
MORNSUN

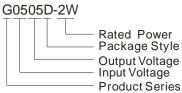
G D-2W & H D-2W Series

multi-country patent protection RoHS

FEATURES

High Efficiency up to 81%
6KVDC Isolation
DIP Package
Low Isolation capacitance
Temperature Range -40°C to +85°C
No Heat Sink Require
Internal SMD Construction
No External Component Required
Continuous short circuit protection
Industry Standard Pinout
RoHS Compliance

APPLICATIONS


The G_D-2W & H_D-2W Series are specially designed for applications where a group of polar power supplies are isolated from the input power supply in a distributed power supply system on a circuit board.

These products apply to:

- Where the voltage of the input power supply is fixed (voltage variation ≤±10%);
- 2) Where isolation is necessary between input and output (isolation voltage ≤6000VDC);
- Where the regulation of the output voltage and the output ripple noise are not demanded.

Such as: purely digital circuits, ordinary low frequency analog circuits, and IGBT power device driving circuits.

MODEL SELECTION

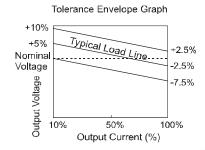
MORNSUN Science & Technology co.,Ltd. Address:2th floor 6th building, Hangzhou Industrial District, Guangzhou, China

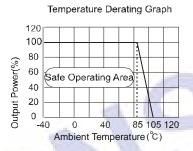
Tel: 86-20-38601850 Fax: 86-20-38601272 http://www.mornsun-power.com

PRODUCT	PROGR <i>i</i>	AM.						
_	Input		Output					
Part Number	Voltage (VDC)		Voltage	Currer	nt (mA)	Efficiency (%, Typ)	Certificate	
Number	Nominal Range		(VDC)	Max	Min	(70, 199)		
H0505D-2W		4.5-5.5	5	400	40	75	UL	
H0509D-2W			9	222	23	76	UL	
H0512D-2W			12	167	17	78	UL	
H0515D-2W	5		15	133	13	77	UL	
G0505D-2W	3		±5	±200	±20	75	UL	
G0509D-2W			±9	±111	±12	77	UL	
G0512D-2W			±12	±84	±9	79	UL	
G0515D-2W			±15	±67	±7	78	UL	
H1205D-2W		10.8-13.	5	400	40	75	UL	
H1209D-2W			9	222	23	78	UL	
H1212D-2W			12	167	17	80	UL	
H1215D-2W	12		15	133	14	78	UL	
G1205D-2W	12		±5	±200	±20	76	UL	
G1209D-2W	- 1		±9	±111	±12	78	UL	
G1212D-2W	N 1		±12	±84	±9	80	UL	
G1215D-2W	SOL I	L 193	±15	±67	±7	78	UL	
H2405D-2W	7.0		5	400	40	77		
H2409D-2W			9	222	23	78		
H2412D-2W	W		12	167	17	81		
H2415D-2W*	24	21.6-26.4	15	133	14	80		
G2405D-2W*			±5	±200	±20	77		
G2409D-2W*			±9	±111	±12	78		
G2412D-2W*			±12	±84	±9	81		
G2415D-2W*			±15	±67	±7	80		
*Designing.								

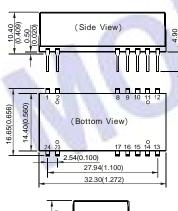
Note: The G_D-1W/H_D-1W series also are available in our company.

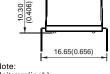
ISOLATION SPECIFICATIONS						
Item	Test Conditions	Min	Тур	Max	Units	
Isolation voltage	Tested for 1 minute and 1mA max	6000			VDC	
Isolation resistance	Test at 500VDC	1000			ΜΩ	
Isolation capacitance			3.5		pF	


COMMON SPECIFICATIONS							
Item	Test Conditions	Min	Тур	Max	Units		
Storage humidity				95	%		
Operating temperature		-40		85			
Storage temperature		-55		125	°C		
Temp. rise at full load			15	30			
Lead temperature	1.5mm from case for 10 seconds			300			
Short circuit protection		Continuous					
Cooling		Free air convection					
Case material		Plastic(UL94-V0)					
MTBF		3500			K hours		
Weight			8.2		g		

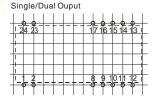

OUTPUT SPECIFICATIONS								
Item	Test conditions	Min	Тур	Max	Units			
Output power			0.2		2	W		
Line regulation	For Vin change of 1%				±1.2			
	10% to 100% load	5V output		10	15	%		
Load regulation		9V output		8.3	15			
Load regulation		12V output		6.8	15			
		15V output		6.3	15			
Output voltage accuracy	utput voltage accuracy		See tolerance envelope graph					
Temperature drift	100% full load				0.03	%/°C		
Ripple & Noise*	20MHz Bandwidth		150	250	mVp-p			
Switching fraguency	Full load, nominal input	5V input		35		KHz		
Switching frequency		12V,24V input		50		NHZ		

*Test ripple and noise by "parallel cable" method. See detailed operation instructions at Testing of Power Converter section, application notes.


Note: Dual output models unbalanced load: ±5%.


TYPICAL CHARACTERISTICS

OUTLINE DIMENSIONS & PIN CONNECTIONS

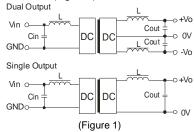


Unit:mm(inch)
Pin section:0.50*0.30mm(0.020*0.012inch)
Pin section tolerances:±0.10mm(±0.004inch)
General tolerances:±0.25mm(±0.010inch)

First Angle Projection ←

RECOMMENDED FOOTPRINT Top view,grid:2.54mm(0.1inch) diameter:1.00mm(0.039inch)

FOOTPRINT DETAILS						
Pin	Single	Dual				
1	Vin	Vin				
2	GND	GND				
8, 17	NC	-Vo				
10, 15	0V	0V				
12, 13	+Vo	+Vo				
Others	NC	NC				
NC: No connection						


APPLICATION NOTE

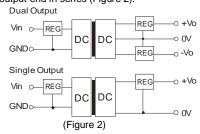
Requirement on output load

To ensure this module can operate efficiently and reliably, During operation, the minimum output load is not less than 10% of the full load, and that this product should *never be operated under no load!* If the actual output power is very small, please connect a resistor with proper resistance at the output end in parallel to increase the load, or use our company's products with a lower rated output power(G/H_D-1W Series)

Recommended testing and application circuit

If you want to further decrease the input/output ripple, an "LC" filtering network may be connected to the input and output ends of the DC/DC converter, see (Figure 1).

It should also be noted that the inductance and the frequency of the "LC" filtering network should be staggered with the DC/DC frequency to avoid mutual interference. However, the capacitance of the output filter capacitor must be proper. If the capacitance is too big, a startup problem might arise. For every channel of output, provided the safe and reliable operation is ensured, the greatest capacitance of its filter capacitor sees (Table 1).


EXTERNAL CAPACITOR TABLE (Table 1)

	Vin (VDC)	Cin (uF)	Single Vout (VDC)	Cout (uF)	Dual Vout (VDC)	Cout (uF)
ľ	5	4.7	5	10	±5	4.7
Γ	12	2.2	9	4.7	±9	2.2
I	24	1	12	2.2	±12	1
ſ	-	400	15	1	±15	1

It's not recommended to connect any external capacitor in the application field with less than 0.5 watt output.

Output Voltage Regulation and Over-voltage Protection Circuit

The simplest device for output voltage regulation, over-voltage and over-current protection is a linear voltage regulator with overheat protection that is connected to the input or output end in series (Figure 2).

Overload Protection

Under normal operating conditions, the output circuit of these products has no protection against overload. The simplest method is to connect a self-recovery fuse in series at the input end or add a circuit breaker to the circuit.

No parallel connection or plug and play.

Note:

- 1.All specifications measured at Ta=25°C, humidity<75%, nominal input voltage and rated output load unless otherwise specified.
- Only typical models listed, other models may be different, please contact our technical person for more details.
- Operation under minimum load will not damage the converter; However, they may not meet all specification listed.