM}, V_{DRM}		1800	V				
T_{vj}		-40 +125 ¹⁾	°C				
T _{stg}		-40 + 125	°C				

Characteristics							
Symbol	Conditions	min.	typ.	max.	Units		
V_T	T _{vi} = 25°C; I _T = 3600 A			1,65	V		
$V_{T(TO)}$	T _{vi} = 125°C			0,95	V		
r _T	T _{vj} = 125°C			0,18	mΩ		
$I_{DD};I_{RD}$	$T_{vj} = 125$ °C; $V_{RD} = V_{RRM}$; per module			240	mA		
t _{gd}	$T_{vj} = 25^{\circ}C; I_{G} = 1A; di_{G}/dt = 1A/\mu s$		1		μs		
t _{gr}	$V_{D} = 0.67 * V_{DRM}$		2		μs		
(dv/dt) _{cr}	T _{vi} = 125°C		1000		V/µs		
(di/dt) _{cr}	T _{vi} = 125°C; f = 50 60 Hz		125		A/µs		
t _q	T _{vi} = 125°C		250		μs		
I _H	$T_{vj} = 25^{\circ}C$		250	500	mA		
I _L	$T_{vj} = 25^{\circ}C; R_{G} = 33 \Omega$		500	2000	mA		
V_{GT}	$T_{vi} = 25$ °C; d.c.	3			V		
I_{GT}	$T_{vi} = 25^{\circ}C; d.c.$	250			mA		
V_{GD}	$T_{vi} = 125^{\circ}C; d.c.$			0,25	V		
I_{GD}	$T_{vj} = 125^{\circ}C; d.c.$			10	mA		
R _{th(j-s)}	cont.; per thyristor			0,026	K/W		
M _t			5 ±15%		Nm		
m	approx.		3300		g		
Case			C 13				

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.