

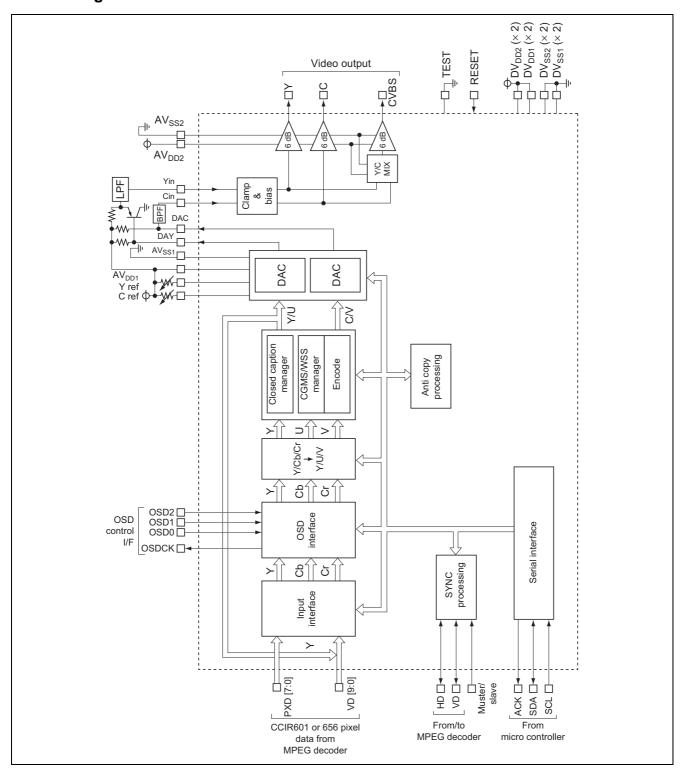
M65677FP

Digital NTSC/PAL Encoder

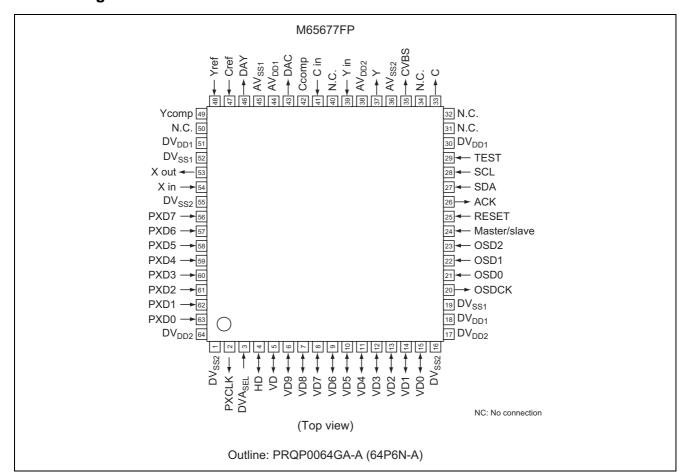
REJ03F0189-0201 Rev.2.01 Mar 31, 2008

Description

The M65677FP encodes CCIR601 or CCIR656 format Y/Cb/Cr data into analog NTSC and PAL video signals, including Digital Signal Processing functions such as Closed Caption encoding. Overlay OSD, Anti Video Copy Processing Note1 e.t.c. It also includes peripheral processing function such as 10 bit DAC e.t.c., so that low cost and compact system can be realized.


Features

- Macrovision's video anti copy process Rev 7.01 supported Note1
- Overlay CGMS signal online 20/283 for 525/60 Note3
- Generate CRCC for CGMS Signal
- Overlay WSS signal online 23 for 625/50 Note4
- Color adjustment (TINT/color control)
- NTSC, B/G PAL or MPAL Video Outputs
- Component Y/C Video (S-Video) and CVBS or Y/U/V Outputs
- Supporting CCIR601 and CCIR656 format data
- Closed Caption Manager online 21/284 for NTSC
- Generate ODD parity for Closed Caption Manager
- H/V Sync and Composite generating
- Overlay Digital OSD Supporting Y/Cb/Cr 4:4:4
- Over sampling Filter
- 2 ch 10 bit DAC and 3 ch 6 dB Amp Note2
- 3.3 V I/O interface
- I²C Bus Interface for Controls
- Power down mode
 - Notes: 1. This device is protected by U.S. patent numbers 4631603, 4577216 and 4819098 and other intellectual property rights. The use of Macrovision Corporation's copy protection technology in the device must be authorized by Macrovision and is intended for home and other limited pay-par-view uses only, unless otherwise authorized in writing by Macrovision. Reverse engineering or disassembly is prohibited.
 - 2. 6 dB Amp max. output is 1.0 Vp-p
 - 3. Copy Generation Management System-A (IEC1880)
 - 4. Wide Screen Signaling (ETS300 294)


Application

DVB, DVD, Digital CATV, Video CD

Block Diagram

Pin Arrangement

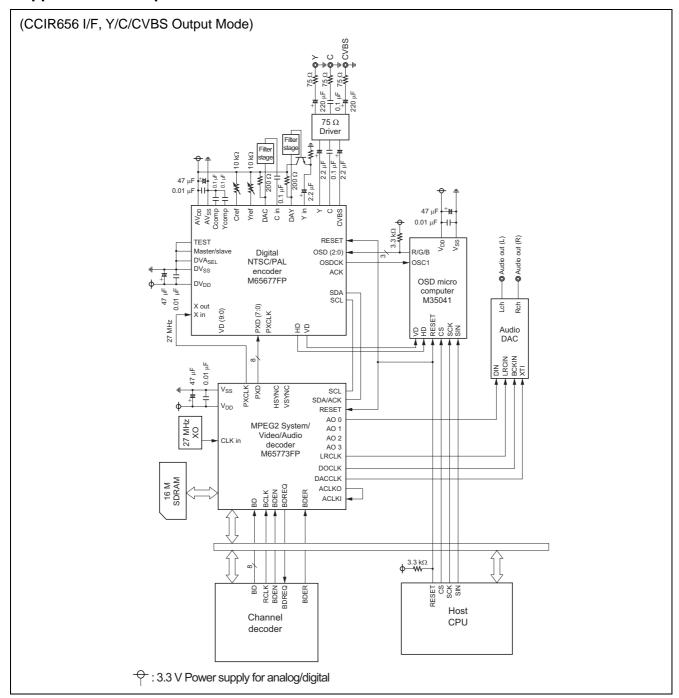
Pin Description

Pin No	Pin Name	Туре	Function				
1	DV _{SS2}	Supply	Digital ground for the I/O				
2	PXCLK	0	Reference clock for input pixel data.				
			The clock frequency is 27.0 MHz				
3	DVA _{SEL}	ı	I ² C slave address setting.				
			"Low" is for the address of 40h, "High" is for the address of 42h.				
4	HD	I/O	Horizontal sync signal input or output.				
			It is an input and output in the slave and master mode, respectively.				
5	VD	I/O	Vertical sync input or output. Or Odd Even signal output.				
			It is an input and output in the slave and master mode, respectively.				
6	VD9	I/O	Video data outputs.				
7	VD8		In the Y/U/V output mode, the output is the 10-bit digital luma signal with a				
8	VD7		composite sync.				
9	VD6		composite sync. VD9 is MSB and VD0 is LSB.				
10	VD5						
11	VD4						
12	VD3						
13	VD2						
14	VD1						
15	VD0						
16	DV _{SS2}	Supply	Digital ground for the I/O.				
17	DV_{DD2}	Supply	Digital supply for the I/O				
18	DV _{DD1}	Supply	Digital supply for the internal logic.				
19	DV _{SS1}	Supply	Digital ground for the internal logic.				
20	OSDCK	0	The reference clock for an external OSD microcontroller.				
			The frequency is 13.5 MHz or 6.25 MHz, alternated by I ² C bus control.				
21	OSD0	1	The color look-up table address input.				
22	OSD1		MSB and LSB are OSD2 and OSD0, respectively.				
23	OSD2						
24	Master/Slave	I	Synchronizing mode selection.				
			"Low" is for the slave mode.				
			"High" is for the master mode.				
25	RESET	I	Initializing reset. "Low" is active.				
26	ACK	0	Acknowledge line (Open drain output).				
27	SDA	I/O	Serial data line/acknowledge line (Open drain output).				
28	SCL	I	Serial clock line.				
29	TEST	I	For testing.				
			Is should be grounded during an actual use.				
30	DV _{DD1}	Supply	Digital supply for the internal logic.				
31	N.C.	_	No connection.				
32	N.C.	_	No connection.				
33	С	0	The analog chroma output from a 6 dB amplifier.				
			The output amplitude is 1.0 V _{P-P} (Typ), while the input is 0.5 V _{P-P} .				
34	N.C.		No connection.				
35	CVBS	0	The analog composite video signal from a 6 dB amplifier.				
			The output amplitude is 1.24 V _{P-P} (Typ).				
36	AV _{SS2}	Supply	Analog ground for 6 dB amplifiers.				
37	Y	0	The analog luma output from a 6 dB amplifier.				
	A) (The output amplitude is 1.2 V _{P-P} (Typ), while input is 0.6 V _{P-P} .				
38	AV _{SS2}	Supply	Analog supply for 6 dB amplifiers.				

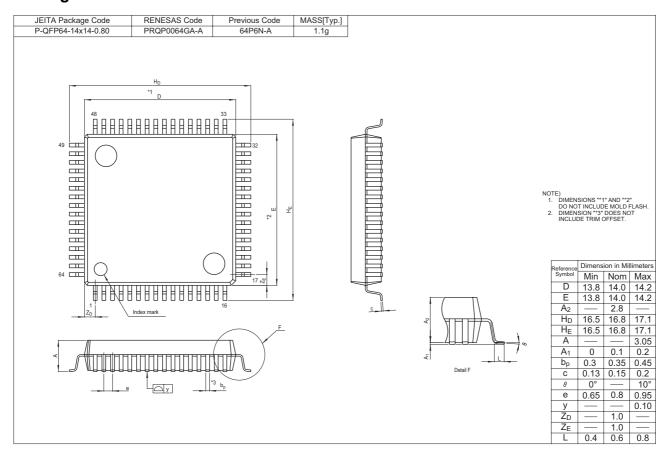
Pin Description (cont.)

Pin No	Pin Name	Type	Function
39	Yin	I	The analog luma input from an external LPF.
			This input has bias circuit. The signal must input via a capacitor.
40	N.C.	_	No connection.
41	Cin	I	The analog chroma input from an external LPF.
			This input has bias circuit. The signal must input via a capacitor.
42	Ccomp	I	Phase compensation for chroma or V output DAC.
			It should be connected to the analog ground via a capacitor.
43	DAC	0	Chroma or V signal output.
			The DAC output should be connected to the analog supply via a load resistor (R_L) .
			The output amplitude is set up by reference resistor (Rref) and RL.
44	AV _{DD1}	Supply	Analog supply for DACs.
45	AV _{SS1}	Supply	Analog ground for DACs.
46	DAY	0	Luma or U signal output.
			It should be connected to the analog supply via a load resistor (R _L).
			The output amplitude is set up by reference resistor (Rref) and R _L .
47	Cref	I	A reference current source for chroma or V signal output DAC.
			It should be connected to the analog supply via a reference resistor (Rref).
48	Yrel	I	A reference current source for Y or U DAC.
			It should be connected to the analog supply via a reference resistor (Rref).
49	Ycomp	I	Phase compensation for Y or U DAC.
			It should be connected to the analog ground via a capacitor.
50	N.C.	_	No connection.
51	DV _{DD1}	Supply	Digital supply for the internal logic.
52	DV _{SS1}	Supply	Digital ground for the internal logic.
53	Xout	0	System clock output.
			It must be in no connection except for a connection to a X'tal oscillator.
54	Xin	I	System clock input.
			The clock frequency is only 27.0 MHz.
55	DV _{SS2}	Supply	Digital ground for the I/O.
56	PXD7	I	Pixel data inputs.
57	PXD6		The acceptable video data are;
58	PXD5		Multiplexed video data (Y/Cb/Cr) including timing reference code of SAV
59	PXD4		and EAV, defined in CCIR Rec656
60	PXD3		Multiplexed video data (Y/Cb/Cr) defined in CCIR Rec601
61	PXD2		MSB and LSB are PXD7 and PXD0, respectively.
62	PXD1		
63	PXD0		
64	DV_{DD2}	Supply	Digital supply for the I/O.

Absolute Maximum Ratings


		Limits				
ltem	Symbol	Min	Тур	Max	Unit	
Supply voltage	V_{DD}	-0.3	_	4.5	V	
Digital input voltage	VI	-0.3	_	V _{DD} + 0.3	V	
Digital output voltage	Vo	-0.3	_	V _{DD} + 0.3	V	
Operating temperature	Та	-20	+25	+75	°C	
Storage temperature	Tstg	-40	_	+125	°C	

Recommended Operating Condition


 $(Ta = 25^{\circ}C, DV_{DD} = AV_{DD} = 3.3 \text{ V}, DV_{SS} = AV_{SS} = 0 \text{ V}, \text{ unless otherwise noted})$

		Limits				
Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Supply						
Digital supply voltage	DV_{DDX}	3.0	3.3	3.6	V	
Analog supply voltage	AV_{DDX}	3.15	3.3	3.45	V	
Digital current consumption	DI_DD	0	_	45	mA	
Analog current consumption	AI_{DD}	0	_	55	mA	
Digital input						
Input voltage	V _{IL}	0	_	0.8	V	DV _{DD} = 3.0 V
	V _{IH}	2.5	_	3.6	V	DV _{DD} = 3.6 V
Input leakage current	I _{IL} /I _{IH}	_	_	15	μА	$DV_{DD} = 3.0 \text{ V},$ $V_{I} = 0 \text{ V or } V_{I} = 3.6 \text{ V}$
Input capacitance	Cı		7	15	pF	f = 1 MHz, V _{DD} = 0 V
Digital output				•		
Output voltage	V _{OL}	_	_	0.05	V	DV _{DD} = 3.3 V, I _O < 1 A
	VoH	3.25	_	_	V	
Output capacitance	Co		7	15	pF	f = 1 MHz, V _{DD} = 0 V
I ² C Bus						
Output current	Io	4.0	_	_	mA	DV _{DD} = 3.0 V, V _{IL} = 0.4 V
Output leakage current (off)	l _{OZ}		_	15	μΑ	$DV_{DD} = 3.6 \text{ V},$
						$V_1 = 0 \text{ V or } V_1 = 3.6 \text{ V}$
D/A converter						
Resolution	Res		10	_	Bit	
Integral non-linearity error	INL		_	2.0	LSB	
Differential non-linearity error	DNL		_	1.0	LSB	
Maximum output amplitude	Vfs _{MAX}	1.5	_	_	Vp-p	
6-dB amplifier						
Bias resistor	Rbias	7.5	10.0	11.5	kΩ	
Output gain (Y/C)	G _{V_YC}	5.50	6.00	6.50	dB	
Output Gain (CVBS)	G_{V_CV}	5.10	6.00	6.85	dB	
Input dynamic range	DRin	0.8	_	_	Vp-p	
Output dynamic range	DRout	1.6	_	_	Vp-p	
Yin clamp charge current	lyich	-12	-26	- 50	μΑ	
Yin clamp discharge current	lyids	0.26	0.65	1.80	μΑ	
Yin clamp discharge current	Ryicl	20	0.65	70	_	$Ryicl = -\frac{Iyich}{Iyids}$
Yin input clamp voltage	Vyicl	0.45	0.50	0.55	V	
Yin output clamp voltage	Vyocl	0.40	0.50	0.60	V	
CVBS output clamp voltage	Vcvcl	0.30	0.50	0.70	V	
Cin input bias voltage	Vcin	0.95	1.00	1.05	V	
C output bias voltage	Vcob	0.90	1.00	1.10	V	
Output current	lamp	1.00		_	mA	

Application Example

Package Dimensions

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect to the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan notice. Before purchasing or using any Renesas products listed in this document, in the such procedure in the procedure of the description of the such and the procedure in th

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510