Precision Single and Dual Low Noise Operational Amplifiers

I SL28127, I SL28227

The ISL28127 and ISL28227 are very high precision amplifiers featuring very low noise, low offset voltage, low input bias current and low temperature drift making them the ideal choice for applications requiring both high DC accuracy and AC performance. The combination of precision, low noise, and small footprint provides the user with outstanding value and flexibility relative to similar competitive parts.

Applications for these amplifiers include precision active filters, medical and analytical instrumentation, precision power supply controls, and industrial controls.

The ISL28127 single and ISL28227 dual are available in an 8 Ld SOIC, TDFN and MSOP packages. All devices are offered in standard pin configurations and operate over the extended temperature range to $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Features

- Very Low Voltage Noise $2.5 n \mathrm{n} / \mathrm{Hz}$
- Low Input Offset 70 7 V , Max.
- Superb Offset Drift $0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, Max.
- Input Bias Current 10nA, Max.
- Wide Supply Range. 4.5V to 40V
- Gain-bandwidth Product . 10MHz Unity Gain Stable
- No Phase Reversal

Applications* (see page 20)

- Precision Instruments
- Medical Instrumentation
- Industrial Controls
- Active Filter Blocks
- Data Acquisition
- Power Supply Control

Related Literature* (see page 20)

- AN1508: ISL281X7SOICEVAL1Z Evaluation Board User's Guide

Typical Application
I nput Noise Voltage Spectral Density

Sallen-Key Low Pass Filter (1MHz)

Ordering Information

PART NUMBER (Notes 3, 4)	PART MARKI NG	$\underset{(\mu \mathrm{V})}{\mathrm{V}_{\mathrm{OS}}(\text { MAX })}$	PACKAGE (Pb-Free)	PKG. DWG. \#
ISL28127FBZ (Note 1)	28127 FBZ	70	8 Ld SOIC	M8.15E
$\begin{aligned} & \text { Coming Soon } \\ & \text { ISL28127FRTBZ (Note 2) } \end{aligned}$	$127 Z$	TBD (B Grade)	8 Ld TDFN	L8.3x3A
$\begin{aligned} & \text { Coming Soon } \\ & \text { ISL28127FRTZ (Note 2) } \end{aligned}$	-C 127Z	150 (C Grade)	8 Ld TDFN	L8.3x3A
$\begin{aligned} & \text { Coming Soon } \\ & \text { ISL28127FUBZ (Note 2) } \end{aligned}$	$8127 Z$	TBD (B Grade)	8 Ld MSOP	M8.118
ISL28127FUZ (Note 2)	$8127 Z$-C	150 (C Grade)	8 Ld MSOP	M8.118
ISL28227FBZ (Note 2)	28227 FBZ	75	8 Ld SOIC	M8.15E
$\begin{aligned} & \text { Coming Soon } \\ & \text { ISL28227FRTBZ (Note 2) } \end{aligned}$	$227 Z$	TBD (B Grade)	8 Ld TDFN	L8.3x3A
$\begin{aligned} & \text { Coming Soon } \\ & \text { ISL28227FRTZ (Note 2) } \end{aligned}$	-C 227Z	150 (C Grade)	8 Ld TDFN	L8.3x3A
$\begin{aligned} & \text { Coming Soon } \\ & \text { ISL28227FUBZ (Note 2) } \end{aligned}$	8227 Z	TBD (B Grade)	8 Ld MSOP	M8.118
$\begin{aligned} & \text { Coming Soon } \\ & \text { ISL28227FUZ (Note 2) } \end{aligned}$	8227 Z -C	150 (C Grade)	8 Ld MSOP	M8.118
ISL28127SOI CEVAL1Z	Evaluation Board			

1. Add "-T7" or "-T13" suffix for tape and reel. Please refer to TB347 for details on reel specifications.
2. Add "-T13" suffix for tape and reel.Please refer to TB347 for details on reel specifications.
3. These Intersil Pb -free plastic packaged products employ special Pb -free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb -free soldering operations). Intersil Pb -free products are MSL classified at Pb -free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
4. For Moisture Sensitivity Level (MSL), please see device information page for ISL28127, ISL28227. For more information on MSL please see techbrief TB363.

Pin Configurations

ISL28127
ISL28227
(8 LD SOIC, MSOP)
TOP VIEW

ISL28127
(8 LD TDFN) TOP VIEW

TOP VIEW

ISL28227
(8 LD TDFN)
TOP VIEW

Pin Descriptions

Absolute Maximum Ratings	
Maximum Supply Voltage . 42V	
Maximum Differential Input Current	20 mA
Maximum Differential Input Voltage	0.5V
Min/Max Input VoltageV-- 0.5V to	$++0.5 \mathrm{~V}$
Max/Min Input Current for	
Input Voltage >V+ or <V-	20 mA
Output Short-Circuit Duration	
ESD Tolerance	
Human Body Model (Tested per J ESD22-A114F)	
ISL28127.	4.0kV
ISL28227.	6.0 kV
Machine Model (Tested per EIA/J ESD22-A115-A).	500 V
Charged Device Model (Tested per JESD22-C101D)) . . 1.5 kV
Di-electrically Isolated PR40 process.	h-up free

Thermal I nformation

Thermal Resistance (Typical)

$$
\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \quad \theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)
$$

8 Ld SOIC (Note 5, 7)

Operating Conditions

Ambient Operating Temperature Range . . . $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Maximum Operating Junction Temperature $+150^{\circ} \mathrm{C}$

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

NOTES:
5. θ_{JA} is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.
6. For θ_{JC}, the "case temp" location is the center of the exposed metal pad on the package underside.
7. For $\theta_{\mathrm{J}} \mathrm{C}$, the "case temp" location is taken at the package top center.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_{j}=T_{C}=T_{A}$

Electrical Specifications $\mathrm{V}_{S} \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\mathrm{Open}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Boldface limits apply over the operating temperature range, $\mathbf{- 4 0 ^ { \circ }} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Temperature data established by characterization.

PARAMETER	DESCRIPTION	CONDITIONS	MI N (Note 8)	TYP	MAX (Note 8)	UNIT
$\mathrm{V}_{\text {OS }}$	Offset Voltage; SOIC Package	ISL28127	-70	10	70	$\mu \mathrm{V}$
			-120	-	120	$\mu \mathrm{V}$
		ISL28227	-75	10	75	$\mu \mathrm{V}$
			-150	-	150	$\mu \mathrm{V}$
	Offset Voltage; MSOP, TDFN Grade C Package	$\begin{aligned} & \text { ISL28127 } \\ & \text { ISL28227 } \end{aligned}$	-150	10	150	$\mu \mathrm{V}$
			-250	-	250	$\mu \mathrm{V}$
TCV ${ }_{\text {OS }}$	Offset Voltage Drift; SOIC Pacakge	ISL28127	-0.5	0.1	0.5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
		ISL28227	-0.75	0.1	0.75	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Offset Voltage Drift; MSOP, TDFN, Grade C	$\begin{aligned} & \text { ISL28127 } \\ & \text { ISL28227 } \end{aligned}$	-1	0.1	1	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Ios	Input Offset Current		-10	1	10	nA
			-12	-	12	nA
I_{B}	Input Bias Current		-10	1	10	nA
			-12	-	12	nA
V_{CM}	Input Voltage Range	Guaranteed by CMRR	-13	-	13	V
			-12	-	12	V
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}=-13 \mathrm{~V}$ to +13 V	115	120	-	dB
		$\mathrm{V}_{\mathrm{CM}}=-12 \mathrm{~V}$ to +12 V	115	-	-	dB

Electrical Specifications $\mathrm{V}_{\mathrm{S}} \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\mathrm{Open}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Boldface limits apply over the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Temperature data established by characterization. (Continued)

PARAMETER	DESCRIPTION	CONDITIONS	$\begin{gathered} \text { MI N } \\ \text { (Note 8) } \end{gathered}$	TYP	$\begin{gathered} \text { MAX } \\ \text { (Note 8) } \end{gathered}$	UNIT
PSRR	Power Supply Rejection Ratio ISL28127	$\mathrm{V}_{\mathrm{S}}= \pm 2.25 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$	115	125	-	dB
		$\mathrm{V}_{\mathrm{S}}= \pm 3 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$	115	-	-	dB
	Power Supply Rejection Ratio ISL28227	$\mathrm{V}_{\mathrm{S}}= \pm 2.25 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$	110	117	-	dB
		$\mathrm{V}_{\mathrm{S}}= \pm 3 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$	110	-	-	dB
A VOL	Open-Loop Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=-13 \mathrm{~V} \text { to }+13 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to ground } \end{aligned}$	1000	1500	-	V / mV
V_{OH}	Output Voltage High	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to ground	13.5	13.65	-	V
			13.2	-	-	V
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to ground	13.4	13.5	-	V
			13.1	-	-	V
V_{OL}	Output Voltage Low	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to ground	-	-13.65	-13.5	V
			-	-	-13.2	V
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to ground	-	-13.5	-13.4	V
			-	-	-13.1	V
I_{s}	Supply Current/Amplifier		-	2.2	2.8	mA
			-	-	3.7	mA
I_{SC}	Short-Circuit	$\mathrm{R}_{\mathrm{L}}=0 \Omega$ to ground	-	± 45	-	mA
$\mathrm{V}_{\text {SUPPLY }}$	Supply Voltage Range	Guaranteed by PSRR	± 2.25	-	± 20	V

AC SPECI FI CATI ONS

GBW	Gain Bandwidth Product		10	MHz
$e_{\text {np-p }}$	Voltage Noise	0.1 Hz to 10 Hz	85	$\mathrm{n} \mathrm{V}_{\mathrm{P}-\mathrm{P}}$
e_{n}	Voltage Noise Density	$\mathrm{f}=10 \mathrm{~Hz}$	3	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
e_{n}	Voltage Noise Density	$f=100 \mathrm{~Hz}$	2.8	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
e_{n}	Voltage Noise Density	$\mathrm{f}=1 \mathrm{kHz}$	2.5	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
e_{n}	Voltage Noise Density	$\mathrm{f}=10 \mathrm{kHz}$	2.5	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
in	Current Noise Density	$\mathrm{f}=10 \mathrm{kHz}$	0.4	$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
$T H D+N$	Total Harmonic Distortion + Noise	$\begin{aligned} & 1 \mathrm{kHz}, \mathrm{G}=1, \mathrm{~V}_{\mathrm{O}}=3.5 \mathrm{~V}_{\mathrm{RMS}}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	0.00022	\%

TRANSI ENT RESPONSE

SR	Slew Rate	$\mathrm{A}_{\mathrm{V}}=10, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=4 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$	± 3.6	$\mathrm{V} / \mu \mathrm{s}$
$\mathrm{t}_{\mathrm{p}} \mathrm{t}_{\mathrm{f}}$, Small Signal	Rise Time 10% to 90% of $V_{\text {OUT }}$	$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=-1, \mathrm{~V}_{\mathrm{OUT}}=100 \mathrm{~m} \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \\ & \mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{g}}=2 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CM}} \end{aligned}$	36	ns
	Fall Time 90% to 10% of $V_{\text {OUT }}$	$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=-1, \mathrm{~V}_{\mathrm{OUT}}=100 \mathrm{mV}_{\mathrm{P}-\mathrm{P}} \\ & \mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{g}}=2 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CM}} \end{aligned}$	38	ns
t_{5}	Settling Time to 0.1% 10 V Step; 10% to $\mathrm{V}_{\text {Out }}$	$\begin{aligned} & A_{V}=-1 V_{O U T}=10 V_{P-P}, \\ & R_{g}=R_{f}=10 k, R_{L}=2 k \Omega \text { to } V_{C M} \end{aligned}$	3.4	$\mu \mathrm{s}$
	Settling Time to 0.01% 10V Step; 10\% to $\mathrm{V}_{\text {OUT }}$	$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=-1, \mathrm{~V}_{\mathrm{OUT}}=10 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CM}} \end{aligned}$	3.8	$\mu \mathrm{s}$
t_{OL}	Output Overload Recovery Time	$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=100, \mathrm{~V}_{\mathrm{IN}}=0.2 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CM}} \end{aligned}$	1.7	$\mu \mathrm{s}$

Electrical Specifications $\mathrm{V}_{\mathrm{S}} \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Boldface limits apply over the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Temperature data established by characterization.

PARAMETER	DESCRIPTION	CONDITIONS	$\begin{gathered} \text { MI N } \\ \text { (Note 8) } \end{gathered}$	TYP	MAX (Note 8)	UNIT
V_{OS}	Offset Voltage		-70	10	70	$\mu \mathrm{V}$
			-120	-	120	$\mu \mathrm{V}$
$\mathrm{V}_{\text {OS }} / \mathrm{T}$	Offset Voltage Drift		-0.5	0.1	0.5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current		-10	1	10	nA
			-12	-	12	nA
I_{B}	Input Bias Current		10	1	10	nA
			-12	-	12	nA
V_{CM}	Common Mode Input Voltage Range	Guaranteed by CMRR	-3	-	3	V
			-2	-	2	V
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}=-3 \mathrm{~V}$ to +3 V	115	120	-	dB
		$\mathrm{V}_{\text {CM }}=-2 \mathrm{~V}$ to +2 V	115	-	-	dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 2.25 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$	115	125	-	dB
		$\mathbf{V}_{\mathbf{s}}= \pm \mathbf{3 V}$ to $\pm \mathbf{5 V}$	115	-	-	dB
$A_{\text {VOL }}$	Open-Loop Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=-3 \mathrm{~V} \text { to }+3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to ground } \end{aligned}$	1000	1500	-	V/mV
V_{OH}	Output Voltage High	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to ground	3.5	3.65	-	V
			3.2	-	-	V
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to ground	3.4	3.5	-	
			3.1	-	-	V
V_{OL}	Output Voltage Low	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to ground	-	-3.65	-3.5	V
			-	-	-3.2	V
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to ground	-	-3.5	-3.4	
			-	-	-3.1	V
I_{S}	Supply Current/Amplifier		-	2.2	2.8	mA
			-	-	3.7	mA
I_{sc}	Short-Circuit		-	± 45	-	mA

AC SPECI FI CATI ONS

| GBW | Gain Bandwidth Product | | 10 | | MHz |
| :---: | :--- | :--- | :--- | :---: | :---: | :---: |
| THD +N | Total Harmonic Distortion +
 Noise | $1 \mathrm{kHz}, \mathrm{G}=1, \mathrm{Vo}=2.5 \mathrm{~V}_{\mathrm{RMS}}$,
 $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ | 0.0034 | | $\%$ |

TRANSIENT RESPONSE

SR	Slew Rate	$\mathrm{A}_{\mathrm{V}}=10, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 3.6	V/ $\mu \mathrm{s}$
$t_{p} t_{f}$, Small Signal	Rise Time 10% to 90% of $V_{\text {OUT }}$	$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=-1, \mathrm{~V}_{\mathrm{OUT}}=100 \mathrm{~m} \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \\ & \mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{g}}=2 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CM}} \end{aligned}$	36	ns
	Fall Time 90% to 10% of $\mathrm{V}_{\text {OUT }}$	$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=-1, \mathrm{~V}_{\mathrm{OUT}}=100 \mathrm{~m} \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \\ & \mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{g}}=2 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CM}} \end{aligned}$	38	ns
$\mathrm{t}_{\text {s }}$	Settling Time to 0.1\%	$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=-1, \mathrm{~V}_{\text {OUT }}=4 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \\ & \mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{g}}=2 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CM}} \end{aligned}$	1.6	$\mu \mathrm{s}$
	Settling Time to 0.01\%	$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=-1, \mathrm{~V}_{\mathrm{OUT}}=4 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \\ & \mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{g}}=2 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CM}} \end{aligned}$	4.2	$\mu \mathrm{s}$

NOTE:

8. Parameters with MIN and/or MAX limits are 100% tested at $+25^{\circ} \mathrm{C}$, unless otherwise specified. Temperature limits established by characterization and are not production tested.

Typical Performance Curves $v_{S}= \pm 15 v, v_{C M}=o v, R_{L}=O$ oen, unless otherwise specified.

FI GURE 1. I NPUT NOI SE VOLTAGE 0.1Hz to 10 Hz

FI GURE 3. I NPUT NOI SE CURRENT SPECTRAL DENSI TY

FI GURE 5. CMRR vs FREQUENCY, $V_{s}= \pm 2.25, \pm 5 \mathrm{~V}$, $\pm 15 \mathrm{~V}$

FI GURE 2. I NPUT NOI SE VOLTAGE SPECTRAL DENSI TY

FIGURE 4. PSRR vs FREQUENCY, $V_{S}= \pm 5 \mathrm{~V}, \pm 15 \mathrm{~V}$

FIGURE 6. Vos vs TEMPERATURE vs V SUPPLY

Typical Performance Curves $v_{s}= \pm 15 v, v_{c M}=o v, R_{L}=O p e n$, unless otherwise specified. (Continued)

FI GURE 7. $I_{\text {I }}$ vs TEMPERATURE, $\mathbf{V}_{\mathbf{S}}= \pm \mathbf{1 5 V}$

FIGURE 9. I os vs TEMPERATURE vs SUPPLY

FIGURE 11. V_{OH} vs TEMPERATURE, $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

FIGURE 8. $I_{I B}$ vs TEMPERATURE, $V_{S}= \pm 5 V$

FI GURE 10. I NPUT OFFSET VOLTAGE vs I NPUT COMMON MODE VOLTAGE, $\mathbf{V}_{\mathbf{S}}= \pm \mathbf{1 5 V}$

FIGURE 12. V_{OL} vs TEMPERATURE, $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

Typical Performance Curves $\mathrm{v}_{\mathrm{S}}= \pm 15 \mathrm{v}, \mathrm{v}_{\mathrm{CM}}=\mathrm{ov}, \mathrm{R}_{\mathrm{L}}=$ Open, unless otherwise

 specified. (Continued)

FI GURE 15. FREQUENCY RESPONSE vs CLOSED LOOP GAI N

FI GURE 17. GAI N vs FREQUENCY vs R_{L}

FIGURE 14. OPEN-LOOP GAI N, PHASE vs
FREQUENCY, $R_{L}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

FIGURE 16. FREQUENCY RESPONSE vs FEEDBACK RESISTANCE $\mathbf{R}_{\mathbf{f}} / \mathbf{R}_{\mathbf{g}}$

FIGURE 18. GAI N vs FREQUENCY vs C_{L}

Typical Performance Curves $v_{S}= \pm 15 v, v_{c M}=o v, R_{L}=O p e n$, unless otherwise

 specified. (Continued)

FI GURE 19. GAI N vs FREQUENCY vs SUPPLY VOLTAGE

FI GURE 21. LARGE SI GNAL TRANSI ENT RESPONSE vs $R_{L} V_{S}= \pm 5 \mathrm{~V}, \pm 15 \mathrm{~V}$

FI GURE 23. POSITIVE OUTPUT OVERLOAD RESPONSE TIME, $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

FI GURE 20. LARGE SI GNAL 10V STEP RESPONSE, $V_{S}= \pm 15 \mathrm{~V}$

FI GURE 22. SMALL SI GNAL TRANSI ENT RESPONSE, $V_{S}= \pm 5 \mathrm{~V}, \pm 15 \mathrm{~V}$

FIGURE 24. NEGATI VE OUTPUT OVERLOAD RESPONSE TIME, $\mathbf{V}_{\mathbf{S}}= \pm \mathbf{1 5 V}$

Typical Performance Curves $v_{s}= \pm 15 v, v_{c M}=0 v, R_{L}=0$ pen, unless otherwise specified. (Continued)

FIGURE 25. \% OVERSHOOT vs LOAD CAPACITANCE, $\mathbf{V}_{\mathbf{S}}= \pm \mathbf{1 5 V}$

Applications I nformation

Functional Description

The ISL28127 and ISL28227 are single and dual, low noise 10 MHz BW precision op amps. Both devices are fabricated in a new precision 40V complementary bipolar DI process. A super-beta NPN input stage with input bias current cancellation provides low input bias current (1nA typical), low input offset voltage ($10 \mu \mathrm{~V}$ typ), low input noise voltage ($3 n \mathrm{~V} / \sqrt{ } \mathrm{Hz}$), and low $1 / \mathrm{f}$ noise corner frequency (5 Hz). These amplifiers also feature high open loop gain ($1500 \mathrm{~V} / \mathrm{mV}$) for excellent CMRR (120dB) and THD+N performance (0.0002\% @ 3.5VRMS, 1 kHz into $2 \mathrm{k} \Omega$). A complimentary bipolar output stage enables high capacitive load drive without external compensation.

Operating Voltage Range

The devices are designed to operate over the 4.5 V $(\pm 2.25 \mathrm{~V})$ to $40 \mathrm{~V}(\pm 20 \mathrm{~V})$ range and are fully characterized at $10 \mathrm{~V}(\pm 5 \mathrm{~V})$ and $30 \mathrm{~V}(\pm 15 \mathrm{~V})$. Parameter variation with operating voltage is shown in the "Typical Performance Curves" beginning on page 7.

I nput ESD Diode Protection

The input terminals (IN+ and IN-) have internal ESD protection diodes to the positive and negative supply rails, and an additional anti-parallel diode pair across the inputs (see Figures 26 and 27).

FIGURE 26. INPUT ESD DIODE CURRENT LIMITING-
UNITY GAIN

For unity gain applications (see Figure 26) where the output is connected directly to the non-inverting input a current limiting resistor (R_{IN}) will be needed under the following conditions to protect the anti-parallel differential input protection diodes.

- The amplifier input is supplied from a low impedance source.
- The input voltage rate-of-rise ($\mathrm{dV} / \mathrm{dt}$) exceeds the maximum slew rate of the amplifier ($\pm 3.6 \mathrm{~V} / \mu \mathrm{s}$).
If the output lags far enough behind the input, the anti-parallel input diodes can conduct. For example, if an input pulse ramps from 0 V to +10 V in $1 \mu \mathrm{~s}$, then the output of the ISL28x27 will reach only +3.6 V (slew rate $=3.6 \mathrm{~V} / \mu \mathrm{s}$) while the input is at 10 V , The input differential voltage of 6.4 V will force input ESD diodes to conduct, dumping the input current directly into the output stage and the load. The resulting current flow can cause permanent damage to the ESD diodes. The ESD diodes are rated to 20 mA , and in the previous example, setting $R_{I N}$ to 1 k resistor (see Figure 26) would limit the current to $<6.4 \mathrm{~mA}$, and provide additional protection up to $\pm 20 \mathrm{~V}$ at the input.
In applications where one or both amplifier input terminals are at risk of exposure to high voltage, current limiting resistors may be needed at each input terminal (see Figure $27 \mathrm{R}_{I N^{+}}, \mathrm{R}_{\mathrm{IN}^{-}}$) to limit current through the power supply ESD diodes to 20 mA .

FI GURE 27. INPUT ESD DI ODE CURRENT LIMITING DI FFERENTI AL I NPUT

Output Current Limiting

The output current is internally limited to approximately $\pm 45 \mathrm{~mA}$ at $+25^{\circ} \mathrm{C}$ and can withstand an short circuit to either rail as long as the power dissipation limits are not exceeded. This applies to only 1 amplifier at a time for the dual op amp. Continuous operation under these conditions may degrade long term reliability.

Output Phase Reversal

Output phase reversal is a change of polarity in the amplifier transfer function when the input voltage exceeds the supply voltage. The ISL28127 and ISL28227 are immune to output phase reversal, even when the input voltage is $1 V$ beyond the supplies.

Power Dissipation

It is possible to exceed the $+150^{\circ} \mathrm{C}$ maximum junction temperatures under certain load and power supply conditions. It is therefore important to calculate the maximum junction temperature ($\mathrm{T}_{\mathrm{JMAX}}$) for all applications to determine if power supply voltages, load conditions, or package type need to be modified to remain in the safe operating area. These parameters are related using Equation 1:

$$
\begin{equation*}
T_{J M A X}=T_{M A X}+\theta_{J A} \times P D_{\text {MAXTOTAL }} \tag{EQ.1}
\end{equation*}
$$

where:

- $P_{\text {DMAXTOTAL }}$ is the sum of the maximum power dissipation of each amplifier in the package ($\mathrm{PD}_{\mathrm{MAX}}$)
- $P D_{\text {max }}$ for each amplifier can be calculated using Equation 2:
$P D_{\text {MAX }}=V_{S} \times I_{\text {qMAX }}+\left(V_{S}-V_{\text {OUTMAX }}\right) \times \frac{V_{\text {OUTMAX }}}{R_{L}}$
where:
- $\mathrm{T}_{\text {MAX }}=$ Maximum ambient temperature
- $\theta_{J A}=$ Thermal resistance of the package
- $\mathrm{PD}_{\text {MAX }}=$ Maximum power dissipation of 1 amplifier
- $\mathrm{V}_{\mathrm{S}}=$ Total supply voltage
- $\mathrm{I}_{\mathrm{qMAX}}=$ Maximum quiescent supply current of 1 amplifier
- $\mathrm{V}_{\text {OUtMAX }}=$ Maximum output voltage swing of the application
$R_{L}=$ Load resistance

I SL28127 and I SL28227 SPI CE Model

Figure 28 shows the SPICE model schematic and Figure 29 shows the net list for the ISL28127 and ISL28227 SPICE model. The model is a simplified version of the actual device and simulates important AC and DC parameters. AC parameters incorporated into the model are: 1/f and flatband noise, Slew Rate, CMRR, Gain and Phase. The DC parameters are VOS, IOS, total supply current and output voltage swing. The model does not model input bias current. The model uses typical parameters given in the "Electrical Specifications" Table beginning on page 4. The AVOL is adjusted for 128 dB with the dominate pole at 5 Hz . The CMRR is set higher than the "Electrical Specifications" Table to better match design simulations (150dB, $\mathrm{f}=50 \mathrm{~Hz}$). The input stage models the actual device to present an accurate AC representation. The model is configured for ambient temperature of $+25^{\circ} \mathrm{C}$.
Figures 30 through 45 show the characterization vs simulation results for the Noise Voltage, Closed Loop Gain vs Frequency, Closed Loop Gain vs Rf/Rg, Closed Loop Gain vs RL, Closed Loop Gain vs CL, Large Signal 10V Step Response, Open Loop Gain Phase and Simulated CMRR vs Frequency.

LI CENSE STATEMENT

The information in this SPICE model is protected under the United States copyright laws. Intersil Corporation hereby grants users of this macro-model hereto referred to as "Licensee", a nonexclusive, nontransferable licence to use this model as long as the Licensee abides by the terms of this agreement. Before using this macro-model, the Licensee should read this license. If the Licensee does not accept these terms, permission to use the model is not granted.
The Licensee may not sell, loan, rent, or license the macro-model, in whole, in part, or in modified form, to anyone outside the Licensee's company. The Licensee may modify the macro-model to suit his/her specific applications, and the Licensee may make copies of this macro-model for use within their company only.

This macro-model is provided "AS IS, WHERE IS, AND WITH NO WARRANTY OF ANY KIND EITHER EXPRESSED OR IMPLIED, INCLUDING BUY NOT LIMITED TO ANY I MPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE."
In no event will Intersil be liable for special, collateral, incidental, or consequential damages in connection with or arising out of the use of this macro-model. Intersil reserves the right to make changes to the product and the macro-model without prior notice.

FIGURE 28. SPICE SCHEMATIC

FIGURE 29. SPICE NET LIST

Characterization vs Simulation Results

FI GURE 30. CHARACTERIZED I NPUT NOI SE VOLTAGE

FI GURE 32. CHARACTERIZED CLOSED LOOP GAI N vs FREQUENCY

FI GURE 34. CHARACTERI ZED CLOSED LOOP GAI N vs $\mathbf{R}_{\mathbf{f}} / \mathbf{R}_{\mathbf{g}}$

FIGURE 31. SI MULATED INPUT NOI SE VOLTAGE

FI GURE 33. SI MULATED CLOSED LOOP GAI N vs FREQUENCY

FI GURE 35. SI MULATED CLOSED LOOP GAI N vs $\mathbf{R}_{\mathbf{f}} / \mathbf{R}_{\mathbf{g}}$

Characterization vs Simulation Results (Continued)

FI GURE 36. CHARACTERIZED CLOSED LOOP GAI N vs R_{L}

FI GURE 38. CHARACTERIZED CLOSED LOOP GAI N vs C_{L}

FI GURE 40. CHARACTERI ZED LARGE SI GNAL 10V STEP RESPONSE

FI GURE 37. SI MULATED CLOSED LOOP GAI N vs R_{L}

FI GURE 39. SI MULATED CLOSED LOOP GAI N vs C_{L}

FI GURE 41. SI MULATED LARGE SI GNAL 10V STEP RESPONSE

Characterization vs Simulation Results (Continued)

FI GURE 42. SI MULATED OPEN-LOOP GAI N, PHASE vs FREQUENCY

FIGURE 44. CHARACTERIZED CMRR vs FREQUENCY

FI GURE 43. SI MULATED OPEN-LOOP GAI N, PHASE vs FREQUENCY

FI GURE 45. SI MULATED CMRR vs FREQUENCY

Revision History

The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you have the latest Rev.

REVISI ON	DATE	CHANGE
FN6633.3	3/11/10	PODs M8.118 and L8.3x3A - Updated to new intersil format by adding land pattern and moving dimensions from table onto drawing.
	3/3/10	Page 2: Under "Ordering Information" ISL28227FBZ: Changed Vos max from $80 \mu \mathrm{~V}$ to $75 \mu \mathrm{~V}$ Page 4: Changed: 1. ISL28227 SOIC Room Temp limit for Vos from $80 \mu \mathrm{~V}$ (MAX) and $-80 \mu \mathrm{~V}$ (MIN) to $75 \mu \mathrm{~V}$ (MAX) and $-75 \mu \mathrm{~V}$ (MIN). 2. ISL28227 SOIC Full Temp limit for Vos from $160 \mu \mathrm{~V}$ (MAX) and $-160 \mu \mathrm{~V}$ (MIN) to $150 \mu \mathrm{~V}$ (MAX) and $-150 \mu \mathrm{~V}$ (MIN) 3. ISL28227 SOIC limit for TCVos from $0.8 \mu \mathrm{~V}$ (MAX) and $-0.8 \mu \mathrm{~V}$ (MIN) to $0.75 \mu \mathrm{~V}$ (MAX) and $-0.75 \mu \mathrm{~V}$ (MIN)
	3/2/10	HBM for ISL28227 changed from " 4 kV " to " 6 kV " Tjc values for ISL28227 changed: For MSOP from " 50 " to " 45 " For SOIC from " 60 " to " 55 "
	2/25/10	
	2/19/10	Added differentiated part numbers for B-grade and C-grade for TDFN and MSOP. Added ESD and latch-up information. Broke out Theta JA to list the single and dual and added Theta JC.

Revision History

The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you have the latest Rev. (Continued)

REVISION	DATE	CHANGE
FN6633.2	1/29/10	Added license statement for P-Spice Model. Updated Spice Schematic by adding capacitors C4, C5 and C6 Updated Spice Net List as follows: From: Revision B, July 232009 To: Revision C, August 8th 2009 LaFontaine From: source ISL28127_SPICEMODEL_7_9 To: source ISL28127_SPICEMODEL_0_0 Added after I_IOS: C_C6 \quad IN + VIN- $2 \mathrm{E}-12$ Added after R_R4: C_C4 VIN- $0 \quad 2.5 \mathrm{e}-12$ C_C5 $80 \quad 2.5 \mathrm{e}-12$ From: .ends ISL28127 To: .ends ISL28127subckt Replaced POD MDP0027 with M8.15E to match ASYD in Intrepid (no dimension changes; the PODs are the same. The change was to update to the Intersil format, moving dimensions from table onto drawing and adding land pattern)
FN6633.1	$9 / 14 / 09$ $\begin{gathered} 9 / 2 / 09 \\ 7 / 21 / 09 \end{gathered}$	"Functional Description" on page 11. Corrected low 1/f noise corner frequency from 3 Hz to 5 Hz to match "Input Noise Voltage Spectral Density" on page 1. Corrected high open loop gain from $1400 \mathrm{~V} / \mathrm{mV}$ to $1500 \mathrm{~V} / \mathrm{mV}$ to match "Open-Loop Gain" on page 5 spec table. "Operating Voltage Range" on page 11. Removed following 2 sentences since there are no graphs illustrating common mode voltage sensitivity vs temperature or VOS as a function of supply voltage and temperature: "The input common mode voltage sensitivity to temperature is shown in Figure 3 ($\pm 15 \mathrm{~V}$). Figure 20 shows VOS as a function of supply voltage and temperature with the common mode voltage at OV for split supply operation." Added Theta JC in Thermal Information for TDFN package Updated Features to show only key features and updated applications section. Added Typical Application Circuit and performance graph, Updated Ordering Information to match Intrepid and added POD's L8.3×3A and M8.118, also added MSL level as part of new format. Added TDFN pinouts, updated pin descriptions to include TDFN pinouts, Added Theta Ja in Thermal information for TDFN and MSOP packages. Added Revision History and Products Text with device info links. Added SPICE Model with referencing text and Net List.
FN6633.0	5/28/09	Techdocs Issued File Number FN6633. Initial release of Datasheet with file number FN6633 making this a Rev 0.

Products

Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks. Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a complete list of Intersil product families.
*For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on intersil.com: ISL28127, ISL28227
To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff
FITs are available from our website at http://rel.intersil.com/reports/search.php

[^0]For information regarding Intersil Corporation and its products, see www.intersil.com

Package Outline Drawing

M8.15E

8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE Rev 0, 08/09

SIDE VIEW "A

TYPICAL RECOMMENDED LAND PATTERN

TYPICALRECOMN

$\underline{\underline{\text { DETAIL "A" }}}$

NOTES:

1. Dimensions are in millimeters. Dimensions in () for Reference Only.
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.
3. Unless otherwise specified, tolerance : Decimal ± 0.05
4. Dimension does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25 mm per side.
5. The pin \#1 identifier may be either a mold or mark feature.
6. Reference to JEDEC MS-012.

Package Outline Drawing

L8.3x3A

8 LEAD THIN DUAL FLAT NO-LEAD PLASTIC PACKAGE

 Rev 4, 2/10

TOP VIEW

BOTTOM VIEW

NOTES:

1. Dimensions are in millimeters. Dimensions in () for Reference Only.
2. Dimensioning and tolerancing conform to ASME Y14.5m-1994.
3. Unless otherwise specified, tolerance : Decimal ± 0.05
4. Dimension applies to the metallized terminal and is measured between 0.15 mm and 0.20 mm from the terminal tip.
5. Tiebar shown (if present) is a non-functional feature.
6. The configuration of the pin \#1 identifier is optional, but must be located within the zone indicated. The pin \#1 identifier may be either a mold or mark feature.
7. Compliant to JEDEC MO-229 WEEC-2 except for the foot length.

Package Outline Drawing

M8.118
8 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE

Rev 3, 3/10

TYPICAL RECOMMENDED LAND PATTERN

NOTES:

1. Dimensions are in millimeters.
2. Dimensioning and tolerancing conform to JEDEC MO-187-AA and AMSEY14.5m-1994.
3. Plastic or metal protrusions of 0.15 mm max per side are not included.
4. Plastic interlead protrusions of 0.15 mm max per side are not included.
5. Dimensions are measured at Datum Plane "H".
6. Dimensions in () are for reference only.

[^0]: Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

