

Features

- · S₂₁ = 35.3 dB @ 1840 MHz = 34.7 dB @ 1870 MHz
- · NF of 1.8 dB over Frequency
- · Unconditionally Stable
- · Single 5V Supply
- · High OIP3 @ Low Current

Description

The plerow™ APM-Series is an internally matched amplifier mini-module for such application band in SMD package with the output P1dB of 29 dBm. It is compactly designed for low current consumption and high OIP3. Integrating all the components for biasing and matching within the module enhances production yield and throughput as well. It passes through the stringent DC, RF, and reliability tests. Not sample test but 100% quality control test is made before packing.

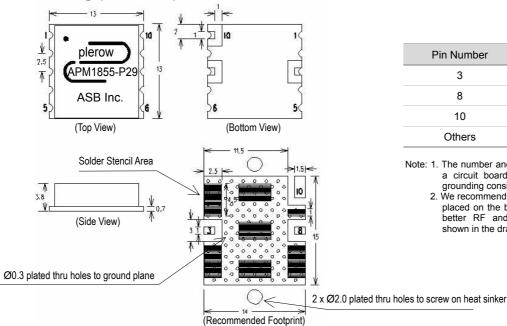
2-stage Single Type

Specifications (in Production)

Typ. @ T = 25°C, V_s = 5 V, Freq. = 1855 MHz, $Z_{o.sys}$ = 50 ohm

	.,,,,	, 3 -	, - 1	,
Parameter	Unit	Specifications		
		Min	Тур	Max
Frequency Range	MHz	1840		1870
Gain	dB	34	35	
Gain Flatness	dB		± 0.3	± 0.4
Noise Figure	dB		1.8	2.0
Output IP3 (1)	dBm	44	47	
S11 / S22 ⁽²⁾	dB			-18 / -10
Output P1dB	dBm	28	29	
Switching Time (3)	μsec		-	
Supply Current	mA		460	500
Supply Voltage	V	5		
Impedance	Ω	50		
Max. RF Input Power	dBm	C.W 23 ~ 25 (before fail)		
Package Type & Size	mm	Surface Mount Type, 13Wx13Lx3.8H		

More Information


Website: www.asb.co.kr E-mail: sales@asb.co.kr

Tel: (82) 42-528-7223 Fax: (82) 42-528-7222

ASB Inc., 4th Fl. Venture Town Bldg., 367-17 Goijeong-Dong, Seo-Gu, Daejon 302-716, Korea

Operating temperature is -40°C to +85°C.

Outline Drawing (Unit: mm)

Pin Number	Function	
3	RF In	
8	RF Out	
10	+Vcc	
Others	Ground	

Note: 1. The number and size of ground via holes in a circuit board is critical for thermal RF grounding considerations.

2. We recommend that the ground via holes be placed on the bottom of all ground pins for better RF and thermal performance, as shown in the drawing at the left side.

¹⁾ OIP3 is measured with two tones at an output power of 15 dBm / tone separated by 1 MHz.
2) S11/S22 (max) is the worst value within the frequency band.
3) Switching time means the time that takes for output power to get stabilized to its final level after switching DC voltage from 0 V to V_S.

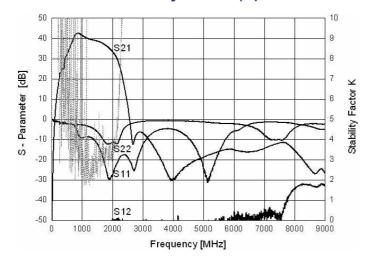
Typical Performance (Measured)

PCS Tx 1840~1870 +5 V

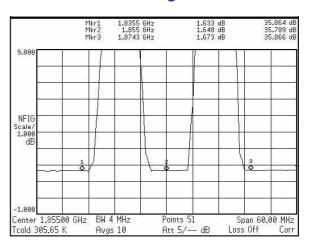
S-parameters 0 36.5 36.0 -5 -10 35.5 S22 35.0 -15 S12[dB] 34.5 -20 -25 34.0 \$22 33.5 -30 S11 \$21 S11, 33.0 -35 32.5 -40 32.0 -45 -50 31.5 31.0 -55 -60

1852 1855 1858

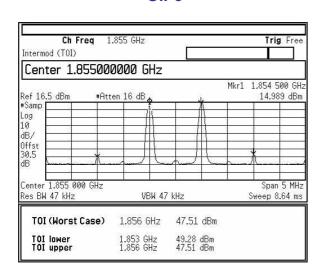
Frequency [MHz]

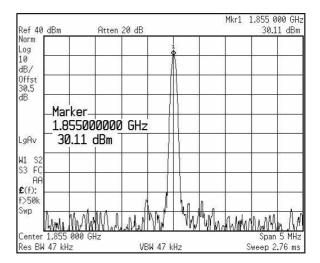

1840 1843

1846 1849

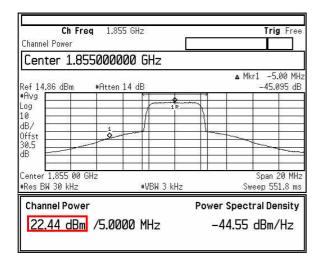

1861 1864

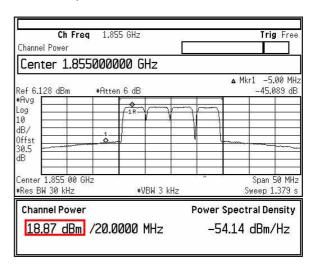
1870


Stability Factor (K)

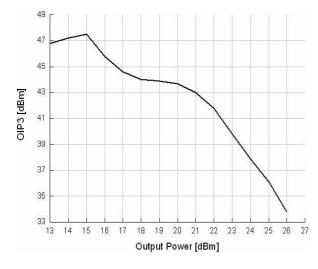

Noise Figure

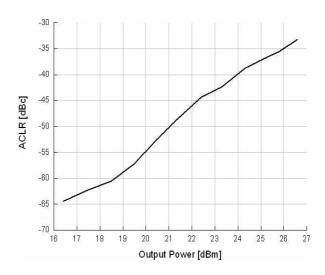
OIP3


P1dB



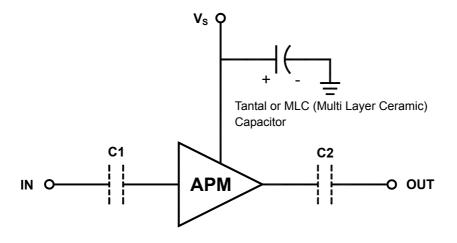
Output Channel Power


(@ ACLR=-45dBc, +/-5MHz Offset)

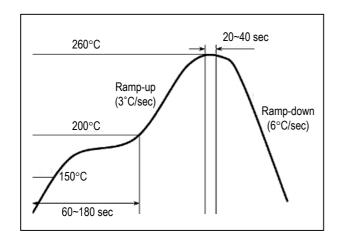


OIP3 vs Output Power

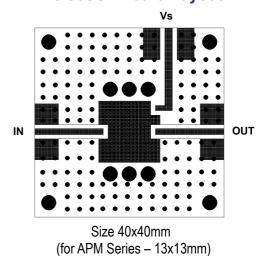
(@ 1MHz offset, 1-tone power)


ACLR vs Channel Power

** Test Source : Agilent E4433B (3GPP W-CDMA Test Model-1 64DPCH)

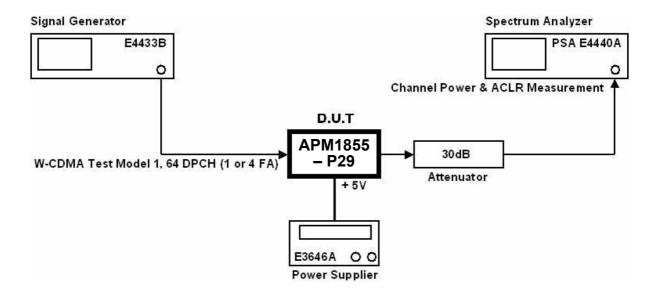


Application Circuit

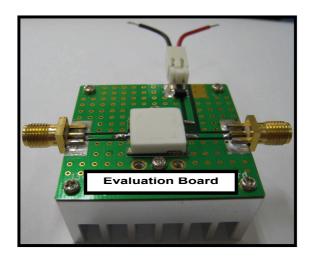


- The tantal or MLC (Multi Layer Ceramic) capacitor is optional and for bypassing the AC noise introduced from the DC supply. The capacitance value may be determined by customer's DC supply status. The capacitor should be placed as close as possible to V_s pin and be connected directly to the ground plane for the best electrical performance.
- 2) DC blocking capacitors are always necessarily placed at the input and output port for allowing only the RF signal to pass and blocking the DC component in the signal. The DC blocking capacitors are included inside the APM module. Therefore, C1 & C2 capacitors may not be necessary, but can be added just in case that the customer wants. The value of C1 & C2 is determined by considering the application frequency.

Recommended Soldering Reflow Process



Evaluation Board Layout



Channel Power vs. ACLR Test Configuration

Evaluation Board attached with Heat Sink

^{*} In order to prevent damage of D.U.T (APM-Series) from heating, you must to use a properly sized heat sink for testing a module.