
CoreFIR Finite Impulse Response (FIR)
Filter Generator

Product Summary

Intended Use
• Finite Impulse Response (FIR) Filter for Actel FPGAs

Key Features
• Core Generator

– Executable File Outputs Run-Time Library (RTL)
Code and Testbench Based on Input Parameters

– Self-Checking – Executable Tests Generated
Output against Algorithm

• Distributed Arithmetic (DA) Algorithm

– Multiplier-Free Computation

– Low Cost

– Optimized for Actel FPGAs

• Folding Architecture to Minimize Design Size

– Serialized Computation when System Clock
Rate is Faster than the Data Sample Rate

• Efficient Structure Using Embedded RAMs

– Lookup Tables Utilize Embedded RAMs

• On-Chip DA Lookup Table Generator for FPGA
with Embedded RAMs

• Embedded RAMs Initialized as DA Lookup Table

• DA Lookup Table ROM Synthesis for FPGA without
Embedded RAMs

• Multiple DA lookup Tables to Split Large Number
of Taps

• Actel FPGA-Optimized RTL Code

• Supports 2 to 128 Taps

• 1- to 32-Bit Input Data and Coefficient Precision

Supported Families
• Fusion

• ProASIC3/E

• ProASICPLUS ®

• Axcelerator®

• RTAX-S

• SX-A

• RTSX-S

Core Deliverables
• Evaluation Version

– RTL Code of a Sample Filter and Compiled RTL
Simulation Model Fully Supported in the Actel
Libero® Integrated Design Environment (IDE)

• RTL Version

– A Microsoft Windows® Binary Executable of
the CoreFIR Generator

– VHDL FIR Module

– VHDL Test Harness

Synthesis and Simulation Support
• Synthesis: Synplicity®, Synopsys® (Design

Compiler®/FPGA CompilerTM/FPGA ExpressTM),
ExemplarTM

• Simulation: OVI-Compliant Verilog Simulators and
Vital-Compliant VHDL Simulators

Contents
Device Utilization and Performance 2
FIR Filter Using Distributed Arithmetic Algorithm ... 3
General Description ... 5
Functional Block Description 5
I/O Signal Description .. 6
CoreFIR Generator Parameters 7
FIR Filter with Large Number of Taps 8
Clock and Reset .. 11
Input and Output Timing .. 11
Appendix I: Sample Configuration File 12
Ordering Information .. 13
List of Changes ... 13
Datasheet Categories ... 13
December 2005 v3.0 1
© 2005 Actel Corporation

CoreFIR
Device Utilization and Performance
The CoreFIR generates FIR filters with many configurations. Table 1 provides the typical utilization and performance
data for the generated FIR filters implemented with the configurations listed in Table 2 on page 3. Refer to Table 2 on
page 3 for the Configuration column in Table 1.

Table 1 • CoreFIR Device Utilization and Performance

Family Configuration

Cells or Tiles RAM
Blocks

Utilization Performance
MHzCombinatorial Sequential Total Device Total

Fusion 1 454 129 583 0 AFS060 38% 69

Fusion 2 1410 375 1784 0 AFS250 29% 56

Fusion 3 3080 679 3759 0 AFS250 61% 52

Fusion 4 5511 935 6446 8 AFS600 47% 45

Fusion 5 7089 1708 8797 0 AFS600 64% 40

Fusion 6 24356 3718 28074 45 AFS1500 73% 31

ProASIC3 1 454 129 583 0 A3P060 38% 69

ProASIC3 2 1410 375 1785 0 A3P125 58% 56

ProASIC3 3 3080 679 3759 0 A3P1000 15% 52

ProASIC3 4 5511 935 6446 8 A3P1000 26% 45

ProASIC3 5 7089 1708 8797 0 A3P1000 36% 40

ProASIC3 6 24356 3718 28074 45 A3P1500 73% 31

ProASICPLUS 1 558 116 674 0 APA075 22% 29

ProASICPLUS 2 2054 427 2481 0 APA150 40% 19

ProASICPLUS 3 3540 661 4201 0 APA1000 8% 19

ProASICPLUS 4 6391 872 7271 8 APA1000 13% 17

ProASICPLUS 5 8775 1606 10381 0 APA750 32% 13

Axcelerator 1 229 148 377 0 AX125 19% 174

Axcelerator 2 693 478 1171 0 AX250 28% 110

Axcelerator 3 1231 719 1950 0 AX250 46% 111

Axcelerator 4 2249 852 3101 4 AX500 38% 74

Axcelerator 5 3129 1704 4833 0 AX1000 27% 73

Axcelerator 6 9132 3355 12487 32 AX2000 39% 46

RTAX-S 1 229 148 377 0 RTAX1000S 2% 114

RTAX-S 2 693 478 1171 0 RTAX1000S 6% 76

RTAX-S 3 1231 719 1950 0 RTAX1000S 11% 66

RTAX-S 4 2249 852 3101 4 RTAX1000S 17% 41

RTAX-S 5 3129 1704 4833 0 RTAX1000S 27% 45

RTAX-S 6 9132 3355 12487 32 RTAX2000S 39% 29

SX-A 1 386 159 545 0 A54SX16A 38% 112

SX-A 2 1115 480 1595 0 A54SX72A 26% 64

SX-A 3 1831 727 2558 0 A54SX72A 42% 63

RTSX-S 1 381 159 540 0 RT54SX32S 19% 52

RTSX-S 2 1115 480 1595 0 RT54SX72S 26% 36

RTSX-S 3 1831 727 2558 0 RT54SX72S 42% 36

Notes:
1. The data above are obtained by typical synthesis and place-and-route methods. Other core parameters can result in different

utilization and performance.

2. Cell (tile) count may vary depending on the actual coefficient values.
2 v3.0

CoreFIR
FIR Filter Using Distributed Arithmetic Algorithm

Distributed Arithmetic Algorithm Overview
FIR filters are used in applications that require exact linear phase response. Typical applications for a FIR filter include:
image processing, digital audio, digital communication, and biomedical signal processing. A FIR filter is defined in EQ 1:

EQ 1

where:

c[n] = h[ntaps - n -1]

and h is the impulse response. The term ntaps is short for number of taps.

In summary, the direct computation for one point of FIR requires:

ntaps multiplications + (ntaps-1) additions.

Distributed Arithmetic (DA) is a well-known method for eliminating resources in multiply-and-accumulate structures
(MACs) implementing digital signal processing (DSP) functions. DA trades memory for combinatory elements, resulting
in an efficient implementation in FPGAs. Another feature of DA is its easy serialization of the input, which further
reduces the cost of operation when FIR data rate is low compared to the system clock, a common scenario in FIR
applications.

The input of a FIR can be expressed in the composition of its bits, as shown in EQ 2:

EQ 2

where x[n][b] is the bth bit of x[n] and nbits_in is the number of bits of input. The resulting output of the FIR filter is
shown in EQ 3:

EQ 3

Changing the summation order gives the results shown in EQ 4:

EQ 4

Table 2 • Test Configurations

Configuration nbits_input nbits_coef ntaps fpga_family coef_fixed

1 8 16 8 All 1

2 16 16 16 All 1

3 12 15 32 All 1

4 12 15 32 AX, RTAX-S, APA 0

5 16 15 64 All 1

6 16 16 128 AX, RTAX-S, APA 0

y[n] c[n] x[n]×
0

ntaps 1–

∑=

x n[] x[n][b] 2b×
0

nbits_in 1–

∑=

y[n] c[n]

0

ntaps 1–

∑ x[n] c[n] x[n][b]2b

0

nbits_in 1–

∑
0

ntaps 1–

∑= =

y[n] 2b c[n] x[n][b] 2bT(X[b])

0

nbits_in 1–

∑=

0

ntaps 1–

∑
0

nbits_in 1–

∑=
v3.0 3

CoreFIR
where: and X[b] is a collection of the bth bits of ntaps different taps.

Note that the x[n][b] can only be 0 or 1. There are 2ntaps different values of T. If T is pre-calculated and stored inside a
RAM or ROM, the FIR computation becomes nbits_in table lookup operations using x[b] and nbits_in–1 additions.
Multiplication operations are eliminated.

In summary, the FIR computation using DA for one point of FIR requires:

nbits_in table lookups + (nbits_in-1) additions.

The cost to eliminate multiplication is a memory block to store 2ntaps pre-computed values.

The serialization of table lookup and addition is possible
because table T is the same for each b. If one table
lookup and one addition can be finished in one cycle, the
total computation will finish in b cycles. The serialization
of the FIR introduces further opportunity to reduce the
size of the design, which is the key to an efficient FPGA
design.

Example Design of a FIR Filter Using DA
An example of a FIR with four taps (ntaps = 4) and four
bits for inputs (nbits_in = 4) is shown in Figure 1.

The expression x[n][b] represents the bth bit of input
x[n]. In the example, in the first cycle, all 0th bits of input
x[n] to x[n-3] are fed into the lookup table as an input
address; in the second cycle, all 1st bits of inputs input
x[n] to x[n-3] are fed into the lookup table; in the third
cycle, all 2nd bits of inputs input x[n] to x[n-3] are fed
into the lookup table; and in the fourth cycle, all 3rd bits
of inputs input x[n] to x[n-3] are fed into the lookup
table. The shifter shifts the outputs of the lookup table
for the inputs of the adder, which accumulates for the
final result.

The serialized DA implementation in Figure 1 uses a table lookup with 16 words, and takes four clock cycles to finish one FIR point.

T(X[b]) c[n] x[n][b]

0

ntaps 1–

∑=

Figure 1 • Example Implementation of a Bit-Serialized FIR Using DA

x[n][0]x[n][1]x[n][2]x[n][3]

x[n-1][0]x[n-1][1]x[n-1][2]x[n-1][3]

x[n-2][0]x[n-2][1]x[n-2][2]x[n-2][3]

x[n-3][0]x[n-3][1]x[n-3][2]x[n-3][3]

Lookup Table

Shifter

Flow
Control

Adder Reg
4 v3.0

CoreFIR
Storage and Large Number of Taps
As seen in the previous section, the size of the lookup table is 2ntaps, which is exponentially increased with more ntaps.
A design with a large number of taps needs to have several lookup tables. Let ntaps = p × q. If we split taps into p
groups, each group has q taps. Then the FIR becomes as shown in EQ 5:

EQ 5

By splitting ntaps into two level summations, we have the result shown in EQ 6:

EQ 6

Refer to "FIR Filter with Large Number of Taps" on page 8 for further information.

General Description
The CoreFIR is an Actel FPGA-optimized RTL generator
that produces a finite impulse response filter. It
implements the DA algorithm to eliminate multiplication
for faster and smaller designs. The CoreFIR is a generator
which utilizes Actel FPGA’s embedded RAM blocks as DA
lookup tables (when available) to further reduce the size
of the design. The generator also reads the user system
clock rate and data sample rate to explore using a
folding or serial architecture to further reduce size,

especially when the system clock rate is much greater
than the data sampling rate. The generator
automatically switches to the use of multiple DA lookup
tables when the requested FIR filter has a large number
of taps. Figure 2 shows the functional block diagram of a
generated FIR filter design. More complex designs may
contain multiple lookup tables, accumulators, or control
sections.

Functional Block Description
The functional blocks shown in Figure 2 illustrate the architecture of the generated FIR filter using the DA algorithm.

y[n] 2b c[n] x[n][b]

0

n=ntaps 1–

∑
0

nbits_in 1–

∑ 2b c[n] x[n][b]

0

n=pq 1–

∑
0

nbits_in 1–

∑= =

y[n] 2b c[iq + j] x[iq + j][b]

0

j=q-1

∑
0

i=p-1

∑
0

nbits_in 1–

∑=

Figure 2 • Functional Block Diagram

Coefficients
DA Lookup Tables
(RAMs or ROM)

Control

Input
Buffers

DA LUT
Generator

Shifter
Accumulator

datai

datao
v3.0 5

CoreFIR
Input Buffers
The Input Buffers block stores the input data which
contains ntaps data points, where ntaps is the number of
taps of the FIR filter. The Input Buffers block also
circulates the data bits to address the DA Lookup Tables
(LUTs) required by the DA algorithm. An optional
function of the input buffers block is to share its storage
with the DA LUT generator. The coefficients used in
computing the LUT content can be stored in the input
buffers when a design uses the embedded RAM blocks
for the LUTs.

DA Lookup Tables (LUTs)
The DA LUTs store the LUT contents for the distributed
algorithm. The generator implements the DA LUTs in two
ways: (1) synthesized ROM using FPGA cells; and (2)
embedded RAM blocks supported by the on-chip DA LUT
Generator. The first method is for an FPGA without
embedded RAM blocks, intended primarily for a small
FIR filter. The latter is for an FPGA with embedded RAM
blocks. FIR filters with a large number of taps may
require multiple LUTs.

Shifter and Accumulator
The Shifter and Accumulator perform additions with LUT
outputs and the alignments of LUT outputs required by
the DA algorithm. Multiple accumulators and shifters
may be needed to implement a FIR filter with a large
number of taps.

DA LUT Generator
The DA LUT Generator computes the LUT contents
required by the distributed arithmetic algorithm. It reads
the coefficients from the Input Buffers block and writes
the LUT words into the embedded RAM blocks. These
blocks are available only for designs that use embedded
RAM blocks as LUTs. The DA LUT Generator produces LUT
contents for multiple LUTs when implementing a FIR
filter with variable coefficients. Refer to "DA LUT
Generation" on page 10 and "I/O Timing Diagram of LUT
Initialization" on page 11 for detailed information on
initialization of the DA LUT.

Control
The state machine inside the Control block controls the
operations of all other blocks. It controls the input
buffers to ensure they operate based on the specified
system clock rate and sample rate, monitors input enable
and coefficient input enable, and circulates input data
bits to address the DA LUTs. It also controls the shifters
and accumulators to ensure they operate based on the
requested FIR configuration and DA algorithm. The
Control block coordinates the initialization of the LUTs
by the DA LUT generator when using embedded RAMs.
The Control logic is designed to support folding or
serialization of computation when the system clock rate
is substantially higher than the data sampling rate.

I/O Signal Description
The FIR filter generated by the CoreFIR Generator consists of the I/O signals defined in Table 3 (see Figure 3 on page 7).

Table 3 • I/O Signal Description

I/O Signal Direction Width Polarity Description

clk Input 1 N/A Master clock, positive edge

rstn Input 1 Active low Master reset, asynchronous

datai_en Input 1 Active high Input data enable

datai1 Input nbits_in1 N/A Input data or coefficients1

datao_valid Output 1 Active high Output data valid

datao Output nbits_out3 N/A Output data

coefi_en2 Input 1 Active high Coefficient input enable

ready2 Output 1 Active high Ready to input datai

Notes:

1. Input datai is also the input for coefficients for design using embedded RAMs as DA LUTs. In this case the width can be the
maximum of nbits_in and nbits_coef.

2. Ports coefi_en and ready are only available when coef_fixed = 0.

3. Refer to "Number of Bits of Output (nbits_out)" on page 8 for details.

4. Refer to Table 4 for nbits_in and nbits_coef.
6 v3.0

CoreFIR
CoreFIR Generator Parameters
The CoreFIR generates the RTL code for FIR filters with a variety of parameters. These parameters include generic FIR
parameters such as number of taps, number of input’s bits, number of coefficients’ bits, and data type, as well as
implementation parameters such as FPGA family, use embedded RAMs, system clock rate, and data sampling rate. The
CoreFIR supports the variations specified in Table 4.

Refer to "Appendix I: Sample Configuration File" on
page 12 for a sample usage of the parameters shown in
Table 4 in a configuration file for the CoreFIR Generator.
Detailed discussions about these parameters are in the
sections of this datasheet that follow.

Number of Taps (ntaps)
The FIR generator supports the number of taps specified
by the device families in Table 4. The variable ntaps in
the configuration file specifies the setting of this
parameter. Refer to "Appendix I: Sample Configuration
File" on page 12 for details.

Number of Bits of Inputs (nbits_in) and
Coefficients (nbits_coef)
The FIR Generator supports the number of bits of inputs
and coefficients for the device families specified in
Table 4. These parameters are set with the variables
nbits_in and nbits_coef in the configuration file. Refer to
"Appendix I: Sample Configuration File" on page 12 for
details.

Note: *coefi_en and ready are available when coef_fixed = 0.
Figure 3 • I/O Signals

Table 4 • CoreFIR Generator Configuration Parameters

Parameter Name Description

Recommended Selection

AX APA SX-A

module_name Name of generated module – – –

nbits_input Number of input’s bits of data 2 – 24 2 – 24 2 – 24

nbits_coef Number of coefficients’ bits of data 2 – 24 2 – 24 2 – 24

ntaps Number of taps 2 – 128 2 – 64 2 – 32

tap Array of coefficients – – –

data_signed Data type: 0 = unsigned, 1 = signed 0,1 0,1 0,1

fpga_family FPGA family ax apa sxa

coef_fixed 0 = filter with configurable coefficients
1= filter with fixed coefficients

– – –

sys_clk_frq Input clock frequency – – –

sample_ratio Sampling rate = sys_clk_frq/sample_ratio ≥ nbits_in ≥ nbits_in ≥ nbits_in

Module_lang Reserved. VHDL only. VHDL VHDL VHDL

FIR
clk
rstn
datai_en
datai
datao_valid
coefi_en*

datao_valid

datao

ready*
v3.0 7

CoreFIR
Number of Bits of Output (nbits_out)
The FIR Generator supports only full precision
computation. Thus, the number of bits of output is
determined by the number of input’s and coefficients’
bits for the device family as specified in Table 4 on
page 7. The number of bits of output are specified by EQ 7:

nbits_out = nbits_in + nbits_coef + ceil(log2(ntaps)) - 1

EQ 7

where ceil is the ceiling function of a floating point data.

Asymmetric FIR and Symmetric FIR
The FIR generator supports an asymmetric FIR filter only.
Symmetric FIR filters will be supported in future releases.

Embedded RAM as LUTs (coef_fixed)
The FIR Generator utilizes a switch that determines
whether to implement DA LUTs by embedded RAM
blocks or by synthesized ROM using FPGA cells. The LUTs
are implemented by synthesized ROM using FPGA cells
when coef_fixed is equal to 1. The LUTs are implemented
by embedded RAM blocks available for Axcelerator,
ProASICPLUS, and ProASIC3 devices when coef_fixed is
equal to 0. This setting may be set to 1 for a filter design
with fixed coefficients for an FPGA device with
embedded RAM such as AX, RTAX-S, APA, and PA3, since
the overhead of the DA LUT Generator overrides the
benefits of using an embedded RAM block as a LUT. The
coef_fixed configuration parameter is valid only when
the configuration parameter fpga_family is set to ax,
apa, or pa3. Refer to Table 4 on page 7 and "Appendix I:
Sample Configuration File" on page 12 for details.

Signed/Unsigned Inputs and Coefficients
(data_signed)
The FIR Generator supports signed or unsigned
operations. The generator supports two cases: both
input and coefficient are unsigned, or both input and
coefficient are signed. It supports an unsigned
implementation when the configuration parameter
data_signed is equal to 0, and a signed implementation
when the configuration parameter data_signed is equal
to 1. Refer to Table 4 on page 7 and "Appendix I: Sample
Configuration File" on page 12 for details.

System Clock Frequency (sys_clk_frq)
The FIR Generator reads in the system clock frequency via
configuration parameter sys_clk_frq. The generated
testbench assigns this frequency to its clock generation.
The generated design runs at this frequency inside the
test bench. The configuration parameter should be

specified with the unit of MHz. Refer to Table 4 on
page 7 and "Appendix I: Sample Configuration File" on
page 12 for details.

Sample Ratio (sample_ratio)
The FIR Generator supports a configuration parameter,
sample_ratio, which specifies the sampling rate against
the system clock frequency. It defines that the data
sampling rate is equal to sys_clk_frq/sample_ratio. This
parameter provides guidance to implement a folding
architecture to reduce the size of the design. The
configuration parameter sample_ratio can only be a
positive integer greater than 1. Refer to Table 4 on
page 7 and "Appendix I: Sample Configuration File" on
page 12 for details.

Module Name (module_name)
The FIR Generator supports a configuration parameter,
module_name, that specifies the name of the generated
module. The generated testbench has the name
<module_name>_tb. Refer to Table 4 on page 7 and
"Appendix I: Sample Configuration File" on page 12 for
details.

FPGA Family (fpga_family)
The FIR Generator supports a configuration parameter,
fpga_family, that specifies the targeted Actel FPGA
device family. The options are ax, apa, pa3, and sxa. The
option for RTAX-S is ax. The option for RTSX-S is sxa.
Refer to Table 4 on page 7 and "Appendix I: Sample
Configuration File" on page 12 for details.

Architecture Variations
The DA algorithm for FIR provides an excellent solution,
but also introduces many variations on the design
architecture due to limitations of the FPGA resource.

FIR Filter with Large Number of
Taps
As illustrated in section "FIR Filter Using Distributed
Arithmetic Algorithm" on page 3, the number of words
of the DA LUT is 2ntaps, which is exponentially increased
with ntaps. A LUT splitting method, as defined in
"Storage and Large Number of Taps" on page 5,
effectively reduces the memory usage. The CoreFIR
Generator utilizes this method to reduce the memory
usage. It usually splits the coefficients into eight or nine
taps for each LUT when embedded RAM blocks are
available.
8 v3.0

CoreFIR
An example of the split lookup table implementation of
a FIR with eight taps (ntaps = 8) and four bits for inputs
(nbits_in = 4) is shown in Figure 4. In the example, eight
taps have been split into two groups. Each has four taps,

and each group addresses separate lookup tables. This
differs from the case in Figure 1 on page 4, which only
has one LUT.

Folding
The system clock rate of many FIR filter systems is a
multiple of the data rate (or data sampling rate). For
typical FPGA implementation, the size of the design is
key for efficient implementation. Thus, exploitation of
the ratio between the system clock rate and data rate is
an effective approach to reduce the size of the design. In
other words, folding or serialization of the computation
can reduce the size of the design. The DA algorithm for
FIR introduces bit-serialization of the operations. This
property of the DA can be very efficient for exploring the
ratio between system clock rate and data rate. If the
number of bits of input is nbits_in, it takes nbits_in table
lookup and additions to finish one output point of the
FIR. If the system clock rate is nbits_in times faster than
data rate, the serialization of table lookup and additions
is done with the optimized timing. The parameter
sample_ratio defines the ratio between the system clock

rate (sys_clk_frq) and the data sampling rate (data_rate),
as shown in EQ 8:

sample_ratio = sys_clk_frq/data_rate

EQ 8

CoreFIR supports folding when sample_ratio is greater
than or equal to nbits_in. The serialized operations of
table lookup and addition are done in nbits_in clock
cycles of the system clock, and the design is idle during
the rest of sample_ratio and nbits_in cycles. The
generator only requires that the sample_ratio be an
integer; the system clock rate is an exact multiple of the
data rate. Future releases may support a sample_ratio
less than nbits_in.

Figure 4 • Example of Split Lookup Table Implementation

x[n][0]x[n][1]x[n][2]x[n][3]

x[n-1][0]x[n-1][1]x[n-1][2]x[n-1][3]

x[n-2][0]x[n-2][1]x[n-2][2]x[n-2][3]

x[n-3][0]x[n-3][1]x[n-3][2]x[n-3][3]

Lookup Table

Shifter

Flow Control

Adder Reg

x[n-4][0]x[n-4][1]x[n-4][2]x[n-4][3]

x[n-5][0]x[n-5][1]x[n-5][2]x[n-5][3]

x[n-6][0]x[n-6][1]x[n-6][2]x[n-6][3]

x[n-7][0]x[n-7][1]x[n-7][2]x[n-7][3]

Lookup Table

Shifter

Adder Reg

Adder

Output
v3.0 9

CoreFIR
DA LUTs Using FPGA Cells
Some Actel FPGA families such as SX-A and RTSX-S do not
have an embedded RAM implementation. In this case,
the CoreFIR Generator requires that the lookup table be
hard-coded as ROM using FPGA cells. This configuration
does not need the DA LUT Generator shown in Figure 2
on page 5. The generator selects this configuration when
the configurable parameter coef_fixed is set to 1 or the
configuration parameter fpga_family is not one of ax,
apa, or pa3.

DA LUTs Using Embedded RAM Blocks
Many Actel FPGA families have embedded RAM blocks.
The FIR generator takes advantage of these embedded
RAM blocks, and the DA LUTs are implemented using
these embedded RAM blocks. This configuration requires
additional overhead in that the embedded RAM blocks
must be initialized by a DA LUT Generator as shown in
Figure 2 on page 5. The generator selects this
configuration when the configurable parameter
coef_fixed is set to 0 and the configuration parameter
fpga_family is set to ax, apa, or pa3.

DA LUT Generation
The DA LUT Generator computes the LUT contents of the
distributed arithmetic algorithm. It reads the coefficients
from the Input Buffers block and writes the LUT words
into the embedded RAM blocks. This block is only
available when using embedded RAM blocks as LUTs –

when the configuration parameter coef_fixed is set to 0.
After the reset is complete, the DA LUT Generator will
wait for the Input Buffers block to signal that the
coefficients are loaded into the input buffers. Then the
DA LUT generator will compute the LUT words and write
them into the embedded RAM blocks. The DA LUT
Generator produces LUT contents for multiple LUTs when
implementing a FIR filter with a large number of taps.
The generator has only one computation engine, and
initializes multiple LUTs sequentially. After the
initialization of the RAM blocks, the output ready will go
high to let the system know that the FIR filter is ready to
accept data.

Input Buffering Scheme
The Input Buffers block always performs the functions
defined in "Input Coefficients" on page 10, but only
performs functions defined in "Input Data" on page 10
when the embedded RAM blocks are used as the DA LUTs
(when coef_fixed is set to 1).

Input Data
The input dataflow is designed to use the scheme shown
in Figure 5 to reduce the size of registers. The horizontal
movement of the input ensures the bits of the inputs
feed into the lookup table, and that it happens at every
cycle. Vertical movement of input data only occurs as the
most significant bit (MSB) is fed into lookup table, when
it switches to the next FIR data point.

Input Coefficients
The CoreFIR generator shares the input buffers for
coefficients input when embedded RAM blocks are used
as the DA LUTs. The configuration parameter coef_fixed
is set to 0. In this configuration, the width of the input
datai is the maximum of nbits_in and nbits_coef. The
input datai reads in coefficients when input coefi_en is
high. After enough coefficients are fed into the buffer,
coefi_en is ignored and the coefficients stay inside the
input buffers until the DA LUT Generator finishes the
initialization of the embedded RAM blocks.

User Interface
The generator executable reads one command line
parameter, which is the name of the configuration file. It
generates RTL code for the module and testbench based
on the parameters in the configuration file. Refer to
Table 4 on page 7 and "Appendix I: Sample
Configuration File" on page 12 for details of the
configuration file.

Figure 5 • Example of Input Buffering Scheme

x[n][0]x[n][1]x[n][2]x[n][3]

x[n-1][0]x[n-1][1]x[n-1][2]x[n-1][3]

x[n-2][0]x[n-2][1]x[n-2][2]x[n-2][3]

x[n-3][0]x[n-3][1]x[n-3][2]x[n-3][3]
10 v3.0

CoreFIR
Clock and Reset

Clock
The CoreFIR generates a FIR filter design that uses only
positive-edge-triggered registers. The entire design is
fully synchronized using the positive edge of the input
clock clk, including the embedded RAM blocks (when
available).

Reset
The CoreFIR generates a design that uses only one active
low asynchronous reset. The entire design is
asynchronously reset by the input rstn.

Input and Output Timing

I/O Timing Diagram of Normal FIR
Operation
The I/O timing under normal FIR operation is illustrated
in Figure 6. The labels s0 and s2 refer to the data
sampling point for input data, while s1 is the sampling
point for output data. Due to variations of the
configuration, you should refer to comments in the
generated module for t0 and t1. These parameters are
given in the number of the clock cycles of the input
clock, clk.

I/O Timing Diagram of LUT Initialization
The I/O timing for LUT initialization is illustrated in
Figure 7. In this figure, s0 and s1 are the starting and
ending points for feeding coefficients, while s2 is the
sampling point for output ready. Due to the variation of

the configuration, refer to the comments inside the
generated module for t2, which are given in the number
of the clock cycles of the input clock clk.

Figure 6 • I/O Timing Diagram of Normal FIR Operation

10

clk

datai_en

datai

0datao

datao_valid

s0 s2s1

t0
t1

Figure 7 • I/O Timing Diagram for LUT Initialization

clk

coefi_en

datai

ready

s0 s2
t 2

s1

0 1 2 ntaps-1
v3.0 11

CoreFIR
Appendix I: Sample Configuration File
The following shows a sample configuration file.

module_name firtest

nbits_input 8

nbits_coef 5

ntaps 13

tap 8 14 21 27 31 31 27 21 14 8 4 2 1

data_signed 0

fpga_family ax

coef_fixed 1

sys_clk_frq 25

sample_ratio 16

module_lang vhdl
12 v3.0

CoreFIR
Ordering Information
Order CoreFIR through your local Actel sales representative. Use the following numbering convention when ordering:
CoreFIR-XX, where XX is listed in Table 5.

List of Changes
The following table lists critical changes that were made in the current version of the document.

Datasheet Categories
In order to provide the latest information to designers, some datasheets are published before data has been fully
characterized. Datasheets are designated as "Product Brief," "Advanced," and "Production." The definitions of these
categories are as follows:

Product Brief
The product brief is a summarized version of an advanced or production datasheet containing general product
information. This brief summarizes specific device and family information for unreleased products.

Advanced
This datasheet version contains initial estimated information based on simulation, other products, devices, or speed
grades. This information can be used as estimates, but not for production.

Unmarked (production)
This datasheet version contains information that is considered to be final.

Table 5 • Ordering Codes

XX Description

EV Evaluation Version

AR RTL for unlimited use on Actel devices

UR RTL for unlimited use and not restricted to Actel devices

Previous Version Changes in Current Version (v3.0) Page

v2.1 The "Supported Families" section was updated to include Fusion. 1

Table 1 was updated to include Fusion data. 2

v2.0 The "Supported Families" section was updated. 1

Table 1 was updated. 2
v3.0 13

51700056-2/12.05

Actel Corporation

2061 Stierlin Court
Mountain View, CA
94043-4655 USA
Phone 650.318.4200
Fax 650.318.4600

Actel Europe Ltd.

Dunlop House, Riverside Way
Camberley, Surrey GU15 3YL
United Kingdom
Phone +44 (0) 1276 401 450
Fax +44 (0) 1276 401 490

Actel Japan
www.jp.actel.com

EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Phone +81.03.3445.7671
Fax +81.03.3445.7668

Actel Hong Kong
www.actel.com.cn

Suite 2114, Two Pacific Place
88 Queensway, Admiralty
Hong Kong
Phone +852 2185 6460
Fax +852 2185 6488

www.actel.com

Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.

http://www.jp.actel.com
http://www.actel.com.cn
http://www.actel.com

