FEATURES

- · Ranges 0...200 slpm¹
- · Actual mass flow sensing
- 1...5 V output

To be used with dry gases only

The AWM series is NOT designed for liquid flow and will be damaged by liquid flow through the sensor

SPECIFICATIONS

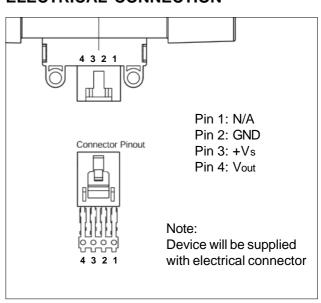
Maximum ratings

Supply voltage² 8 to 15 V typ. 10 ± 0.01 V

typ. 10 ±0.01 v

Power consumption 60 mW

Output load


NPN (Sinking) 10 mA PNP (Sourcing) 20 mA

Temperature limits

Operating -25 to 85°C Storage -40 to 90°C

Mechanical shock 100 g (3 drops, 3 axes)

ELECTRICAL CONNECTION

Note

¹ SLPM denotes standard liters per minute, which is a flow measurement referenced to standard conditions of 0°C, 1 bar, 50% RH.

² Output voltage is ratiometric to supply voltage

August 2008 / 585 1/4

FLOW SENSOR CHARACTERISTICS³

 $V_S = 10 \pm 0.01 \text{ V}, T_A = 25^{\circ}\text{C}$

Part no.	Flow range (full scale)	Output voltage @ trim point
AWM720P1	200 SLPM ¹	5.0 ±0.36 V @ 200 SLPM ¹

PERFORMANCE CHARACTERISTICS

 $V_s = 10 \pm 0.01 \text{ V}, T_A = 25^{\circ}\text{C}$

Cha	racteristics		Min.	Тур.	Max.	Unit	
Zero offset			0.95	1.0	1.05	V	
Repeatability and hysteresis (combined)					±0.5	0/ =====	
Ratiometricity error ²				±0.30		% reading	
Temperature effects	Offset ⁴	-20 to 85 °C		±0.25		V	
	Span	25 to 10 °C		-2.0		0/	
		25 to 40 °C		2.0		% reading	
Response time				6.0		ms	
Common mode pressure	;				25	psi	

Notes:

NOTICE: LAMINAR FLOW

Due to the fast response time of the sensor, these specifications were generated using laminar flow. Airflow instability or "turbulence" present in the airstream will result in an increase in measurement uncertainty.

The turbulent flow problem can be corrected by either straightening the airflow using flow laminarizing or by slowing the response of the sensor using a simple RC time constant on the output of the sensor. This, of course, slows down the sensor response time. The values needed depend on the amount of turbulence present in the application.

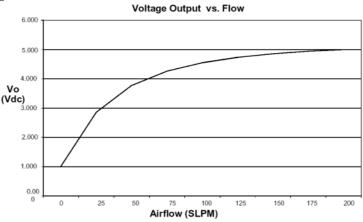
Several techniques for laminarizing the flow include adding hex shaped honeycombs, foam, screen materials or adding constrictors (frits) to the flow stream. There are various commercial laminar flow elements that can be purchased. Unfortunately the greater the efficiency of the laminarizer, the greater the increase in pressure drop in order to establish a given flow rate. Plastic honeycomb material probably gives the most improvement for the least pressure drop. In any test fixture, the avoidance of sharp radii is an absolute requirement.

2/4 August 2008 / 585

¹ SLPM denotes standard liters per minute, which is a flow measurement referenced to standard conditions of 0°C, 1 bar, 50% RH.

² Output voltage is ratiometric to supply voltage

³ A 5 micron filter is recommended for all devices.


⁴ Shift is relative to 25 °C.

FLOW SPECIFICATIONS

 $V_{s} = 10 \pm 0.01 \text{ V}, T_{A} = 25^{\circ}\text{C}$

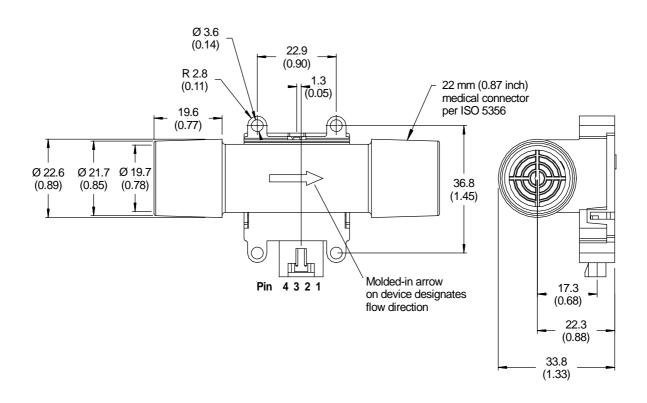
Flow	Nominal	±Tolerance	Pressure Drop	
 (SLPM)	(Vdc) Typical	(Vdc)	(inch H ₂ O)	(mBar)
0	1.00	0.05	0	0
25	2.99	_	0.04	0.10
50	3.82	0.18	0.13	0.33
75	4.30	_	0.21	0.53
100	4.58	_	0.34	0.85
150	4.86	_	0.65	1.64
200	5.00	0.36	1.09	2.74

OUTPUT CURVE

GAS CORRECTION FACTORS⁵

Gas type	Correction factor (approx.)
Helium (He)	0.56
Hydrogen (H ₂)	0.7^{6}
Argon (Ar)	0.95
Nitrogen (N ₂)	1.0
Oxygen (O ₂)	1.0
Air	1.0
Nitric oxide (NO)	1.0
Carbon monoxide (CO)	1.0
Methane (CH ₄)	1.1
Ammonia (NH	1.1
Nitrous oxide (N ₂ O)	1.35
Nitrogen dioxide (NO ₂)	1.35
Carbon dioxide (CO ₂)	1.35

Notes:


⁵ Gas correction factors are referenced to nitrogen (N₂) as calibration gas type. Approximate gas correction factors are provided as guidelines only. Individual gas types may perform differently at temperature extremes and varying flow rates.

August 2008 / 585 3/4

⁶ When sensing Hydrogen (H₂) or Helium (He) it may be necessary to power the mass flow sensor using increased supply voltage: Hydrogen typ. 12 V, Helium typ. 15 V

OUTLINE DRAWING

mass: approx. 34 g dimensions in mm (inches)

ORDERING INFORMATION

Flow range	Dry gas
200 SLPM	AWM720P1

Note: Device will be supplied with 4 pin receptacle connector (see Electrical Connection info)

Sensortechnics reserves the right to make changes to any products herein. Sensortechnics does not assume any liability arising out of the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

4/4 August 2008 / 585

