

155Mbps SFP Transceiver with Spring Latch

(For 15km~80km transmission)

Members of Flexon[™] Family

- Compatible with FCC 47 CFR Part 15, Class B
- Compatible with FDA 21 CFR 1040.10 and 1040.11, Class I
- Compliant with RoHS

Description

Fiberxon 155Mbps spring-latch SFP transceiver is high performance, cost effective modules that supports data-rate of 155Mbps and transmission distance from 15km to 80km.

The transceiver consists of two sections: The transmitter section incorporates a FP or uncooled DFB laser. And the receiver section consists of a PIN photodiode integrated with a trans-impedance preamplifier (TIA). All modules satisfy class I laser safety requirements.

The optical output can be disabled by a TTL logic high-level input of Tx Disable. Tx Fault is provided to indicate degradation of the laser. Loss of signal (LOS) output is provided to indicate the loss of an input optical signal of receiver.

The standard serial ID information Compatible with SFP MSA describes the transceiver's capabilities, standard interfaces, manufacturer and other information. The host equipment can access this information via the two-wire serial CMOS EEPROM protocol. For further information, please refer to SFP Multi-Source Agreement (MSA).

Features

- Up to 155Mbps data-rate
- 1310nm FP laser and PIN photodetector for 15km and 40km transmission
- ◆ 1550nm uncooled DFB laser and PIN photodetector for 80km transmission
- Standard serial ID information Compatible with SFP MSA
- SFP MSA package with duplex LC connector
- With spring latch for easily removing
- Very low EMI and excellent ESD protection
- → +3.3V single power supply
- Operating case temperature:

Standard : 0 to +70°C Industrial : -40 to +85°C

Applications

- SDH STM-1, S-1.1, L-1.1, L-1.2
- SONET OC-3 IR1, LR1, LR2
- Other optical links

Standard

- Compatible with SFP MSA
- Compatible with ITU-T G.957 and G.958
- Compatible with Telcordia GR-253-CORE

Regulatory Compliance

The transceivers have been tested according to American and European product safety and electromagnetic compatibility regulations (See Table 1). For further information regarding regulatory certification, please refer to Fiberxon regulatory specification and safety guidelines, or contact with Fiberxon, Inc. America sales office listed at the end of the documentation.

Table 1 - Regulatory Compliance

Feature	Standard	Performance
Electrostatic Discharge	MIL-STD-883E	Class 1(>500 V)
(ESD) to the Electrical Pins	Method 3015.7	Class I(>300 V)
Electrostatic Discharge (ESD)	IEC 61000-4-2	Compatible with standards
to the Duplex LC Receptacle	GR-1089-CORE	Compatible with standards
Electromagnetic	FCC Part 15 Class B	
Electromagnetic Interference (EMI)	EN55022 Class B (CISPR 22B)	Compatible with standards
interierence (EMI)	VCCI Class B	
Immunity	IEC 61000-4-3	Compatible with standards
	FDA 21CFR 1040.10 and 1040.11	Compatible with Class 1 laser
Laser Eye Safety	EN60950, EN (IEC) 60825-1,2	product.
	LIV00930, LIV (ILC) 00825-1,2	TUV Certificate No. 50030043
Component Recognition	UL and CSA	UL file E223705

Absolute Maximum Ratings

Stress in excess of the maximum absolute ratings can cause permanent damage to the module.

Table 2 - Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit
Storage Temperature	T _S	-40	+85	°C
Supply Voltage	V_{CC}	-0.5	3.6	V
Operating Relative Humidity	-	5	95	%

Recommended Operating Conditions

Table 3- Recommended Operating Conditions

g							
Parameter		Symbol	Min.	Typical	Max.	Unit	
Operating Case	Standard	T _C	0		+70	°C	
Temperature	Industrial		-40		+85		
Power Supply Volta	ige	V _{CC}	3.13	3.3	3.47	V	
Power Supply Current		I _{cc}			300	mA	
Data Rate				155		Mbps	

FTM-3001C-SL15G, FTM-3001C-SL15iG (1310nm FP and PIN, 15km)

Table 4 - Optical and Electrical Characteristics

Parameter		Symbol	Min.	Typical	Max.	Unit	Notes
		Т	ransmitter				
Centre Waveleng	gth	λ _C	1261		1360	nm	
Average Output	Power	P _{0ut}	-15		-8	dBm	1
Spectral Width (F	RMS)	σ			4	nm	
Extinction Ratio		EX	8.2			dB	
Jitter Generation	(RMS)				0.01	UI	
Jitter Generation	(pk-pk)				0.1	UI	
Output Optical E	ye	Compatib	le with Telco	rdia GR-253 G.957	-CORE and	ITU-T	2
Data Input Swing	Differential	V_{IN}	300		1860	mV	3
Input Differential	Input Differential Impedance		90	100	110	Ω	
TX Disable	Disable		2.0		Vcc	V	
1 × Disable	Enable	- 1 5			0.8	V	
TX Fault	Fault		2.0		Vcc+0.3	V	
1 A Fault	Normal		0		0.8	V	
			Receiver				
Centre Waveleng	gth	λ _C	1260		1580	nm	
Receiver Sensitiv	vity	V			-34	dBm	4
Receiver Overloa	ad 📗		-8			dBm	4
Optical Path Pen	alty				1	dB	5
LOS De-Assert		LOS_D			-37	dBm	
LOS Assert		LOS _A	-45			dBm	
LOS Hysteresis			1		4	dB	
Data Output Swir	ng Differential	V_{OUT}	370		1800	mV	6
LOS	High		2.0		Vcc+0.3	V	
200	Low		0		8.0	V	

Notes:

- 1. The optical power is launched into SMF.
- 2. Measured with a PRBS 2²³-1 test pattern @155Mbps.
- 3. PECL input, internally AC coupled and terminated.
- 4. Measured with a PRBS 2^{23} -1 test pattern @155Mbps, BER $\leq 1 \times 10^{-10}$.
- 5. Measured with a PRBS 2^{23} -1 test pattern @155Mbps, over 15km G.652 SMF, BER $\leq 1 \times 10^{-10}$.
- 6. Internally AC coupled.

FTM-3001C-SL40G, FTM-3001C-SL40iG (1310nm FP and PIN, 40km)

Table 5 - Optical and Electrical Characteristics

Parameter		Symbol	Min.	Typical	Max.	Unit	Notes
		Т	ransmitter				
Centre Waveleng	gth	λ_{C}	1263		1360	nm	
Average Output	Power	P _{0ut}	-5		0	dBm	1
Spectral Width (F	RMS)	σ			3	nm	
Extinction Ratio		EX	10			dB	
Jitter Generation	(RMS)				0.01	UI	
Jitter Generation	(pk-pk)				0.1	UI	
Output Optical E	ye	Compatib	le with Telco	rdia GR-253 G.957	-CORE and	ITU-T	2
Data Input Swing	Differential	V _{IN}	300		1860	mV	3
Input Differential Impedance		Z _{IN}	90	100	110	Ω	
TX Disable	Disable		2.0		Vcc	V	
1 A Disable	Enable	- 1 5	0		0.8	V	
TX Fault	Fault		2.0		Vcc+0.3	V	
1 A Fault	Normal		0		0.8	V	
			Receiver				
Centre Waveleng	gth	λ _C	1260		1580	nm	
Receiver Sensitiv	vity	1 2			-34	dBm	4
Receiver Overloa	ad		-8			dBm	4
Optical Path Pen	alty				1	dB	5
LOS De-Assert		LOS _D			-37	dBm	
LOS Assert		LOS _A	-45			dBm	
LOS Hysteresis		_	1		4	dB	
Data Output Swir	ng Differential	V _{OUT}	370		1800	mV	6
LOS	High		2.0		Vcc+0.3	V	
200	Low		0		0.8	V	

Notes:

- 1. The optical power is launched into SMF.
- 2. Measured with a PRBS 2²³-1 test pattern @155Mbps.
- 3. PECL input, internally AC coupled and terminated.
- 4. Measured with a PRBS 2^{23} -1 test pattern @155Mbps, extinction ratio ER=10dB, BER $\leq 1 \times 10^{-10}$.
- 5. Measured with a PRBS 2^{23} -1 test pattern @155Mbps, over 40km G.652 SMF, BER $\leq 1 \times 10^{-10}$.
- 6. Internally AC coupled.

FTM-5001C-SL80G (1550nm DFB and PIN, 80km)

Table 6 - Optical and Electrical Characteristics

Parameter		Symbol	Min.	Typical	Max.	Unit	Notes
		Т	ransmitter				
Centre Waveleng	gth	λ_{C}	1480		1580	nm	
Average Output	Power	P _{0ut}	-5		0	dBm	1
Spectral Width (-	20dB)	Δλ			1	nm	
Side Mode Supp	ression Ratio	SMSR	30			dB	
Extinction Ratio		EX	10			dB	
Jitter Generation	(RMS)				0.01	UI	
Jitter Generation	(pk-pk)				0.1	UI	
Output Optical E	ye	Compatib	le with Telco	rdia GR-253 G.957	-CORE and	ITU-T	2
Data Input Swing Differential		V _{IN}	300	1000	1860	mV	3
Input Differential Impedance		Z _{IN}	90	100	110	Ω	
TV Distalla	Disable	- 1 5	2.0		Vcc	V	
TX Disable	Enable		0		0.8	V	
TX Fault	Fault		2.0	3	Vcc+0.3	V	
1 A Fault	Normal		0		0.8	V	
			Receiver				
Centre Waveleng	gth \\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	λ _C	1260		1580	nm	
Receiver Sensitiv	vity				-34	dBm	4
Receiver Overloa	ad		-8			dBm	4
Optical Path Penalty					1	dB	5
LOS De-Assert	LOS De-Assert				-37	dBm	
LOS Assert		LOS _A	-45			dBm	
LOS Hysteresis			1		4	dB	
Data Output Swir	ng Differential	V_{OUT}	370		1800	mV	6
LOS	High		2.0		Vcc+0.3	V	
100	Low		0		0.8	V	

Notes:

- 1. The optical power is launched into SMF.
- 2. Measured with a PRBS 2²³-1 test pattern @155Mbps.
- 3. PECL input, internally AC coupled and terminated.
- 4. Measured with a PRBS 2^{23} -1 test pattern @155Mbps, extinction ratio ER=10dB, BER $\leq 1 \times 10^{-10}$.
- 5. Measured with a PRBS 2^{23} -1 test pattern @155Mbps, over 80km G.652 SMF, BER $\leq 1 \times 10^{-10}$.
- 6. Internally AC coupled.

EEPROM Information

The SFP MSA defines a 256-byte memory map in EEPROM describing the transceiver's capabilities, standard interfaces, manufacturer, and other information, which is accessible over a two-wire serial interface at the 8-bit address 1010000X (A0h). For memory contents please refer to Table 7.

Table 7 - EEPROM Serial ID Memory Contents (A0h)

	Field Size			
Addr.	(Bytes)	Name of Field	Hex	Description
0	1	Identifier	03	SFP
1	1	Ext. Identifier	04	MOD4
2	1	Connector	07	LC
3—10	8	Transceiver	00 00 xx 00 00 00 00 00	OC 3, Single mode inter. or long reach
11	1	Encoding	03	NRZ
12	1	BR, nominal	01	155Mbps
13	1	Reserved	00	
14	1	Length (9um)-km	xx	15km/40km/80km(0F/28/50)
15	1	Length (9um)	xx	15km/40km/80km(96/FF/FF)
16	1	Length (50um)	00	2
17	1	Length (62.5um)	00	
18	1	Length (copper)	00	
19	1	Reserved	00	
20—35	16	Vendor name	46 49 42 45 52 58 4F 4E	"FIBERXON INC. "(ASC Ⅱ)
20 33	10	vendor name	20 49 4E 43 2E 20 20 20	TIBLIOCON INC. (AGOT)
36	1	Reserved	00	
37—39	3	Vendor OUI	00 00 00	
40—55	16	Vendor PN	46 54 4D 2D xx 30 30 31	"FTM-x001C-SLxx(i)G" (ASC ∐)
10 00	10	Volladi i iv	43 2D 53 4C xx xx xx 47	T TW XCCTC CLXX(I)C (ACCT)
56—59	4	Vendor rev	xx xx 00 00	ASC II ("31 30 00 00" means 1.0 revision)
60—62	3	Reserved	00 00 00	
63	1	CC BASE	xx	Check sum of bytes 0 - 62
64—65	2	Options	00 1A	LOS, TX_FAULT and TX_DISABLE
66	1	BR, max	00	
67	1	BR, min	00	
68—83	16	Vendor SN	xx xx xx xx xx xx xx xx	ASC II.
00-03	10	vendor Siv	xx xx xx xx xx xx xx xx	AGC II .
84—91	8	Vendor date code	xx xx xx xx xx xx 20 20	Year (2 bytes, Month (2 bytes), Day (2 bytes)
92—94	3	Reserved	00 00 00	
95	1	CC EXT	xx	Check sum of bytes 64 - 94
96—255	160	Vendor specific		

Note: The "xx" byte should be filled in according to practical case. For more information, please refer to the related document of *SFP Multi-Source Agreement (MSA)*.

Recommended Host Board Power Supply Circuit

Figure 1 shows the recommended host board power supply circuit.

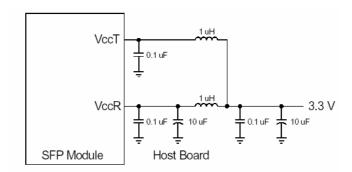


Figure 1, Recommended Host Board Power Supply Circuit

Recommended Interface Circuit

Figure 2 shows the recommended interface circuit.

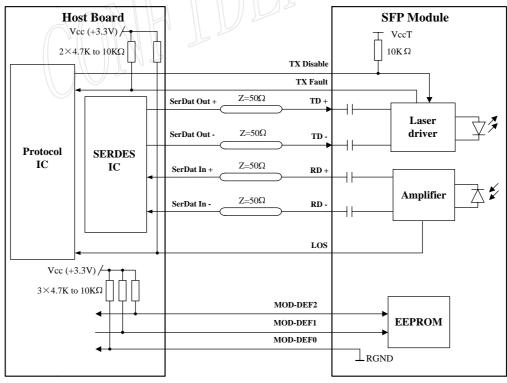


Figure 2, Recommended Interface Circuit

Pin Definitions

Figure 3 below shows the pin numbering of SFP electrical interface. The pin functions are described in Table 8 with some accompanying notes.

Figure 3, Pin View

Table 8- Pin Function Definitions

Pin No.	Name	Notes		
1	VeeT	Function Transmitter Ground	Plug Seq.	1
2	TX Fault	Transmitter Fault Indication	3	Note 1
3	TX Disable	Transmitter Disable	3	Note 2
4	MOD-DEF2	Module Definition 2	3	Note 3
5	MOD-DEF1	Module Definition 1	3	Note 3
6	MOD-DEF0	Module Definition 0	3	Note 3
7	Rate Select	Not Connected	3	
8	LOS	Loss of Signal	3	Note 4
9	VeeR	Receiver Ground	1	
10	VeeR	Receiver Ground	1	
11	VeeR	Receiver Ground	1	
12	RD-	Inv. Received Data Out	3	Note 5
13	RD+	Received Data Out	3	Note 5
14	VeeR	Receiver Ground	1	
15	VccR	Receiver Power	2	
16	VccT	Transmitter Power	2	
17	VeeT	Transmitter Ground	1	
18	TD+	Transmit Data In	3	Note 6
19	TD-	Inv. Transmit Data In	3	Note 6
20	VeeT	Transmitter Ground	1	

Notes:

- 1. TX Fault is an open collector output, which should be pulled up with a $4.7k\sim10k\Omega$ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.
- 2. TX Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7k\sim10k\Omega$ resistor. Its states are:

Low (0~0.8V): Transmitter on

(>0.8V, <2.0V): Undefined

High (2.0~3.465V): Transmitter Disabled Open: Transmitter Disabled

3. MOD-DEF 0,1,2 are the module definition pins. They should be pulled up with a $4.7k\sim10k\Omega$ resistor on the host board. The pull-up voltage shall be VccT or VccR.

MOD-DEF 0 grounded by the module indicates that the module is present

MOD-DEF 1 is the clock line of two-wire serial interface for serial ID

MOD-DEF 2 is the data line of two-wire serial interface for serial ID

- 4. LOS is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; logic 1 indicates loss of signal. In the low state, the output will be pulled to less than 0.8V.
- 5. These are the differential receiver outputs. They are internally AC-coupled 100Ω differential lines which should be terminated with 100Ω (differential) at the user SERDES.
- 6. These are the differential transmitter inputs. They are AC-coupled, differential lines with 100Ω differential termination inside the module.

Mechanical Design Diagram

The mechanical design diagram is shown in Figure 4.

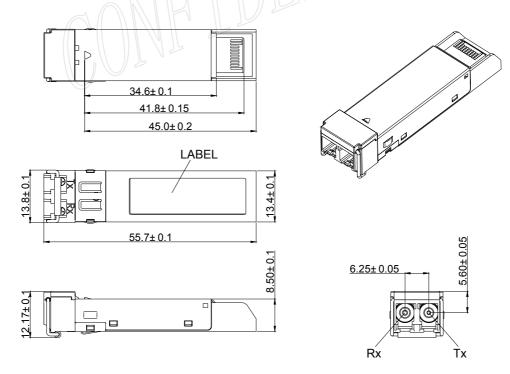
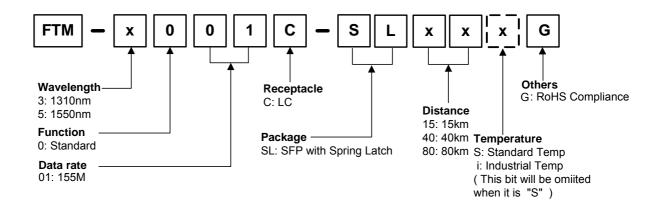



Figure 4, Mechanical Design Diagram of the SFP with Spring-Latch

Ordering information

Part No.	Product Description
FTM-3001C-SL15G	1310nm, 155Mbps, 15km, SFP with spring latch, 0°C~+70°C,RoHS compliance
FTM-3001C-SL15iG	1310nm, 155Mbps, 15km, SFP with spring latch, -40°C~+85°C,RoHS compliance
FTM-3001C-SL40G	1310nm, 155Mbps, 40km, SFP with spring latch, 0°C~+70°C,RoHS compliance
FTM-3001C-SL40iG	1310nm, 155Mbps, 40km, SFP with spring latch, -40°C~+85°C,RoHS compliance
FTM-5001C-SL80G	1550nm, 155Mbps, 80km, SFP with spring latch, 0°C~+70°C,RoHS compliance

Related Documents

For further information, please refer to the following documents:

- Fiberxon Spring-Latch SFP Installation Guide
- Fiberxon SFP Application Notes
- SFP Multi-Source Agreement (MSA)

Obtaining Document

You can visit our website:

http://www.fiberxon.com

Or contact Fiberxon, Inc. America Sales Office listed at the end of the documentation to get the latest documents.

Revision History

Revision	Initiate	Review	Approve	Subject	Release Date
Rev. 1a	Solaris Zhu	Monica Wei	Walker.Wei	Initial datasheet	Dec 23, 2005
Rev. 1b	Solaris Zhu	Monica Wei	Walker.Wei	Modified the recommended circuit; Updated overload value to -8dBm	Mar 15, 2006
Rev. 1c	Solaris Zhu	Monica Wei	Walker.Wei	Deleted FTM-5001C-SL80iG	May 12, 2006

		and updated datasheet from	
		preliminary version to formal	
		version	

© Copyright Fiberxon Inc. 2006

All Rights Reserved.

All information contained in this document is subject to change without notice. The products described in this document are NOT intended for use in implantation or other life support applications where malfunction may result in injury or death to persons.

The information contained in this document does not affect or change Fiberxon product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of Fiberxon or third parties. All information contained in this document was obtained in specific environments, and is presented as an illustration. The results obtained in other operating environment may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will Fiberxon be liable for damages arising directly from any use of the information contained in this document.

Contact

U. S. A.

U.S.A. Headquarter: 5201 Great America Parkway, Suite 350 Santa Clara, CA 95054

Tel: 408-562-6288 Fax: 408-562-6289

Or visit our website: http://www.fiberxon.com