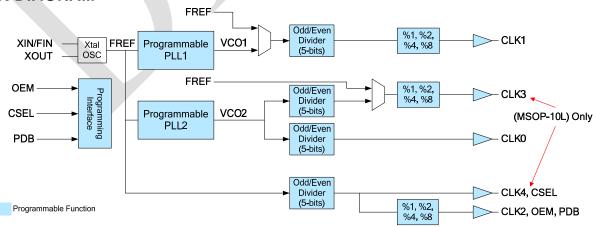

FEATURES

- Designed for PCB space savings with 2 low-power Programmable PLLs and up to 5 clock outputs.
- Low-power consumption (<10µA when PDB is activated)
- Output frequency:
 - o <133MHz @ 1.8V operation
 - o <166MHz @ 2.5V operation
- Input frequency:
 - o Fundamental Crystal: 10MHz 50MHz
 - o Reference Input: 1MHz 200MHz
- Programmable I/O pins can be configured as Output Enable (OE), Configuration Switching (CSEL), Power Down (PDB) input, or Clock outputs.
- Single $1.8V \sim 3.3V$, $\pm 10\%$ power supply
- Operating temperature range from -40°C to 85°C
- Available in GREEN/RoHS compliant SOP-8L or MSOP-10L packages..


DESCRIPTION

The PL612-05 is an advanced dual PLL design based on PhaseLink's PicoPLLTM, world's smallest programmable clock, technology. This flexible programmable architecture is ideal for high performance, low-power, low-cost applications. When using the power down (PDB) feature the PL612-05 consumes less than 10 µA of power, while its Configuration Select (CSEL) function allows switching of 2 programmable configurations. Besides its small form factor and 3 or 5 outputs that can reduce overall system costs, the PL612-05 offers superior phase noise, jitter and power consumption performance.

PIN CONFIGURATION

PACKAGE PIN ASSIGNMENT

Nama	Name Package Pin #		Tuna	Description	
Name	MSOP-10L	SOP-8L	Type	Description	
XIN, FIN	10	1	I	Crystal or Reference Clock input	
CLK4, CSEL	2	-	В*	Programmable Clock (CLK4) output orConfiguration Switching input	
CLK2, OEM, PDB	3	2	В*	 Programmable Clock (CLK2) output, or Output Enable Master (OEM) for all clock outputs, or Power Down mode (PDB) input 	
VDD	4, 8	3, 7	Р	VDD connection	
CLK3	5	-	0	Programmable Clock (CLK3) output	
CLK0	6	4	В*	Programmable Clock (CLK0) output	
GND	1	5	Р	GND connection	
CLK1	7	6	0	Programmable Clock (CLK1) output	
XOUT	9	8	0	Crystal output pin. Do Not Connect when using FIN	

^{*} Note: All bidirectional buffers (I/Os) incorporate an internal $60K\Omega$ pull up resistor except when PDB mode is used. In configurations that use PDB, the PDB pin will have a $10M\Omega$ pull up resistor.

KEY PROGRAMMING PARAMETERS

CLK[0:4] Output Frequency	Output Drive Strength	Programmable Input/Output
CLK[0] F _{VCO2} / P	Each output has three optional drive	Most pins are multi-function I/Os and can be configured as:
CLK[1] F _{VCO1} / (P*(1,2,4,8)) or F _{REF} / (P*(1,2,4,8))	strengths to choose from. They are:	OEM – (Master OE controlling all outputs) CSEL – (Device Configuration Switching)
CLK[2] F _{REF} / (P*(1,2,4,8))	Low: 4mAStd: 8mA (default)	PDB – (Power Down)CLK[0:4] – (Output)
CLK[3] F _{VCO2} / (P*(1,2,4,8)) or F _{REF} / (P*(1,2,4,8))	High:16mA	HiZ or Active Low disabled state
CLK[4] F _{REF} / P		
Where F _{VCO} = F _{REF} * M / R M = 11 bit		
R = 8 bit P = 5 bit (Odd/Even Divider)		

FUNCTIONAL DESCRIPTION

The PL612-05 is a highly featured, very flexible, advanced Dual PLL design for high performance, low-power applications. Starting from a low-cost fundamental input crystal of 10MHz to 50MHz or a reference clock input of 1MHz to 200MHz, the PL612 is capable of producing 3 (SOP-8L) or 5 (MSOP-10L) distinct output frequencies of up to 200MHz. Both PLLs are fully programmable, with a total of three Odd/Even (patent pending) '5-bit' Post VCO (P-counter) dividers with additional 1, 2, 4 or 8 'Post P-counter' dividers to allow generating the most demanding frequencies easily. The outputs can be programmed to deliver the generated frequencies from the PLLs, or the reference input. Each bidirectional feature pin (I/O) on the PL613-05 incorporates a $60 \text{K}\Omega$ pull up resistor ($10 \text{M}\Omega$ for PDB function) and can be configured to perform various functions. Usage of various design features of these products is mentioned in the following paragraphs.

PLL Programming

The two PLLs in PL612-05 are fully programmable. Each PLL is equipped with an 8-bit input frequency divider (R-Counter) and an 11-bit VCO frequency feedback loop (M-Counter) divider. The PLL outputs are transferred to Odd/Even (patent pending) 5-bit post VCO dividers (P-Counter), as shown in the above diagrams. In addition, there are three optional (÷1, ÷2, ÷4 or ÷8) 'post P-Counter' dividers that can further divide the VCO frequency. In general, the PLL output frequency is determined by the following formula

$$F_{OUT} = (F_{REF} * M) / (R*P).$$

For output calculations, please note that 'P' includes the 'P' counter bits plus the additional optional ($\div 1$, $\div 2$, $\div 4$ or $\div 8$) dividers, if used.

CLKx (Clock Outputs)

There are a maximum of 3 (SOP-8L) or 5 (MSOP-10L) outputs available on the PL612-05. Clock output frequencies can be configured as follows:

CLK[0] F_{VCO2} / P

CLK[1]

 F_{VCO1} / (P*(1,2,4,8)) or F_{REF} / (P*(1,2,4,8))

CLK[2]

 $F_{REF} / (P^*(1,2,4,8))$

CLK[3]

 $F_{VCO2} / (P^*(1,2,4,8))$ or $F_{REF} / (P^*(1,2,4,8))$

CLK[4]

F_{REF} / P

Each output can be programmed with a 4mA, 8mA, or 16mA drive strength. The maximum output frequency is 200MHz @ 3.3V, 166MHz @ 2.5V or 133MHz @ 1.8V.

OEM (Master Output Enable)

One pin can be configured to be a single Master OE (OEM) input pin that controls all the outputs of the PL612-05. In addition the state of the disabled outputs can be programmed to float (Hi Z) or to operate in the 'Active low' mode. The OEM Function operates on the following logic:

OEM Pin	OE Type (Programmable)	Osc	PLL	Output
0	0 (Default)	On	On	Hi Z
l v	1	On	On	Active '0'
1	Normal Operation (Default)			

Note: Typical enable time is 10ns.

Power-Down Control (PDB)

When activated, PDB 'Disables all the PLLs, the oscillator circuitry, counters, and all other active circuitry. PDB activation disables all outputs and the IC consumes <10 μ A of power. The PDB input incorporates a 10M Ω pull up resistor for normal operating condition.

The PDB feature can be programmed to allow the output to float (Hi Z), or to operate in the 'Active low' mode. The logic for PDB is shown below:

PDB Pin	PDB Type Program	Osc	PLL	Output
0	0	Off	Off	Hi Z (Default)
	1	Off	Off	Active '0'
1	Normal Operation (Default)			

Note: Typical enable time is 2ms.

On-The-Fly Configuration Switching (CSEL)

The PL612-05 can be programmed to allow switching between 2 different configurations, allowing for changes in the output frequency and other feature changes. Many applications (i.e. video/audio) can use the same design footprint, but allow for configuration switching, adhering to various standards. CSEL is used to make the switching selection. This pin incorporates a $60k\Omega$ pull up resistor for normal operating condition. The logic for

configuration switching of the programmed parts is shown below:

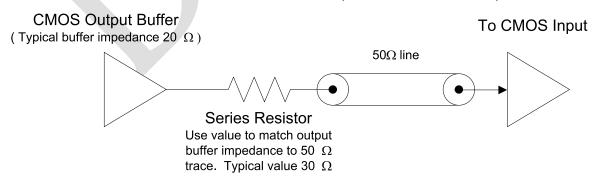
CSEL	Programmed Configuration
0	0
1	1(Default)

Note: Typical enable time is 100µs.

LAYOUT RECOMMENDATIONS

The following guidelines are to assist you with a performance optimized PCB design:

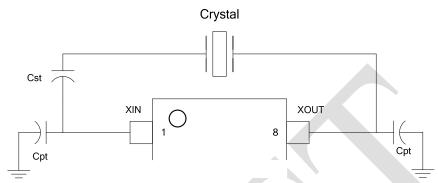
Signal Integrity and Termination Considerations


- Keep traces short!
- Trace = Inductor. With a capacitive load this equals ringing!
- Long trace = Transmission Line. Without proper termination this will cause reflections (looks like ringing).
- Design long traces (> 1 inch) as "striplines" or "microstrips" with defined impedance.
- Match trace at one side to avoid reflections bouncing back and forth.

Decoupling and Power Supply Considerations

- Place decoupling capacitors as close as possible to the VDD pin(s) to limit noise from the power supply
- Multiple VDD pins should be decoupled separately for best performance.
- Addition of a ferrite bead in series with VDD can help prevent noise from other board sources
- Value of decoupling capacitor is frequency dependant. Typical values to use are $0.1\mu F$ for designs using frequencies < 50MHz and $0.01\mu F$ for designs using frequencies > 50MHz.

Typical CMOS termination


Place Series Resistor as close as possible to CMOS output

Crystal Tuning Circuit

Series and parallel capacitors used to fine tune the crystal load to the circuit load.

CST - Series Capacitor, used to lower circuit load to match crystal load. Raises frequency offset. This can be eliminated by using a crystal with a Cload of equal or greater value than the oscillator.

CPT - Parallel Capacitors, Used to raise the circuit load to match the crystal load. Lowers frequency offset.

ELECTRICAL SPECIFICATIONS ABSOLUTE MAXIMUM RATINGS

PARAMETERS	SYMBOL	MIN.	MAX.	UNITS
Supply Voltage Range	V_{DD}	-0.5	4.6	V
Input Voltage Range	VI	-0.5	V _{DD} +0.5	V
Output Voltage Range	Vo	-0.5	V _{DD} +0.5	V
Soldering Temperature (Green package)			260	°C
Data Retention @ 85°C		10		Year
Storage Temperature	Ts	-65	150	°C
Ambient Operating Temperature*		-40	85	°C

Exposure of the device under conditions beyond the limits specified by Maximum Ratings for extended periods may cause permanent damage to the device and affect product reliability. These conditions represent a stress rating only, and functional operations of the device at these or any other conditions above the operational limits noted in this specification is not implied. *Operating temperature is guaranteed by design. Parts are tested to commercial grade only.

AC SPECIFICATIONS

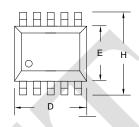
PARAMETERS	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Crystal Input Frequency (XIN)	Fundamental Crystal	10		50	MHz
	@ V _{DD} =3.3V			200	
Input (FIN) Frequency	@ V _{DD} =2.5V	1		166	MHz
	@ V _{DD} =1.8V			133	
Input (FIN) Signal Amplitude	Internally AC coupled (High Frequency)	0.9		V_{DD}	Vpp
Input (FIN) Signal Amplitude	Internally AC coupled (Low Frequency) 3.3V <50MHz, 2.5V <40MHz, 1.8V <15MHz	0.1		V_{DD}	Vpp
	@ V _{DD} =3.3V			200	
Output Frequency	@ V _{DD} =2.5V			166	MHz
	@ V _{DD} =1.8V			133	
Settling Time	At power-up (after V _{DD} increases over 1.62V)			2	ms
Output Enable Time	OE Function; Ta=25° C, 15pF Load			10	ns
Output Enable Time	PDB Function; Ta=25° C, 15pF Load			2	ms
VDD Sensitivity	Frequency vs. V _{DD} +/-10%	-2		2	ppm
Output Rise Time	15pF Load, 10/90% V _{DD} , High Drive, 3.3V		1.2	1.7	ns
Output Fall Time	15pF Load, 90/10% V _{DD} , High Drive, 3.3V		1.2	1.7	ns
Duty Cycle	PLL Enabled, @ V _{DD} /2	45	50	55	%
Period Jitter, Pk-to-Pk* (10,000 samples)	Input 16MHz fundamental mode crystal, all outputs at 40MHz, 10pF Load, with capacitive decoupling between V _{DD} and GND.		100	120	ps

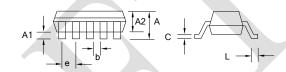
^{*} Note: Jitter performance depends on the programming parameters.

DC SPECIFICATIONS

PARAMETERS	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Supply Current, Dynamic, with Loaded CMOS Outputs	I _{DD}	All outputs @ 20MHz, 10pF Load, V _{DD} = 3.3V		13	19	mA
Supply Current, Dynamic, with Loaded CMOS Outputs	I _{DD}	All outputs @ 20MHz, 10pF Load, V _{DD} = 2.5V		9	14	mA
Supply Current, Dynamic with Loaded CMOS Outputs	I _{DD}	All outputs @ 20MHz, 10pF Load, V _{DD} = 1.8V		6.5	9	mA
Supply Current, Dynamic, with Loaded Outputs	I _{DD}	When PDB=0			<10	μA
		3.3V Operation	2.97	3.3	3.63	
Operating Voltage	V_{DD}	2.5V Operation	2.25	2.5	2.75	V
		1.8V Operation	1.62	1.8	1.98	-
Output Low Voltage	V _{OL}	I _{OL} = +4mA Std. Drive			0.4	V
Output High Voltage	V _{OH}	I _{OH} = -4mA Std. Drive	$V_{DD} - 0.4$			V
Output Current, Low Drive	I _{OSD}	$V_{OL} = 0.4V, V_{OH} = 2.4V$	4			mA
Output Current, Std Drive	I _{OSD}	$V_{OL} = 0.4V, V_{OH} = 2.4V$	8			mA
Output Current, High Drive	I _{OHD}	$V_{OL} = 0.4V, V_{OH} = 2.4V$	16			mA

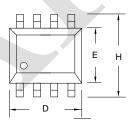
CRYSTAL SPECIFICATIONS


PARAMETERS		SYMBOL	MIN.	TYP.	MAX.	UNITS
Fundamental Crystal Res	onator Frequency	F _{XIN}	10		50	MHz
Crystal Loading Rating		C _{L (xtal)}		15		pF
Maximum Sustainable Drive Level					100	μW
Operating Drive Level				30		μW
Crystal Shunt Capacitano	Crystal Shunt Capacitance				4	pF
Motel Con Crystal	Shunt Capacitance	C0			5.5	pF
Metal Can Crystal	ESR Max	ESR			50	Ω
Small SMD Crystal	Shunt Capacitance	C0			2.5	pF
Small SMD Crystal	ESR Max	ESR			80	Ω



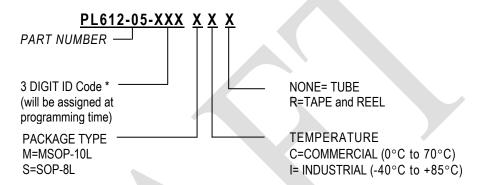
PACKAGE DRAWINGS (GREEN PACKAGE COMPLIANT)

MSOP-10L


Symbol	Dimensi	on in MM	
Symbol	Min.	Max.	
Α	0.86	1.06	
A1	0.05	0.15	
A2	0.81	0.91	
b	0.17	0.25	
С	0.1	0.2	
D	3.00 BSC		
Е	3.00 BSC		
Н	-	5.08	
Ĺ	0.43	0.63	
е	0.50 BSC		

SOP-8L

Symbol	Dimension in MM			
Symbol	Min.	Max.		
Α	1.35	1.75		
A1	0.10	0.25		
A2	1.25	1.50		
b	0.33	0.53		
С	0.19	0.27		
D	4.80	5.00		
Е	3.80	4.00		
Н	5.80	6.20		
L	0.40	0.89		
е	1.27 BSC			



ORDERING INFORMATION (GREEN PACKAGE COMPLIANT)

For part ordering, please contact our Sales Department: 47745 Fremont Blvd., Fremont, CA 94538, USA Tel: (510) 492-0990 Fax: (510) 492-0991

PART NUMBER

The order number for this device is a combination of the following: Part number, Package type and Operating temperature range

^{*} PhaseLink will assign a unique 3-digit ID code for each approved programmed part number.

Part Number/Order Number	Marking [†]	Package Option
PL612-05-XXXMC	K2XXX	10-Pin MSOP (Tube)
PL612-05-XXXMC-R	K2XXX	10-Pin MSOP (Tape and Reel)
PL612-05-XXXSC	P612-05 XXX	8-Pin SOP (Tube)
PL612-05-XXXSC-R	P612-05 XXX	8-Pin SOP (Tape and Reel)

[†] Note: 'XXX' designates marking identifier that, at times, could be independent of the part number.

Please consult your PhaseLink sales representative for marking information.

PhaseLink Corporation, reserves the right to make changes in its products or specifications, or both at any time without notice. The information furnished by Phaselink is believed to be accurate and reliable. However, PhaseLink makes no guarantee or warranty concerning the accuracy of said information and shall not be responsible for any loss or damage of whatever nature resulting from the use of, or reliance upon this product.

LIFE SUPPORT POLICY: PhaseLink's products are not authorized for use as critical components in life support devices or systems without the express written approval of the President of PhaseLink Corporation.

Solder reflow profile available at www.phaselink.com/QA/solderingGreen.pdf