
Features
• SPARC V8 High Performance Low-power 32-bit Architecture

– 8 Register Windows
• Advanced Architecture:

– On-chip Amba Bus
– 5 Stage Pipeline
– 16 kbyte Multi-sets Data Cache
– 32 kbyte Multi-sets Instruction Cache

• On-chip Peripherals:
– Memory Interface

PROM Controller
SRAM Controller
SDRAM Controller

– Timers
Two32-bit Timers
Watchdog 32-bitTimer

– Two 8-bit UARTs
– Interrupt Controller with 8 External Programmable Inputs
– 32 Parallel I/O Interface
– 33MHz PCI Interface Compliant with 2.2 PCI Specification

• Integrated 32/64-bit IEEE 754 Floating-point Unit
• Fault Tolerance by Design

– Full Triple Modular Redundancy (TMR)
– EDAC Protection
– Parity Protection

• Debug and Test Facilities
– Debug Support Unit (DSU) for Trace and Debug
– IEEE 1149.1 JTAG Interface
– Four Hardware Watchpoints

• 8 and 40-bit boot-PROM Interface Possibilities
• Operating range

– Voltages
3.3V +/- 0.30V for I/O
1.8V +/- 0.15V for Core

– Temperature
-55°C to 125°C

• Clock: 0MHz up to 100MHz
• Power consumption: 1W at 100MHz
• Performance:

– 86MIPS (Dhrystone 2.1)
– 23MFLOPS (Whetstone)

• Radiation Performance
– Tested up to a total dose of 300Krads (Si) according to the MIL-STD883 method

1019
– SEU error rate better than 1 E-5 error/device/day
– No Single Event Latchup below a LET threshold of 70 MeV.cm²/mg

• Package MCGA349 and MQFPF256
• Mass: 9g
• Development Kit Including

– AT697F Evaluation Board
– AT697F Sample

Rad-Hard 32 bit
SPARC V8
Processor

AT697F

Advance
Information

7703C–AERO–6/09

 2
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Description The AT697F is a highly integrated, high-performance 32-bit RISC embedded processor based
on the SPARC V8 architecture. The implementation is based on the European Space Agency
(ESA) LEON2 fault tolerant model. By executing powerful instructions in a single clock cycle, the
AT697F achieves throughputs approaching 1MIPS per MHz, allowing the system designer to
optimize power consumption versus processing speed.

The AT697F is designed to be used as a building block in computers for on-board embedded
real-time applications. It brings up-to-date functionality and performance for space application.

The AT697F only requires memory and application specific peripherals to be added to form a
complete on-board computer.

The AT697F contains an on-chip Integer Unit (IU), a Floating Point Unit (FPU), separate instruc-
tion and data caches, hardware multiplier and divider, interrupt controller, debug support unit
with trace buffer, two 32-bit timers, Parallel and Serial interfaces, a Watchdog, a PCI Interface
and a flexible Memory Controller. The design is highly testable with the support of a Debug Sup-
port Unit (DSU) and a boundary scan through JTAG interface.

An Idle mode holds the processor pipeline and allows Timer/Counter, Serial ports and Interrupt
system to continue functioning.

The processor is manufactured using the Atmel 0.18 µm CMOS process. It has been especially
designed for space, by implementing on-chip concurrent transient and permanent error detec-
tion and correction.

The AT697F is pinout compatible with the AT697E.

Refer to section “Differences between AT697F and AT697E”, page 146“ for detailed description
of the differences between AT697F and AT697FE.

 3
7703C–AERO–6/09

 AT697F ADVANCE INFORMATION

Figure 1. AT697F Block Diagram

AT697F

SRAM

PROM

Interrupt
Controller

interrupt

FPU

AMBA
bridge

AMBA
Controller

Watchdog

Memory
Controller

PCI

RS232

JTAG

DSU

Timers

Clock
Generator

Reset

D-Cache

I -Cache

PCI/AMBA
bridge

AHB

APB

Integer Unit
(SPARC V8)

SDRAM

BRDY*
READ
WRITE*
A[27:0]
D[31:0]
...

PIO
config

IOs

RxD
TxD

RxD
TxD

RESET*

CLK

WDOG*

...

BYPASS
...

TDI
TDO

...

 4
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Pin Configuration

MCGA349 package
Table 1. AT697F MCGA349 pinout

A B C D E F G

1 VDD18 VSS18 PIO[6] PIO[1] RAMS*[1]

2 VSS18 VDD18 PIO[0] N.C. PIO[4] RAMS*[2]

3 VDD18 VDD18 VSS18 VCC33 PIO[2] N.C. RAMOE*[3]

4 VSS18 VDD18 PIO[9] N.C. PIO[5] PIO[3] RAMS*[4]

5 N.C. N.C. PIO[11] N.C. N.C. VSS33 RAMOE*[1]

6 PIO[13] PIO[10] VCC33 Reserved CB[0] N.C. VSS33

7 CB[1] VSS33 N.C. PIO[15] VSS33 PIO[12] PIO[7]

8 CB[6] CB[4] D[2] VCC33 CB[7] CB[2] PIO[8]

9 D[3] N.C. D[1] VSS33 D[6] VCC33 CB[3]

10 D[8] D[5] VCC33 VSS33 Reserved D[10] D[4]

11 D[12] VSS33 VCC33 D[13] D[7] D[15] N.C.

12 D[17] D[18] D[11] VSS33 D[14] D[16] D[19]

13 D[21] D[23] VCC33 VCC33 VSS33 VSS33 A[1]

14 D[25] N.C. D[22] D[27] N.C. VSS33 A[3]

15 D[30] N.C. D[26] D[29] N.C. N.C. A[12]

16 VSS18 VSS18 D[28] VCC33 N.C. N.C. A[6]

17 VDD18 VDD18 VSS18 D[31] N.C. A[7] VSS33

18 VSS18 VDD18 VCC33 A[0] A[4] A[8]

19 VDD18 VSS18 A[2] VSS33 A[9]

- Advanced Information

 5
7703C–AERO–6/09

 AT697F ADVANCE INFORMATION

Table 2. AT697F MCGA349 pinout

H j k l m n p

1 RAMOE*[0] VSS33 READ DSUACT BEXC* VCC33 SDWE*

2 RAMOE*[2] ROMS*[1] TCK DSURX SDCLK VSS33 PCI_CLK

3 VCC33 ROMS*[0] TDI DSUTX DSUBRE SDDQM[1] VSS33

4 RAMOE*[4] RWE*[0] TDO DSUEN SDDQM[2] N.C. SDCS*[0]

5 RWE*[1] WRITE* VSS33 TMS N.C. SDDQM[3] SDCAS*

6 RWE*[3] RWE*[2] IOS* VSS33 VSS33 GNT* A/D[24]

7 RAMS*[0] N.C. TRST SDDQM[0] VSS33 VCC33 A/D[30]

8 RAMS*[3] VCC33 OE* BRDY* VCC33 A/D[21] A/D[18]

9 CB[5] PIO[14] VSS33 SDRAS* A/D[22] A/D[16] A/D[17]

10 D[9] D[0] N.C. A/D[14] VSS33 PERR* IRDY*

11 D[20] A[5] A[16] N.C. A/D[12] A/D[9] A/D[15]

12 D[24] A[14] A[26] VDD_PLL AGNT*[3] A/D[1] A/D[8]

13 N.C. VCC33 A[21] N.C. N.C. VSS33 A/D[5]

14 A[10] VCC33 A[27] LOCK SKEW[1] A/D[0] AGNT*[1]

15 N.C. VSS33 VCC33 A[24] Reserved BYPASS CLK

16 A[11] VSS33 A[23] RESET* N.C. AREQ*[2] VSS33

17 A[19] A[17] VSS33 VCC33 WDOG* N.C. VSS33

18 A[13] A[18] A[22] VSS33 VSS_PLL AREQ*[3] N.C.

19 A[15] A[20] A[25] ERROR* SKEW[0] VCC33 AREQ*[1]

- Advanced Information

 6
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Table 3. AT697F MCGA349 pinout - Advanced Information

r t u v w

1 REQ* VSS18 VDD18

2 N.C. SDCS*[1] VDD18 VSS18

3 PCI_RST* A/D[31] VSS18 VDD18 VDD18

4 N.C. A/D[29] VCC33 VSS18 VSS18

5 N.C. N.C. A/D[26] N.C. A/D[28]

6 N.C. A/D[27] IDSEL VSS33 A/D[25]

7 SYSEN* VSS33 VCC33 C/BE*[3] A/D[23]

8 VSS33 VSS33 FRAME* A/D[20] A/D[19]

9 TRDY* VCC33 N.C. C/BE*[2] VSS33

10 PCI_LOCK* DEVSEL* STOP* VCC33 VCC33

11 VSS33 VCC33 VSS33 C/BE*[1] SERR*

12 N.C. A/D[11] PAR VSS33 A/D[13]

13 VCC33 A/D[7] A/D[10] VSS33 VSS33

14 VCC33 VSS33 C/BE*[0] A/D[4] A/D[6]

15 N.C. A/D[2] VCC33 N.C. A/D[3]

16 N.C. VCC33 N.C. VDD18 VSS18

17 VCC33 AGNT*[0] VSS18 VDD18 VDD18

18 N.C. AGNT*[2] VDD18 VSS18

19 AREQ*[0] VSS18 VDD18

Notes: 1. ‘Reserved’ pins shall not be driven to any voltage
2. N.C. refers to unconnected pins

 7
7703C–AERO–6/09

 AT697F ADVANCE INFORMATION

QFP256 Package Table 4. AT697F QFP256 pinout

pin
number pin name pin

number pin name pin
number pin name

1 VCC33 31 TCK 61 PIO[1]

2 PCI_REQ* 32 TMS 62 PIO[2]

3 PCI_GNT* 33 VSS 63 PIO[3]

4 PCI_CLK 34 TDI 64 PIO[4]

5 PCI_RST* 35 TDO 65 PIO[5]

6 SDCS*[0] 36 WRITE* 66 PIO[6]

7 VSS 37 READ 67 VCC33

8 VDD18 38 OE* 68 PIO[7]

9 SDCS*[1] 39 IOS* 69 PIO[8]

10 SDWE* 40 VCC33 70 PIO[9]

11 SDRAS* 41 ROMS*[0] 71 VSS

12 VSS 42 ROMS*[1] 72 VDD18

13 VSS 43 RWE*[0] 73 PIO[10]

14 SDCAS* 44 RWE*[1] 74 PIO[11]

15 VCC33 45 RWE*[2] 75 Reserved

16 SDDQM[0] 46 RWE*[3] 76 PIO[12]

17 SDDQM[1] 47 RAMOE*[0] 77 PIO[13]

18 SDDQM[2] 48 RAMOE*[1] 78 PIO[14]

19 SDDQM[3] 49 RAMOE*[2] 79 PIO[15]

20 SDCLK 50 RAMOE*[3] 80 VCC33

21 BRDY* 51 RAMOE*[4] 81 CB[0]

22 BEXC* 52 RAMS*[0] 82 CB[1]

23 VSS 53 VCC33 83 CB[2]

24 VSS 54 RAMS*[1] 84 CB[3]

25 DSUEN 55 RAMS*[2] 85 VCC33

26 DSUTX 56 RAMS*[3] 86 CB[4]

27 DSURX 57 VSS 87 CB[5]

28 DSUBRE 58 VDD18 88 CB[6]

29 DSUACT 59 RAMS*[4] 89 CB[7]

30 TRST 60 PIO[0] 90 D[0]

 8
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Table 5. AT697F QFP256 pinout

pin
number pin name pin

number pin name pin
number pin name

91 VCC33 124 D[25] 157 A[19]

92 D[1] 125 D[26] 158 A[20]

93 D[2] 126 D[27] 159 A[21]

94 D[3] 127 D[28] 160 A[22]

95 D[4] 128 D[29] 161 VSS

96 D[5] 129 D[30] 162 VCC33

97 D[6] 130 VCC33 163 A[23]

98 Reserved 131 D[31] 164 A[24]

99 VCC33 132 N.C. 165 A[25]

100 D[7] 133 A[0] 166 A[26]

101 D[8] 134 A[1] 167 A[27]

102 D[9] 135 VSS 168 WDOG*

103 D[10] 136 VDD18 169 ERROR*

104 D[11] 137 A[2] 170 VCC33

105 D[12] 138 A[3] 171 RESET*

106 VCC33 139 A[4] 172 Reserved

107 D[13] 140 VCC33 173 LOCK

108 D[14] 141 A[5] 174 SKEW[1]

109 D[15] 142 A[6] 175 SKEW[0]

110 D[16] 143 A[7] 176 BYPASS

111 D[17] 144 A[8] 177 VSS_PLL

112 VSS 145 A[9] 178 N.C.

113 D[18] 146 A[10] 179 VDD_PLL

114 VCC33 147 VCC33 180 CLK

115 D[19] 148 A[11] 181 VCC33

116 D[20] 149 A[12] 182 PCI_AREQ*[3]

117 D[21] 150 A[13] 183 PCI_AGNT*[3]

118 D[22] 151 A[14] 184 PCI_AREQ*[2]

119 D[23] 152 A[15] 185 VSS

120 D[24] 153 A[16] 186 VDD18

121 VSS 154 VCC33 187 PCI_AGNT*[2]

122 VDD18 155 A[17] 188 PCI_AREQ*[1]

123 VCC33 156 A[18] 189 VCC33

 9
7703C–AERO–6/09

 AT697F ADVANCE INFORMATION

Table 6. AT697E MQFP256 pinout

pin
number pin name pin

number pin name pin
number pin name

190 PCI_AGNT*[1] 213 A/D[12] 236 A/D[19]

191 PCI_AREQ*[0] 214 A/D[13] 237 SYSEN*

192 PCI_AGNT*[0] 215 A/D[14] 238 A/D[20]

193 A/D[0] 216 A/D[15] 239 VCC33

194 VCC33 217 VCC33 240 A/D[21]

195 A/D[1] 218 C/BE*[1] 241 A/D[22]

196 A/D[2] 219 PAR 242 A/D[23]

197 A/D[3] 220 SERR* 243 IDSEL

198 A/D[4] 221 PERR* 244 C/BE*[3]

199 VSS 222 VCC33 245 VCC33

200 VDD18 223 PCI_LOCK* 246 A/D[24]

201 VCC33 224 STOP* 247 A/D[25]

202 A/D[5] 225 DEVSEL* 248 A/D[26]

203 A/D[6] 226 TRDY* 249 VSS

204 A/D[7] 227 VCC33 250 VDD18

205 C/BE*[0] 228 IRDY* 251 A/D[27]

206 VSS 229 FRAME* 252 VCC33

207 VCC33 230 VSS 253 A/D[28]

208 A/D[8] 231 C/BE*[2] 254 A/D[29]

209 A/D[9] 232 A/D[16] 255 A/D[30]

210 A/D[10] 233 VCC33 256 A/D[31]

211 A/D[11] 234 A/D[17]

212 VCC33 235 A/D[18]

Notes: 1. ‘Reserved’ pins shall not be driven to any voltage
2. N.C. refers to unconnected pins

 10
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Pin Description

ATMEL Convention ‘*’ attached to a signal (e.g OE*) designate an active-low signal.

When a bit of a register is writen in C-like style (e.g MCFG2 RAMWWS) it must be read as the
RAMWWS bit in the register MCFG2.

IU and FPU Signals A[27:0] - Address bus (output)

A[27:0] bus carries the addresses during accesses to external memory. When access to cache
memory is performed, the address of the last external memory access remains driven on the
address bus.

D[31:0] - Data bus (bi-directional)

D[31:0] bus carries the data during accesses to memory. The processor automatically config-
ures the bus as output and drive the lines during write transactions.
During accesses to 8-bit areas, only D[31:24] are used.

CB[7:0] - Check bits (bi-directional)

CB[6:0] bus carries the EDAC checkbits during memory accesses. CB[7](1) takes the value of
tcb[7] in the error control register. Processor only drives CB[7:0] during write transactions to
areas programmed to be EDAC protected.
Note: 1. CB[7] is implemented to enable programming of flash memories. When only 7 bits are useful

for EDAC protection, 8 are needed for programming.

Memory Interface
Signals

General management OE* - Output enable (output)

This active low output is asserted during read transactions on the memory bus.

BRDY* - Bus ready (input)

When driven low, this input indicates to the processor that the current memory access can be
terminated on the next rising clock edge. When driven high, this input indicates to the processor
that it must wait and not end the current access.

READ - Read transaction (output)

This active high output is asserted during read transactions on the memory bus.

WRITE* - Write enable (output)

This active low output provides a write strobe during write transactions on the memory bus.

PROM ROMS*[1:0] - PROM chip-select (output)

These active low outputs provide the chip-select signal for the PROM area. ROMS*[0] is
asserted when the lower half of the PROM area is accessed (0 - 0x10000000), while ROMS*[1]
is asserted for the upper half.

SRAM RAMOE*[4:0] - RAM output enable (output)

These active low signals provide an individual output enable for each RAM bank.

RAMS*[4:0] - RAM chip-select (output)

These active low outputs provide the chip-select signals for each RAM bank.

RWE* [3:0] - RAM write enable (output)

These active low outputs provide individual write strobes for each byte. RWEN[0] controls
D[31:24], RWEN[1] controls D[23:16], etc.

I/O IOS* - I/O select (output)

 11
7703C–AERO–6/09

 AT697F ADVANCE INFORMATION

This active low output is the chip-select signal for the memory mapped I/O area.

SDRAM Interface SDCLK - SDRAM clock (output)

SDRAM clock provides the SDRAM interface clock reference.

SDCAS* - SDRAM column address strobe (output)

This active low signal provides a common CAS for all SDRAM devices.

SDCS*[1:0] - SDRAM chip select (output)

These active low outputs provide the chip select signals for the two SDRAM banks.

SDDQM[3:0] - SDRAM data mask (output)

These active low outputs provide the DQM signals for both SDRAM banks.

SDRAS*- SDRAM row address strobe (output)

This active low signal provides a common RAS for all SDRAM devices.

SDWE* - SDRAM write strobe (output)

This active low signal provides a common write strobe for all SDRAM devices.

System Signals CLK - Processor clock (input)

The CLK input provides the main processor clock reference.

RESET* - Processor reset (input)

When asserted, this active low input will reset the processor and all on-chip peripherals.

WDOG* - Watchdog time-out (open-drain output)

This active low output is asserted when the watchdog expires.

BEXC* - Bus exception (input)

This active low input is sampled simultaneously with the data during accesses on the memory
bus. If asserted, a memory error will be generated.

ERROR* - Processor error (open-drain output)

This active low output is asserted when the processor has entered error state and is halted. This
happens when traps are disabled and a synchronous (un-maskable) trap occurs.

PIO[15:0] - Parallel I/O port (bi-directional)

These bi-directional signals can be used as inputs or outputs to control external devices.

BYPASS - PLL bypass (input)

When driven to VCC, this active high input set the PLL in bypass mode. The device is then
directly clocked by the external clock. When grounded, the device is clocked through the PLL.

SKEW[1:0] - Clock tree skew (input)

These input signals configurate the programmable skew on the triplicated clock trees.

LOCK - PLL lock (output)

This active high output is asserted when the PLL output (internal node) is locked at the fre-
quency corresponding to four times the input command.

DSU Signals DSUACT - DSU active (output)

This active high output is asserted when the processor is in debug mode and controlled by the
DSU.

DSUBRE - DSU break enable (input)

 12
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

A low-to-high transition on this active high input will generate break condition and put the pro-
cessor in debug mode.

DSUEN - DSU enable (input)

The active high input enables the DSU unit. If de-asserted, the DSU trace buffer will continue to
operate but the processor will not enter debug mode.

DSURX - DSU receiver (input)

This active high input provides the data to the DSU communication link receiver

DSUTX - DSU transmitter (output)

This active high input provides the output from the DSU communication link transmitter.

JTAG TCK - Test Clock (input)

Used to clock serial data into boundary scan latches and control sequence of the test state
machine. TCK can be asynchronous with CLK.

TMS - Test Mode select (input)

Primary control signal for the state machine. Synchronous with TCK. A sequence of values on
TMS adjusts the current state of the TAP.

TDI - Test data input (input)

Serial input data to the boundary scan latches. Synchronous with TCK

TDO - Test data output (output)

Serial output data from the boundary scan latches. Synchronous with TCK

TRST - Test Reset (input)

Resets the test state machine. Can be asynchronous with TCK. Shall be grounded for end
application.

PCI Arbiter AREQ*[3:0] - PCI bus request (Input)

When asserted, these active low inputs indicate that a PCI agent is requesting the bus.

AGNT*[3:0] - PCI bus grant (Output)

When asserted, these active low outputs indicate that a PCI agent is granted the PCI bus.

 13
7703C–AERO–6/09

 AT697F ADVANCE INFORMATION

PCI interface A/D[31:0] - PCI Address Data (bi-directional)

Address and Data are multiplexed on the same PCI pins.

During the address phase, A/D[31::00] contain a physical address (32 bits). For I/O, this is a byte
address; for configuration and memory, it is a DWORD address. During data phases,
A/D[07::00] contain the least significant byte and A/D[31::24] contain the most significant byte.

C/BE[3:0]* - PCI Bus Command and Byte Enables (bi-directional)

During the address phase of a transaction, C/BE[3::0]* define the bus command. During the data
phase, C/BE[3::0]* are used as Byte Enables. The Byte Enables are valid for the entire data
phase.

PAR - Parity (bi-directional)

The number of "1"s on A/D[31::00], C/BE[3::0]*, and PAR equals an even number

FRAME* - Cycle Frame (bi-directional)

It is driven by the current master to indicate the beginning and duration of an access. FRAME* is
asserted to indicate a bus transaction is beginning. While FRAME* is asserted, data transfers
continue. When FRAME* is deasserted, the transaction is in the final data phase or has
completed.

IRDY* - Initiator Ready (bi-directional)

IRDY* indicates the initiating agent’s ability to complete the current data phase of the transac-
tion. IRDY* is used in conjunction with TRDY*. During a write, IRDY* indicates that valid data is
present on A/D[31::00]. During a read, it indicates the master is prepared to accept data.

TRDY* - Target Ready (bi-directional)

TRDY* indicates the target agent’s (selected device’s) ability to complete the current data phase
of the transaction. TRDY* is used in conjunction with IRDY*. During a read, TRDY* indicates that
valid data is present on AD[31::00]. During a write, it indicates the target is prepared to accept
data.

STOP* - Stop (bi-directional)

STOP* indicates the current target is requesting the master to stop the current transaction.

PCI_LOCK* - Lock (bi-directional)

PCI_LOCK* indicates an atomic operation to a bridge that may require multiple transactions to
complete.

IDSEL - Initialization Device Select (input)

Initialization Device Select is used as a chip select during configuration read and write
transactions.

DEVSEL* - Device Select (bi-directional)

When actively driven, indicates the driving device has decoded its address as the target of the
current access. As an input, DEVSEL* indicates whether any device on the bus has been
selected.

REQ* - PCI bus request (output)

REQ* indicates to the arbiter that this agent desires use of the bus. This is a point-to-point sig-
nal. Every master has its own REQ* which must be tri-stated while RST* is asserted.

GNT* - PCI Bus Grant (input)
GNT* indicates to the agent that access to the bus has been granted. This is a point-to-point sig-
nal. Every master has its own GNT* which must be ignored while RST* is asserted.

PCI_CLK - PCI clock (input)

 14
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

PCI_CLK provides timing for all transactions on PCI. All other PCI signals, except RST*, are
sampled on the rising edge of PCI_CLK and all other timing parameters are defined with respect
to this edge.

RST* - PCI Reset (input)

Reset is used to bring PCI-specific registers, sequencers, and signals to a consistent state.

PERR* - Parity Error (bi-directional)

Parity Error is only for the reporting of data parity errors during all PCI transactions except a
Special Cycle. The PERR* pin is sustained tri-state and must be driven active by the agent
receiving data two clocks following the data when a data parity error is detected. The minimum
duration of PERR* is one clock for each data phase that a data parity error is detected.

SERR* - System Error (bi-directional)

System Error is for reporting address parity errors, data parity errors on the special cycle com-
mand, or any other system error where the result will be catastrophic. If an agent does not want
a non-maskable interrupt (NMI) to be generated, a different reporting mechanism is required.

SYSEN* - PCI Host (input)

This active low input specifies the configuration of the device. At boot-up time, if SYSEN* is sam-
pled at a low level, the device is configured as the host of the PCI bus. If SYSEN* is sampled at
a high level, the device is configured as a satellite.

 15
7703C–AERO–6/09

 AT697F ADVANCE INFORMATION

AT697F CPU
Core

This section discusses the SPARC core architecture in general. The main function of the CPU core
is to ensure correct program execution. The CPU must therefore be able to access memories, perform cal-
culations, control peripherals, and handle interrupts.

SPARC
Architecture
Overview

The AT697F CPU core is based on the LEON2 architecture.

Figure 2. Block diagram of the AT697F Integer Unit architecture

alu/shift mul/div
y

regfile

D-cache
address/dataout
datain

32
32

operand2rs1

imm, tbr, wim, psr

Ywres

result ytmp

Decode

Execute

Memory

Write

rs2rs1

rd
tbr, wim, psr

30 jmpl address

32 ex pc

30

+1

d_pc

jmpa

f_pc

Add

call/branch address

tbr‘0’

e_pc

m_pc

w_pc

d_inst

e_inst

m_inst

w_inst

Fetch

I-cache
addressdata

The AT697F integer unit (IU) implements SPARC integer instructions as defined in SPARC
Architecture Manual version 8. The IU is designed for highly dependable space and military
applications by including fault tolerance features.

To execute instructions at a rate approaching one instruction per clock cycle, the IU employs a
five-stage instruction pipeline that permits parallel execution of multiple instructions.
• Instruction Fetch: If the instruction cache is enabled, the instruction is fetched from the

instruction cache. Otherwise, the fetch is forwarded to the memory controller. The instruction
is valid at the end of this stage and is latched inside the IU.

• Decode: The instruction is decoded and the operands are read. Operands may come from
the register file or from internal data bypasses. CALL and Branch target addresses are
generated in this stage.

• Execute: ALU, logical, and shift operations are performed. For memory operations and for
JMPL/RETT, the address is generated.

• Memory: Data cache is accessed. For cache reads, the data will be valid by the end of this
stage, at which point it is aligned as appropriate. Store data read out in the Execute stage is
written to the data cache at this time.

• Write: The result of any ALU, logical, shift, or cache read operations re written back to the
register file.

All five stages operate in parallel, working on up to five different instructions at a time. A basic
’single-cycle’ instruction enters the pipeline and completes in five cycles.

 16
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

By the time it reaches the write stage, four more instructions have entered and are driving
through the pipeline behind it. So, after the first five cycles, a single-cycle instruction exits the
pipeline and a single-cycle instruction enters the pipeline on every cycle. Of course, a ’single-
cycle’ instruction actually takes five cycles to complete, but they are called single cycle because
with this type of instruction the processor can complete one instruction per cycle after the initial
five-cycle delay.

In order to maximize performance and parallelism, the AT697F SPARC implementation uses powerful
AMBA bus. Instructions in the program memory are executed with a five level pipelining. While one
instruction is being executed, the next instruction is pre-fetched from the program memory. This concept
enables instructions to be executed in every clock cycle.

Program Counters Two 32-bit program counters (PC and nPC) are provided. The 32-bit PC contains the address of
the instruction currently being executed by the IU. The nPC holds the address of the next
instruction to be executed (assuming a trap does not occur).

When a trap occurs, the PC address is saved in the local register (l1) while the nPC address is
saved in the local register (l2). When returning from trap, l1 value is copied back to PC and l2
value is copied back to nPC.

ALU - Arithmetic Logic
Unit

The high-performance ALU operates in direct connection with all the 32 general purpose work-
ing registers. Within a single clock cycle, arithmetic operations between general purpose
registers or between a register and an immediate memory address are executed. The imple-
mentation of the architecture also provide a powerful multiplier/divider supporting both signed
and unsigned multiplication/division.

Support for high performance 64-bit operation is also provided.The 32-bit Y register contains the
most significant word of the double-precision product of an integer multiplication, as a result of
either an integer multiply instruction, or of a routine that uses the integer multiply step instruc-
tion. The Y register also holds the most significant word of the double-precision dividend for an
integer divide instruction.

Register File -
Windows

The fast access register file contains 8 SPARC register windows. Each window consists in a 32-
register set. When a program is running, it has access to 32 32-bit processor registers which
include 8 global registers plus 24 registers that belong to the current register window.
• The first 8 registers in the window are called the in registers’ (i0-i7). When a function is

called, these registers may contain arguments that can be used.
• The next 8 are the ’local registers’ (l0-l7) which are scratch registers that can be used for

anything while the function executes.
• The last 8 registers are the ’out registers’ (o0-o7) which the function uses to pass arguments

to functions that it calls.

AT697F register file implementation is based on two dual-port rams. The first dual-port ram cor-
responds to %rs1 operand of a SPARC instruction while the second corresponds to %rs2
operand. The two dual-port rams contents are always equal.

When one function calls another, the calling function can choose to execute a SAVE instruction.
This instruction decrements an internal counter, the current window pointer (cwp), shifting the
register window downward. The caller’s out registers then become the calling function’s in regis-
ters, and the calling function gets a new set of local and out registers for its own use. Only the
pointer changes because the registers and return address do not need to be stored on a stack.
The RETURN instruction acts in the opposite way

 17
7703C–AERO–6/09

 AT697F ADVANCE INFORMATION

Figure 3. Overlapping Windows

globals

w0
locals

w7
locals

w1
locals

w2
locals

w3
locals

w4
locals

w5
locals

w6
locals

w0
outsw1

outs

w2
outs

w3
outs

w4
outs

w5
outs

w6
outs

w7
outs

w0
ins

w1
ins

w2
ins

w3
ins

w4
ins

w5
ins

w6
ins

w7
ins

W0

W2
W4

W6

W7

W1

W3

W5

cwp

Re
sto

re

Sa
ve

The Window Invalid Mask register (WIM) is controlled by supervisor software and is used by
hardware to determine whether a window overflow or underflow trap is to be generated by a
SAVE, RESTORE, or RETT instruction.

When a SAVE, RESTORE, or RETT instruction is executed, the current value of the CWP is
compared against the WIM register. If the SAVE, RESTORE, or RETT instruction would cause
the CWP to point to an “invalid” register set, a window_overflow or window_underflow trap is
caused.

To prevent erroneous operations from SEU errors in the main register file, each word is pro-
tected with a 7-bit EDAC checksum. The EDAC checksums are checked when the register is
used as operand in an instruction. Any single-bit error is corrected and written back to the regis-
ter file before the instruction is executed. If an un-correctable error is detected, a register
hardware error trap (trap 0x20) is generated.

The protection can be enabled/disabled by programming the asr16 di bit from register file pro-
tection control register. By setting the asr16 te bit, errors can be inserted in the register file to
test the protection function. When the asr16 te bit is set, the register checksum is combined
with the asr16 tcb field before being written to the register file.

Due to the presence of the two dual-port rams for register file implementation, the following rules
apply to the error injection test process.
• Test checkbits TCB[2:0] is Xored with checkbit[6:4] corresponding to the %rs1 operand.
• Test checkbits TCB[5:3] is Xored with checkbit[6:4] corresponding to the %rs2 operand.

Here is a simple example for the test of a single error in register file %rs1
! 0x32 =
! register file test enable
! tcb[2:0] = 0x4
! tcb[5:3] = 0x1

mov 0x32, %l1
mov %l1, %asr16

! clear %l3
! => write 0x0 to %l3
! forces 0x08 as checkbit for %l3 (error insertion in %rs1 dual-port ram)

mov %g0, %l3
! disable EDAC test mode

mov %g0, %asr16
! access to %l3 as %rs1 operand
! => single error detection and correction

add %l3,%l2,%l1

 18
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

A correction counter asr16 cnt is provided for error management. The asr16 cnt field is incre-
mented each time a register correction is performed. It saturates at “111”.

State Register The State Register (PSR) contains information about the result of the most recently executed arithmetic
instruction. This information can be used for altering program flow in order to perform conditional opera-
tions. Note that the Status Register is updated after all ALU operations, as specified in the SPARC
architecture specification. This will in many cases remove the need for using the dedicated compare
instructions, resulting in faster and more compact code.

The state also provides some global information on the current window used, the authorized
interrupts and peripheral (FPU and coprocessor) presence. A global interrupt management is
provided through the processor state register. Trap and Interrupts can be individually
enabled/disables from within this register.

Instruction Set AT697F instructions fall into six functional categories: load/store, arithmetic/logical/ shift, control
transfer, read/write control register, floating-point, and miscellaneous. Please refer to SPARC V8
Architecture manual that presents all the implemented instructions.

Floating Point Unit The FPU is designed to provide execution of single and double-precision floating-point instruc-
tions. During the execution of floating-point instructions the processor pipeline is held.

The FPU is designed for highly dependable space and military applications, by including fault
tolerance features like error detection and correction and triple modular redundancy.

The FPU depends upon the IU to access all addresses and control signals for memory access.
Floating-point loads and stores are executed in conjunction with the IU, which provides
addresses and control signals while the FPU supplies or stores the data. Instruction fetch for
integer and floating-point instructions is provided by the IU.

The FPU contains 32 32-bit floating-point f registers, which are numbered from f[0] to f[31].
Unlike the windowed r registers, at a given time an instruction has access to any of the 32 f reg-
isters. The f registers can be read and written by FPop (FPop1/FPop2 format) instructions, and
by load/store single/double floating-point instructions (LDF, LDDF, STF, STDF).

Rounding Direction Rounding direction for floating point results is built according to the ANSI/IEEE Standard 754-
1985.

In this way,
• 0 = round to nearest
• 1 = round to zero
• 2 = round to +infinity
• 3 = round to -infinity

Figure 4. Rounding Direction Schematic
0 Value > 0Value < 0

round to - ∞

- ∞ + ∞
round to - ∞ round to + ∞round to + ∞

round to zero round to zero

Fault Tolerance The processor has been especially designed for space application. To prevent erroneous opera-
tions from single event transient (SET) and single event upset (SEU) errors, the AT697F
processor implements a set of protection features including :
• Full triple modular redundancy (TMR) architecture

The TMR architecture is based on a fully triplicated clock distribution (CLK1, CLK2 and
CLK3). The PCI clock and the CPU clock are built as three-clock trees. The same triplication
is applied to the PCI reset and to the CPU reset. See figure 5 for an overview of the TMR
architecture.

 19
7703C–AERO–6/09

 AT697F ADVANCE INFORMATION

Programmable skews on the clock trees are also provided to prevent the processor from
arbitrary single-event transient errors.
Refer to the ‘clock’ section for detailed information on TMR implementation and skew
implementation.

• EDAC protection on Regfile
• EDAC protection on external memory interface
• Parity protection on instruction and data caches

Figure 5. TMR structure - Clock triplication principle

 20
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Watch Points The integer unit contains four hardware watch-points allowing generation of a trap on an arbi-
trary memory address range. Any binary aligned address range can be watched (the two less
significant bits are ignored)

Each watch-point consists in a pair of application-specific registers
• break address register

The break address defines a reference address for testing.
• mask register

The mask indicates which bits of the break address register are to be effectively taken in
account during address test

Configuration A watchpoint is enabled setting logical one at least one of the three bits IF, Dl or DS in the
watchpoint address and mask registers. When all three bits are set logical zero, the watchpoint
is disabled.

If the instruction fetch bit (IF) from the watchpoint address register is set logical one, any attempt
to fetch an instruction from one of the address defined by ADDR and MASK results in a trap
generation.

If the data store bit (DS) from the watchpoint address register is set logical one, any attempt to
store data to one of the address defined by ADDR and MASK results in a trap generation.

If the data load bit (DL) from the watchpoint mask register is set logical one, any attempt to load
a data from one of the address defined by ADDR and MASK results in a trap generation.

Operation To detect if an address is part of the memory address range that traps, address bit 31 down to
bit 2 are Xored with the BADx BADDx.

This operation is based on the following segmentation of an address.

Table 7.
bit num. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

field Address ignored

Address Segmentation

With such segmentation, it is possible to define trap segment from 4bytes up to 1Gbyte.

The result of the Xor is then Anded with the BMAx BMAx.

If the result is zero, this indicates that address specified is in the watched range. Then, a watch-
point hit error is generated. Trap 0x0B is generated. If result is different from zero, address is out of
the watched address range.

Figure 6. Watchpoint Hit Principle

Watchpoint Address Reg.
%asrx

A
D

D
R

M
A

SK

30 30

30
30

Trap 0x0B

D
at

a
B

us
A

dd
re

ss
 B

us

Watchpoint Mask Reg.
%asry

logic

IF

DS

DL

 AT697F ADVANCE INFORMATION

 21
7703C–AERO–6/09

Traps and
Interrupts

Overview The AT697F supports two types of traps:
- synchronous traps
- asynchronous traps also called interrupts.

Synchronous traps are caused by hardware responding to a particular instruction. They occur
during the instruction that caused them. Asynchronous traps occur when an external event inter-
rupts the processor. They are not related to any particular instruction and occur between the
execution of instructions.

A trap is a vectored transfer of control to the supervisor through a special trap table that contains
the first four instructions of each trap handler. The trap base address (TBR) of the table is estab-
lished by supervisor and the displacement, within the table, is determined by the trap type.

A trap causes the current window pointer to advance to the next register window and the hard-
ware to write the program counters (PC & nPC) into two registers of the new window.

Synchronous
Traps The AT697F follows the general SPARC trap model. The table below shows the implemented

traps and their individual priority.

Table 8. Trap Overview

Trap TT (trap type) Priority Description

reset 0x00 1 Power-on reset

write error 0x2b 2 Write buffer error

instruction_access_exception 0x01 3 Error during instruction fetch
Edac uncorrectable error during instruction fetch

illegal_instruction 0x02 5 UNIMP or other un-implemented instruction

privileged_instruction 0x03 4 Execution of privileged instruction in user mode

fp_disabled 0x04 6 FP instruction while FPU disabled

cp_disabled 0x24 6 co-processor instruction while co-processor disabled

watchpoint_detected 0x0B 7 Instruction or data watchpoint match

window_overflow 0x05 8 SAVE into invalid window

window_underflow 0x06 8 RESTORE into invalid window

register_hadrware_error 0x20 9 register file uncorrectable EDAC error

mem_address_not_aligned 0x07 10 Memory access to un-aligned address

fp_exception 0x08 11 FPU exception

data_access_exception 0x09 13 Access error during load or store instruction

tag overflow 0x0A 14 Tagged arithmetic overflow

divide_exception 0x2A 15 Divide by zero

trap_instruction 0x80 -0xFF 16 Software trap instruction (TA)

 22
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Traps Description • reset - A reset trap is caused by an external reset request. It causes the processor to begin
executing at virtual address 0. After a Reset Trap, no special memory states are defined
exept the bits PSR ET’ and PSR S that are initialized respectively ‘0’ and ‘1’.

• write error - An error exception occurred on a data store to memory.
• instruction_access_exception - A blocking error exception occurred on an instruction

access.
• illegal_instruction - An attempt was made to execute an instruction with an unimplemented

opcode, or an UNIMP instruction, or an instruction that would result in illegal processor
state.

• privileged_instruction - An attempt was made to execute a privileged instruction while
supervisor bit PSR S is ‘0’ (not in supervisor mode).

• fp_disabled - An attempt was made to execute an FPU instruction while FPU is not enabled
or not present.

• cp_disabled - An attempt was made to execute a co-processor instruction while co-
processor is not enabled or not present.

• watchpoint_detected - An instruction fetch memory address or load/store data memory
address matched the contents of a pre-loaded implementation-dependent “watchpoint”
register.

• window_overflow - A SAVE instruction attempted to cause the current window pointer
(CWP) to point to an invalid window in the WIM.

• window_underflow - A RESTORE or RETT instruction attempted to cause the current
window pointer (CWP) to point to an invalid window in the WIM.

• register_hardware_error - An error exception occurred on a read only register access.
A register file uncorrectable error was detected.

• mem_address_not_aligned - A load/store instruction would have generated a memory
address that was not properly aligned according to the instruction, or a JMPL or RETT
instruction would have generated a non-word-aligned address.

• fp_exception - An FPU instruction generated an IEEE_754_exception and its corresponding
trap enable mask (TEM) bit was 1, or the FPU instruction was unimplemented, or the FPU
instruction did not complete, or there was a sequence or hardware error in the FPU. The
type of floating-point exception is encoded in the FSR FTT.

• data_access_exception - A blocking error exception occurred on a load/store data access.
EDAC uncorrectable error.

• tag_overflow - A tagged arithmetic instruction was executed, and either arithmetic overflow
occurred or at least one of the tag bits of the operands was non zero.

• trap_division_by_zero - An integer divide instruction attempted to divide by zero.
• trap_instruction - A software instruction (Ticc) was executed and the trap condition

evaluated to true.

When multiple synchronous traps occur at the same cycle (i.e hardware errors), the highest pri-
ority trap is taken, and lower priority traps are ignored.

 AT697F ADVANCE INFORMATION

 23
7703C–AERO–6/09

Asynchronous
Traps / Interrupts

The AT697F handles up to 15 interrupts. The interrupt controller is used to prioritize and propa-
gate interrupts requests from internal or external devices to the integer unit.

Figure 7. Interrupt Controller Block Diagram

D
at

a
B

us
Interrupt Pending Reg.

ITP

Interrupt Force Reg.
ITF

Interrupt Mask & Priority Reg.
ITMP

Interrupt Clear Reg.
ITC

I/O Interrupt Reg.
IOIT1

priority

mask trap1x generation

PIO[15:0] Internal Interrupt
(Timer1, Uart1,...)

Interrupt Sources

IOIT2

Operation When an interrupt is generated, the corresponding bit is set in the interrupt pending register
(ITP). The pending bits are ANDed with the interrupt mask register and then forwarded to the pri-
ority selector. The highest interrupt from priority level 1 will be forwarded to the IU - if no
unmasked pending interrupt exists on priority level 1, then the highest unmasked interrupt from
priority level 0 is forwarded.

When the IU acknowledges the interrupt, the corresponding pending bit will automatically be
cleared.

Interrupt can also be forced by setting a bit in the interrupt force register. In this case, the IU
acknowledgement will clear the force bit rather than the pending bit.

After reset, the interrupt mask register is set to all zeros while the remaining control registers are
undefined.

Interrupt List The following table presents the assignement of the interrupts.

Table 9. Interrupt Overview

Interrupt TT (Trap Type) Source

15 0x1F I/O interrupt [7]

14 0x1E PCI

13 0x1D I/O interrupt [6]

12 0x1C I/O interrupt [5]

11 0x1B DSU trace buffer

10 0x1A I/O interrupt [4]

9 0x19 Timer 2

8 0x18 Timer 1

7 0x17 I/O interrupt [3]

6 0x16 I/O interrupt [2]

5 0x15 I/O interrupt [1]

4 0x14 I/O interrupt [0]

3 0x13 UART 1

 24
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Non Maskable
Interrupt (NMI)

The AT697F handles interrupt 15 (trap type TT = 0x1F). This interrupt can not be masked by the inte-
ger unit of the processor. It shall be used with care as the NMI of the processor.

I/O interrupts As an alternate function of the general purpose interface, the AT697F allows to input interrupt
from external devices. Up to eight external interrupts can be programmed at the same time. The
external interrupts are assigned to interrupt 4, 5, 6, 7,10, 12, 13 and 15.

Two registers are defined for configuration of the IO interrupts :
• IOIT1 register is used for control of IO interrupt 0, 1, 2 and 3
• IOIT2 register is used for control of IO interrupt 4, 5, 6 and 7

Each I/O interrupt is controlled through four fields in one of the above register (IOITx) : ENx,
LEx, PLx and ISELx.

An I/O interrupt is enabled setting logical one to IOITx ENx . Setting this bit logical zero dis-
ables the interrupt. The IOITx ISELx defines which port of the general purpose interface should
generate I/O interrupt x. The port can be selected from within PIO[15:0] and D[15:0]*.

Each I/O interrupt can have its trigger mode and its polarity individually configured. When bit
IOITx LEx is set logical one, the corresponding I/O interrupt is edge triggered. If the polarity bit
IOITx PLx is driven logical one the interrupt triggers when a rising edge is applied on the pin. If
the polarity bit is driven logical zero the interrupt triggers when a falling edge is applied on the
pin.

When the bit IOITx LEx is set logical zero, the corresponding I/O interrupt is level sensitive. If
the polarity bit IOITx PLx is driven logical one the interrupt triggers when a high level is applied
on the pin. If the polarity bit is driven logical zero the interrupt triggers when a low level is applied
on the pin.

The following table summarizes the I/O interrupt configurations.

Table 10.

LEx PLx Trigger

0 0 low level

0 1 high level

1 0 falling edge

1 1 rising edge

I/O Interrupt Configuration

2 0x12 UART 2

1 0x11 Internal bus error

Interrupt TT (Trap Type) Source

 AT697F ADVANCE INFORMATION

 25
7703C–AERO–6/09

Interrupt Priority The 15 interrupts handled by the AT697F are prioritised, with interrupt 15 (TT = 0x1F) having the
highest priority and interrupt 1 (TT = 0x11) the lowest.

It is possible to change the priority level of an interrupt using the two priority levels from the inter-
rupt mask and priority register (ITMP). Each interrupt can be assigned to one of two levels as
programmed in the Interrupt mask and priority register. Level 1 has higher priority than level 0.
Within each level the interrupts are prioritised.

 26
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Memory
Interface

Overview The AT697F provides a 32-bit bus capable to interface PROM, memories mapped I/O devices,
asynchronous static rams (SRAM) and synchronous dynamic rams (SDRAM). The memory bus
can be configured either for 8-bit, 32-bit or 40-bit accesses. The memory controller manages up
to 2 Gbytes of external memory. The following table presents the memory controller address
map.

Table 11. Memory Controller address map

Address Range Size Mapping

0x00000000 - 0x1FFFFFFF 512M PROM

0x20000000 - 0x2FFFFFFF 256M I/O

0x40000000 - 0x7FFFFFFF 1G SRAM/SDRAM

For applications that require smaller memory areas and/or smaller performances, it is possible to
configure some memory spaces as 8-bit wide data bus.

All the configuration of the memory interface is done through the three memory controller regis-
ters : MCFG1, MCFG2 and MCFG3. MCFG1 is the register dedicated to PROM and IO
configuration. SRAM and SDRAM are configured through MCFG2 and MCFG3.

Here is an overview of the 32-bit interconnection between the AT697F and external memories.

Figure 8. Memory Interface Overview
CS
OE
WE

A
D

PROM

CS
OE
WE

A
D

I/O

CS
OE
WE

A
D

SRAM
RAMS*[4:0]

RAMOE*[4:0]
RWE*[3:0]

ROMS*[1:0]
OE*

WRITE*

IOS*

AT697F

A[27:0]

D[31:0]

RAS
CAS
WE

BA

D

SDRAMSDRAS*
SDCAS*
SDWE*

A[16:15]

DQMSDDQM[3:0]

CLK
CSN

SDCLK
SDCSN[1:0]

A
A[14:2]

To improve the bandwidth of the memory bus, accesses to consecutive addresses can be per-
formed in burst mode. Burst transfers will be generated when the memory controller is accessed
using a burst request from the internal bus. These includes instruction cache-line fills, double
loads and double stores. The timing of a burst cycle is identical to the programmed basic cycle
with the exception that during read transactions, the lead-out cycle will only occurs after the last
transfer.

 AT697F ADVANCE INFORMATION

 27
7703C–AERO–6/09

RAM Interface The memory controller gives the capability to control up to 1Gbyte of RAM. The global RAM area
supports two RAM types : asynchronous static RAM (SRAM) and synchronous dynamic RAM
(SDRAM).

SRAM interface

Overview The SRAM interface can manage up to five SRAM banks. The control of the SRAM memory
accesses uses a standard set of pin, including chip selects (RAMS*x), output enable
(RAMOE*x) and write enable (RWE*x) lines.

The bank size of the four first banks of the SRAM area can be configured by setting the value of
MCFG2 RAMBS. The bank size can be programmed in binary step from 8 Kbytes to 256
Mbytes. Whatever is the size of the four first banks, they are always contiguous. These memory
banks are selected with RAMS*[3] down to RAMS*[0].

The fifth SRAM bank controlled by RAMS*[4] has a fix dimension. This bank always resides at
the upper address 0x60000000. This bank is always 256 Mbytes large.

Figure 9. SRAM bank organisation

SRAM bank size 256MB 128MB 64MB

Start Address Memory
assignement

Memory
assignement

Memory
assignement

0x7C000000

Unused Unused Unused
0x78000000

0x74000000

0x70000000

0x6C000000

RAMS*[4](1)(2) RAMS*[4](2) RAMS*[4](2)
0x68000000

0x64000000

0x60000000

0x5C000000

RAMS*[1]

RAMS*[3]

Unused
0x58000000

0x54000000
RAMS*[2]

0x50000000

0x4C000000

RAMS*[0]

RAMS*[1]
RAMS*[3]

0x48000000 RAMS*[2]

0x44000000
RAMS*[0]

RAMS*[1]

0x40000000 RAMS*[0]

Notes: 1. If the SRAM bank size is set to 256Mbytes, SRAM bank 2 & bank 3 are in overlay with SRAM
bank 4. In this case, bank 2 and bank 3 control signals are never asserted. Bank 4 has the
priority.

2. When SDRAM is enabled, priority is given to the SDRAM. Any access to addresses higher
than 0x60000000 is driven to SDRAM. No SRAM control is activated.

SRAM Read Access A read access to SRAM consists in two data cycles and between zero and three waitstates. On
non-consecutive accesses, a lead-out cycle is added after a read cycle to prevent bus conten-
tion due to slow turn-off time of memories or I/O devices. On consecutive accesses, no lead-out
cycle is performed between the acesses but only one is performed at the end of the operations
(RAMSN and RAMOE are not deasserted).

 28
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

When a read access to SRAM is performed, a separate output enable signal is provided for each
SRAM bank and it is only asserted when that bank is selected.

Figure 10. SRAM read transaction (0-waitstate)

data1 data2

D1

lead-out

A1

CLK

A

RAMS*

D

RAMOE*

SRAM Write Access Each byte lane has an individual write strobe (RAMWE*) to allow efficient byte and half-word
writes.

Each write access to SRAM consists of three states and between zero and three waitstates. The
three mandatory states are divided in one write setup cycle, one data cycle and one lead-out
cycle.

Figure 11. SRAM write transaction (0-waitstate)
lead-in data lead-out

D1

A1

CLK

A

RAMS*

D

RWE*

If the external memory use a common write strobe for the full 32-bit data, set the
MCFG2 RMW. This will enable read-modify-write transactions for sub-word writes.

Waitstates For application using slow SRAM memories, the SRAM controller provides the capability to
insert wait-states during the SRAM accesses. Two types of wait-states can be inserted :
• Programmed delay, available for bank 0 up to bank 4
• ‘Hardware’ bus delay, available for bank 4 only

Up to three waitstates can be programmed for SRAM accesses. Read and write waitstates can
be individually programmed. Setting the MCFG2 RAMRWS value defines the number of wait-
states to insert during an SRAM read. Setting the MCFG2 RAMWWS value defines the
number of waitstates to insert during an SRAM write.

 AT697F ADVANCE INFORMATION

 29
7703C–AERO–6/09

Figure 12. RAM read access with one programmed waitstate
data2 waitstate

D1

lead-out

A1

CLK

A

RAMS*

D

OE*

data1

For and only for RAM bank 4, If the application needs more delay during the SRAM transfer, it is
possible to introduce more delay by activating the hardware bus ready (BRDY*) detection in
MCFG2. Refer to paragraph “BRDY Wait states”, page 38.

Bus width To support applications with low memory performance requirements, the SRAM area can be
configured for 8-bit operations. The configuration of SRAM in 8-bit mode is done programming
MCFG2 RAMWDH, SRAM bus width field.

When the SRAM bus is configured as an 8-bit wide bus, data 31 downto 24 shall be used as
interface.

Figure 13.

CS
OE
WE

A
D

SRAMRAMOE0*

A D

AT697F
A[27:0]

D[31:24]

D[31:24]

A[27:0]

RWE0*

RAMS0*

SRAM 8-bit bus width connection

Since access to memory is always done on 32-bit word basis, read access to 8-bit memory will
be transformed in a burst of four read transactions. If EDAC protection is active, 5 read cycles
are necessary to complete the access (please refer to “Error Management - EDAC”, page 40 for
more details). During write operation, only the necessary bytes are writen.

 30
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Write Protection Two write protection schemes are provided to prevent accidental over-writing to the RAM area,
the “Start/End address Scheme” and the “Mask Scheme”. These two schemes are explained in
the following two sub-chapter

Start/End address
Scheme

Two memory areas are defined by using a start-address and an end-address register. The first
address of the protected memory area is calculated as 0x40000000 + START*4. The last
address of the protected memory area is calculated as 0x40000000 + END*4.

Table 12.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 START BP 0

Start Address Register (WPSTAx)

Table 13.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 STOP US SU

End Address Register (WPSTOx)

Setting WPSTAx BPx to logical one, any access inside the two areas defined by the start/end
registers will cause a memory exception (trap 0x2B). The first address of the protected against
write operation is calculated as 0x40000000 + START*4. The first address outside the protected
memory area is calculated as 0x40000000 + END*4 + 4.

Setting WPSTAx BPx to logical zero the area between the start address and the end address
defines the memory where write access is permitted, and a write access outside both areas will
cause a memory exception (trap 0x2B). The first address where write operation is permitted is
calculated as 0x40000000 + START*4. The first address outside the protected allowed area is
calculated as 0x40000000 + END*4 + 4.

The start/end address protection scheme is enabled when at least one of the user mode protec-
tion and the supervisor mode protection is valid. The write protection can be configured to
prevent the application from user and/or supervisor write access.
• Memory is protected against User write when WPSTOx USx bit is set logical 1
• Memory is protected against Superviser write when WPSTOx SUx bit is set logical 1

 AT697F ADVANCE INFORMATION

 31
7703C–AERO–6/09

Figure 14. RAM Protection Mode Overview

Segment 2

Segment 1

Segment 2

Segment mode (bp = 0)

Write trap

Block mode (bp = 1)

RAM RAM

Segment 1

Write trap

Write trap

Write trap

Write trap
START1

END1

START2

END2

START1

END1

START2

END2

Mask Scheme Two block protection units are available for RAM area. Each one is controlled through a
write protection register (WPRn). Two major fields are defined : a TAG and a MASK.
• The TAG defines the 15 most significant bits of the address of the block to be write protected.
• The Mask specifies which bits of the TAG are really relevant for the protection.

The write protection on the RAM area is enabled setting logical one in WPRx EN. If this bit is
set logical zero, no protection is activated.

Two protection modes can be programmed. If the WPRx BP is set logical one the protection is
active within the segment. If this bit is set logical zero, the exterior of the segment is protected.

Figure 15. RAM Protection Mode Overview

Segment 2

Segment 1

Segment 2

Segment mode (bp = 0)

Write trap

Block mode (bp = 1)

RAM RAM

Segment 1

Write trap

Write trap

Write trap

Write trap

 32
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

To detect if the written address is part of a protected segment (or block), address bit 29 down to
bit 2 are Xored with the WPRx TAG. This operation is based on the following segmentation of
an address.

Table 14.
bit num. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

field area most significant byte 32Kbyte protected block

Address Segmentation

With such segmentation, memory block in the range of 32Kbyte up to 1Gbyte can be protected.

The result of the Xor is then Anded WPRx MASK.

If the result is zero, this indicates that address specified is in the protected range. If result is dif-
ferent from zero, address is out of the protected address range. If a write protection error is
detected, the write transaction is stopped. Then, a memory access error is generated. Trap
0x2B is generated

Figure 16. RAM Write Protection Overview

Write Protection Reg.
WRPn

TA
G

M
A

SK

B
P

15 15

15
15

Trap 0x2B

EN

D
at

a
B

us

A
dd

re
ss

 B
us

logic

Protection Priorities As a result of the write protection implementation for the RAM area,the two RAM write protection
schemes can be used simultaneously. Combining the write protection schemes leads to the fol-
lowing behaviors :
• If all the enable protection units are configured in block protect mode (BP = 0), then a write

protect error is generated when any of the units signal a write protection hit. In this mode, if
at least one protection error is triggered, the write protection trap is raised.

• If at least one of the protection units operates in segment mode (BP=1), then a write protect
error is generated only if all units configured in segment mode signal a protection error.

 AT697F ADVANCE INFORMATION

 33
7703C–AERO–6/09

SDRAM The synchronous dynamic RAM interface can manage up to two SDRAM banks. The control of
the SDRAM memory accesses uses a standard set of pin, including chip selects (SDCS*x), write
enable (SDWE*), data masks (SDDQM*x) and clock lines.

The bank size of the two SDRAM banks can be configured by setting the value of the
MCFG2 SDRBS. The bank size can be programmed in binary step from 4 Mbytes to 512
Mbytes.

The controller supports 64M, 256M and 512M devices with 8 to 12 column-address bits, up to 13
row-address bits, and 4 banks. Only 32-bit data bus width is supported for SDRAM banks.

Address Mapping The start address for the SDRAM banks depends upon the SRAM use in the application. If the
the SRAM disable bit MCFG2 SI and the SDRAM enable bit MCFG2 SE are set logical one,
the SDRAM start address is 0x40000000. If the the SRAM disable bit MCFG2 SI is set logical
zero and the SDRAM enable bit MCFG2 SE is set logical one, the SDRAM start address is
0x60000000. If MCFG2 SE if set logical zero, no SDRAM can be used.

The address bus of the SDRAMs shall be connected to A[14:2], the bank address to A[16:15].
Devices with less than 13 address pins should only use the less significant bits of A[14:2].

Figure 17. SDRAM connection overview
A D

AT697F

A[27:0]

D[31:0]

RAS
CAS
WE

BA

D

SDRAMSDRAS*
SDCAS*
SDWE*

A[16:15]

DQMSDDQM[3:0]

CLK
CSN

SDCLK
SDCSN[1:0]

A
A[14:2]

SDRAM Timing
Parameters

To provide optimum access cycles for different SDRAM devices some SDRAM parameters can
be programmed through MCFG2 register. The programmable SDRAM parameters are the fol-
lowing :

Table 15. SDRAM Programmable Timing Parameters

Function Parameter Range Unit

CAS latency 2 - 3 clocks

Precharge to activate tRP 2 - 3 clocks

Auto-refresh command period tRFC 3 - 11 clocks

Auto-refresh interval 10 - 32768 clocks

SDRAM Commands The SDRAM controller can issue three SDRAM commands. Commands to be executed are pro-
grammed through the MCFG2 SDRCMD. When this field is writen with a non zero value, a
SDRAM command is issued :
• if set to ‘01’, Precharge command is sent,
• if set to ‘10’, Auto-Refresh command is sent,
• if set to ‘11’, Load Mode Reg (LMR) is sent.

When the LMR command is issued, the MCFG2 SDRCAS delay programmed is used.
MCFG2 SDRCMD is cleared after a command is executed. When changing the value of the
CAS delay, a LOAD-MODE-REGISTER command should be generated at the same time.

The SDRAM controller also provides a refresh command. It can be enabled by setting a logical
one into MCFG2 SDRREF.

 34
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

The Auto-Refresh command enables a periodical refresh for both SDRAM banks. The period
between two Auto-Refresh command is programmed in MCFG3 SRCRV.

Depending on SDRAM type, required period is typically 7.8 or 15.6μs. This corresponds to 780
or 1560 clock cycle at 100MHz.

Refresh period is calculated as Refresh Period Reload value 1+
sdclk frequency
--=

SDRAM Initialisation After reset, the SDRAM controller automatically performs the SDRAM initialisation sequence. It
consists in PRECHARGE, two AUTO-REFRESH cycles and LOAD-MODE-REG on both banks
simultaneously.
The controller programs the SDRAM to use page burst on read and single location access on
write. A CAS latency of 3 is programmed by default. This value can be updated later by
software.

SDRAM Read Access A read transaction consists in three main operation. First, an ACTIVATE command to the
desired bank and row is performed. Then, after the programmed CAS delay, a READ command
is sent. The read transaction is terminated with a PRE-CHARGE command. No bank is left open
between two accesses.

A burst read is performed if a burst access is requested on the internal bus.

SDRAM Write Access A write transactions consists in three main operations. First, an ACTIVATE command to the
desired bank and row is performed. Then, a WRITE command is sent. The write transaction is
terminated with the PRE-CHARGE command.

A burst write on internal bus generates a burst of write commands without idle cycles in-
between.

Access Error An access error can be indicated to the processor asserting the BEXC* signal. If enabled by set-
ting logical one to MCFG1 BEXC , the BEXC* signal is sampled with the data.

If the BEXC* signal is driven low by the external device during the access, an error response is
generated on the internal bus.
• Trap 0x01 is taken if an instruction fetch is in progress
• Trap 0x09 is taken if a data space access is in progress
• Trap 0x2B is taken if a data store is in progress

 AT697F ADVANCE INFORMATION

 35
7703C–AERO–6/09

PROM Interface

Overview The memory controller give the capability to control up to 512Mbyte of PROM. The PROM inter-
face can manage up to two PROM banks. The control of the PROM memory accesses uses a
standard set of pin, including chip selects (ROMS*x), output enable (OE*), read (READ) and
write (WRITE*) lines.

The bank size of the PROM banks is not programmable. The lower half part of the PROM area
(0x00000000 up to 0x0FFFFFFF) is controlled by the ROMS0* PROM select signal. The upper
half part of the PROM area (0x10000000 up to 0x1FFFFFFF) is controlled by the ROMS1*
PROM select signal.

PROM Read Access A read access to PROM consists in two data cycles and waitstates if any programmed. On non-
consecutive accesses, a lead-out cycle is added after a read transaction to prevent bus conten-
tion due to slow turn-off time of memories or I/O devices. On consecutive accesses, no lead-out
cycle is performed between the acesses but only one is performed at the end of the operations.

Figure 18. PROM Read transaction (0 Waitstate)

data1 data2

D1

lead-out

A1

CLK

A

ROMS*

D

OE*

PROM Write Access Each write access to PROM consists of three states and of waitstates if any programmed. The
three mandatory states are divided in one write setup cycle, one data cycle and one lead-out
cycle. The write operation is strobed by the WRITE* signal.

Figure 19. PROM Write transaction (0 waitstate)

lead-in data lead-out

D1

A1

CLK

A

ROMS*

D

WRITE*

Waitstates For application using slow ROM memories, the ROM controller provides the capability to insert
wait-states during the accesses. Two types of wait-states can be inserted :
• Programmed delay
• ‘Hardware’ bus ready delay

Up to 30 waitstates can be programmed for PROM accesses. Read and write waitstates can be
individually programmed. Setting MCFG1 PRRWS defines the number of waitstates to insert

 36
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

during a PROM read access. Setting MCFG1 PRWWS defines the number of waitstates to
insert during a PROM write.

MCFG1 PRRWS and MCFG1 PRWWS can be programmed to take values from 0 up to 15.
The effective number of waitstates applied during an access is then twice the programmed
value. In that way, programming two waitstates results in the insertion of four wait cycles during
the access.

Figure 20. ROM read access with PRRWS=1 (two programmed waitstate

data2 waitstate

D1

lead-out

A1

CLK

A

ROMS*

D

OE*

data1 waitstate

s)

If the application needs more time for ROM transfer, it is possible to introduce more delay by
activating the hardware bus ready MCFG1 PBRDY. Refer to paragraph “BRDY Wait states”,
page 38.

After a reset operation of the processor (or at power up), the MCFG1 PRRWS and
MCFG1 PRWWS waitstates for the PROM area are set default to 15, resulting in 30 effective
waitstates and the MCFG1 PBRDY is set to 0.

Write Protection Write protection is provided to prevent accidental over-writing to PROM area. It is controlled
through the PROM write enable bit MCFG1 PRWE. When set 1, this bit enables write to
PROM. When set 0, no PROM write transaction is available.

Bus width To support applications with low memory and performance requirements, the PROM area can
be configured for 8-bit operations. The configuration of PROM in 8-bit mode is done program-
ming MCFG1 PRWDH.

When the PROM bus is configured as an 8-bit wide bus, data 31 downto 24 shall be used as
interface.

Figure 21.

CS
OE
WE

A
D

PROMOE*

A D

AT697F
A[27:0]

D[31:24]

D[31:24]

A[27:0]

WRITE*

ROMS0*

PROM 8-bit bus width connection

Since access to memory is always done on 32-bit word basis, read access to 8-bit memory will
be transformed in a burst of four read transactions. If EDAC protection is active, 5 read cycles
are necessary to complete the access (please refer to protection section for more details). Dur-
ing write operation, only the necessary bytes are writen.

Access Error An access error can be indicated to the processor asserting the BEXC* signal. If enabled by set-
ting logical one to MCFG1 BEXC , the BEXC* signal is sampled with the data.
• Trap 0x01 is taken if an instruction fetch is in progress
• Trap 0x09 is taken if a data space is in progress

 AT697F ADVANCE INFORMATION

 37
7703C–AERO–6/09

• Trap 0x2B is taken if a data store is in progress

Memory Mapped
I/O

Overview The memory controller give the capability to control up to 256Mbyte of I/O. The I/O area consists
in a single large bank. The control of the I/O area accesses uses a standard set of pin, including
chip selects (IOS*x), output enable (OE*), read (READ) and write (WRITE*) lines.

The size of the I/O bank is not programmable. The entire I/O area (0x20000000 up to
0x2FFFFFFF) is controlled by the IOS* select signal.

I/O Read Access A read access to I/O consists in a lead-in cycle, two data cycles, waitstates if any programmed
and a lead-out cycle. On non-consecutive accesses, the lead-out cycle is used to prevent bus
contention due to slow turn-off time of memories or I/O devices.

The I/O select signal (IOSEL*) is delayed one clock to provide stable address.

Figure 22. single I/O read transaction with lead-out

lead-in data 2

D1

lead-out

A1

CLK

A

IOS*

D

OE*

data 1

I/O Write Access Each write access to I/O consists of three states and of waitstates if any programmed. The three
mandatory states are divided in one write setup cycle, one data cycle and one lead-out cycle.
The write operation is strobed by the WRITE* signal.

Figure 23. I/O write transaction

lead-in data lead-out

D1

A1

CLK

A

IOS*

D

WRITE*

Waitstates For application using slow I/O devices, the I/O controller provides the capability to insert wait-
states during the accesses. Two types of wait-states can be inserted :
• Programmed delay,
• ‘Hardware’ delay.

Up to 15 waitstates can be programmed for I/O accesses. Read and write waitstates are pro-
grammed simultaneously. Setting MCFG1 IOWS defines the number of waitstates to insert
during any access to/from I/O areas. MCFG1 IOWS can be programmed to take values from 0
up to 15.

 38
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

If the application needs more time for IO transfer, it is possible to introduce more delay by acti-
vating the hardware bus ready detection bit MCFG1 IOBRDY. Refer to paragraph “BRDY Wait
states”, page 38.

Write Protection Read and write protections are provided to prevent accidental accesses to I/O area. Protection
is controlled through the I/O protection bit MCFG1 IOP.

Bus width To support applications with low memory and performance requirements, I/O area can be con-
figured for 8-bit operations. The configuration of I/O in 8-bit mode is done programming the I/O
bus width in MCFG1 IOWDH.

In such configuration, I/O device is not accessed by multiple 8-bit accesses as other memory
areas. Only one single access is performed

When the I/O bus is configured as an 8-bit wide bus, data 31 downto 24 shall be used as
interface.

Figure 24.

CS
OE
WE

A
D

IOOE*

A D

AT697F
A[27:0]

D[31:24]

D[31:24]

A[27:0]

WRITE*

IOS*

I/O 8-bit bus width connection

Access Error An access error can be indicated to the processor asserting the BEXC* signal. If enabled by set-
ting logical one the MCFG1 BEXC, the BEXC* signal is sampled with the data.
• Trap 0x01 is taken if an instruction fetch is in progress
• Trap 0x09 is taken if a data space is in progress
• Trap 0x2B is taken if a data store is in progress

BRDY Wait states For PROM accesses, for IO accesses and for RAM bank 4, but not for the other RAM banks, it is
possible to introduce additional wait states determined by the peripherals with the BRDY* mech-
anism. This capability can be enabled separatly by the respective configuration bits
MCFG1 PBRDY, MCFG1 IOBRDY and MCFG2 RAMBRDY. If the configuration bit is set to
one, the processor waits before ending the transfer, as long as the BRDY* pin is driven high. If
the configuration bit is set to zero (reset state), the BRDY* pin is ignored.Termination of the
BRDY* induced wait states can be in two different modes:
• If MCFG1 ABRDY is set to zero (reset state), BRDY* needs to be asserted zero

synchronously with respect to SDCLK, respecting the setup and hold times t19 and t20
(Refer to section “AC Characteristics”, page 130).The processor will terminate the access at
the rising clock edge immediately following the rising edge during which BRDY* was low by
de-asserting the OE* and the select signal (RAMS*[4], IOS* or ROMS*), as shown in the
figures.

• If MCFG1 ABRDY is set to one, BRDY* is double synchronised in the processor, and it can
be asserted asynchronously, without respecting t19 and t20, provided it is asserted low for at
least 1.5 clock cycle. Asynchronous BRDY* timing implies an uncertainty, the access
terminates at the second or third edge after its assertion, and read data needs to be kept
stable until OE* and the select signal (RAMS*[4], IOS* or ROMS*) are de-asserted.

It should be noted that the BRDY* mechanism can be used in addition to the nominal duration of
an access (one or two data cycles depending on the access type) and to the fixed wait states
programmed in the “WS” fields (MCFG2 RAMWWS, MCFG1 PRWWS, MCFG1 IOWS).
Even when BRDY* goes low earlier, the trasaction does not terminate until expiration of the pro-
grammed wait states.

 AT697F ADVANCE INFORMATION

 39
7703C–AERO–6/09

Figure 25. Read access with one BRDY* controlled waitstate, MCFG1 AB
data2 waitstate

D1

lead-out

A1

CLK

A

ROMS*

D

OE*

BRDY*

data1

=0

Figure 26. Read access with one BRDY* controlled waitstate

data2 waitstate

D1

lead-out

A1

CLK

A

ROMS*

D

OE*

BRDY*

data1 waitstate

, MCFG1 AB=1

 40
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Error Management
- EDAC

Overview The AT697F processor implements an on-chip error detector and corrector (EDAC). The on-chip
memory EDAC can correct one error in a 32-bit word and detect two errors in a 32-bit word. The
processor EDAC implemention enables data correction on-the-fly so that no timing penalty
occurs during correction.

EDAC capability
mapping

Data error management with the EDAC can be used on both PROM and RAM memory areas.
The following table presents the EDAC protection capabilities provided by the processor.
Table 16.

Address Range Area EDAC Protected

0x00000000 - 0x1FFFFFFF PROM
8 bits yes

32 bits yes

0x20000000 - 0x3FFFFFFF I/O All no

0x40000000 - 0x7FFFFFFF RAM
8 bits yes

32 bits yes

EDAC capability on Memories

PROM protection Setting logical one the PROM EDAC enable bit MCFG3 PE, the data protection is enabled. For
each read and write transaction to the PROM area the EDAC act as an error detector and an
error corrector. When set logical zero, the EDAC is transparent for the PROM access.

At power-on or at reset, the value of the MCFG3 PE is directly copied from the PIO2 pin. In that
way, it is possible to start the application with the EDAC enabled by driving high PIO2 during the
power-on sequence (or reset sequence).

RAM protection Setting logical one the RAM EDAC enable bit MCFG3 RE, the data protection is enabled. For
each read and write transaction to the RAM area the EDAC act as an error detector and an error
corrector. When set logical zero, the EDAC is transparent for the RAM access.

Operation The processor uses an EDAC based on a seven bit Hamming code that detects any double error
on a 32-bit bus and corrects any single error on a 32-bit bus. Note when the EDAC is enabled
the read-modify-write bit MCFG2 RMW must be set.

Hamming code For each 32-bit data, a seven bit a 7-bit checksum is generated. The equations below show how
the Hamming checkbits (CBx) are generated:
CB0 = D0 ^ D4 ^ D6 ^ D7 ^ D8 ^ D9 ^ D11 ^ D14 ^ D17 ^ D18 ^ D19 ^ D21 ^ D26 ^ D28 ^ D29 ^ D31
CB1 = D0 ^ D1 ^ D2 ^ D4 ^ D6 ^ D8 ^ D10 ^ D12 ^ D16 ^ D17 ^ D18 ^ D20 ^ D22 ^ D24 ^ D26 ^ D28
CB2 = D0 ^ D3 ^ D4 ^ D7 ^ D9 ^ D10 ^ D13 ^ D15 ^ D16 ^ D19 ^ D20 ^ D23 ^ D25 ^ D26 ^ D29 ^ D31
CB3 = D0 ^ D1 ^ D5 ^ D6 ^ D7 ^ D11 ^ D12 ^ D13 ^ D16 ^ D17 ^ D21 ^ D22 ^ D23 ^ D27 ^ D28 ^ D29
CB4 = D2 ^ D3 ^ D4 ^ D5 ^ D6 ^ D7 ^ D14 ^ D15 ^ D18 ^ D19 ^ D20 ^ D21 ^ D22 ^ D23 ^ D30 ^ D31
CB5 = D8 ^ D9 ^ D10 ^ D11 ^ D12 ^ D13 ^ D14 ^ D15 ^ D24 ^ D25 ^ D26 ^ D27 ^ D28 ^ D29 ^ D30 ^ D31
CB6 = D0 ^ D1 ^ D2 ^ D3 ^ D4 ^ D5 ^ D6 ^ D7 ^ D24 ^ D25 ^ D26 ^ D27 ^ D28 ^ D29 ^ D30 ^ D31

Write operation When the processor performs a write operation to a memory protected by the EDAC, it also out-
puts the seven bit checksum on the CB[6:0] pins.

Read operation During a read operation from a protected memory, the seven bit checksum is sampled from the
CB[6:0] inputs. Then, the EDAC verify the checksum to check the presence of an error.

According to the checksum equations, the EDAC calculates its own checksum. Then a syn-
drome generator uses the calculated and the read checksum to qualify if there is no error, one
error or two errors in the read word.

Correctable error If a single error is detected, this leads to a correctable error. The correction is done on-the-fly
during the current access and no timing penalty is induced but the corrected data is not automat-
ically written back to the memory.

 AT697F ADVANCE INFORMATION

 41
7703C–AERO–6/09

The correctable error detection event is reported in the fail address register (FAILAR) and in the
fail status register (FAILSR). If unmasked, interrupt 1 (trap 0x11) is generated. The interrupt can
then be attached to a low priority interrupt handler that scrubs the failing memory location.

Uncorrectable error If a double error is detected, this leads to an un-correctable error. An un-correctable error detec-
tion during a data access leads to a data access exception (trap 0x09). In case the double error
is detected during instruction fetch, it leads to an instruction access error (trap 0x01).

Figure 27.

D
at

a
B

us

Memory Configuration Reg.
MCFG3

CB[7:0]

EDAC

Fail Address Reg.
FAILAR

Fail Status Reg.
FAILSR

A
dd

re
ss

 B
us

tr
ap

 0
x0

1
tr

ap
 0

x0
9

tr
ap

 0
x1

1

EDAC overview

EDAC on 8-bit areas The 8-bit mode applies to RAM and PROM while SDRAM always uses 32-bit accesses.

When a memory area is configured in 8-bit mode, the EDAC checkbit bus (CB[7:0]) is not used
but it is still possible to use EDAC protection.

The data bus mapped on D31:24 is always accessed in a 32-bit wide word basis (4bytes at a
time). The corresponding checkbits are located on top of the selected memory

bank according to the following operation:
• The address A[27:2] of the 32-bit data word is inverted
• The resulting address is then shifted twice right to become a byte address
• The checkbit is written to the derived byte address while the data address chipselect is kept

active so that the current memory area is still active.

A word written as four bytes to addresses 0, 1, 2, 3 will have its checkbits at address
0x0FFFFFFF, addresses 4, 5, 6, 7 at 0x0FFFFFFE and so on.

Here is an example of checkbit addressing:
• The data is written at address 0x00000004
• Inversion of this address lids to 0xFFFFFFFB
• Once shifted we have 0xFFFFFFFE
• The checkbit is located at address 0xFFFFFFFE in the same memory bank as the data.

All the bits up to the maximum bank size will be inverted while the same chip-select is always
asserted.

This way all the bank size can be supported and no memory will be unused (except for a maxi-
mum of 4 Bytes in the gap between the data and checkbit area).

Here is an overview of the memory organization when EDAC is enbled on a 8-bit area.

 42
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Figure 28. Memory Organization when EDAC enabled

data1 byte0
data1 byte1
data1 byte2
data1 byte3
data2 byte0
data2 byte1
data2 byte2
data2 byte3

checksum2
checksum1

Corresponding

Checksum

0x00000007
0x00000006
0x00000005
0x00000004
0x00000003
0x00000002
0x00000001
0x00000000

0x0FFFFFFF
0x0FFFFFFE

memory top address

Note In addition, only byte-writes shall be performed to ROM area when the EDAC is enabled. In
this case, only the corresponding byte are written.

EDAC testing The operation of the EDAC can be tested trough the MCFG3 memory configuration register.

Figure 29.

D
at

a
B

us

Memory Configuration Reg.
MCFG3

CB[7:0]8

EDAC

8

8
TCB

TCB

WB

RB

EDAC testing overview

Write test If the write bypass MCFG3 WB is set logical one, the value of the test checksum from the
MCFG3 TCB field replaces the normal checkbits during memory write transactions.

Read test During memory read transactions, if the read bypass MCFG3 RB is set logical one, the mem-
ory checkbits of the loaded data is stored to the test checkbit MCFG3 TCB.

 AT697F ADVANCE INFORMATION

 43
7703C–AERO–6/09

Cache
Memories

Overview The AT697F processor implements a Harvard architecture with separate instruction and data
buses, connected to two independent cache controllers. In order to improve the speed perfor-
mance of the cpu core, multi-set-caches are used for both instruction and data caches.

The cache replacement policy used for both instruction and data caches is based on the LRU
algorithm. The least recently used (LRU) set of the cache is replaced when new data need to be
stored in cache.

Cache mapping Most of the main memory areas can be cached. The cacheable areas are the PROM and RAM
areas. The following table presents the caching capabilities of the processor.

Table 17.

Address Range Area Cache status

0x00000000 - 0x1FFFFFFF PROM Cached

0x20000000 - 0x3FFFFFFF I/O Non-cacheable

0x40000000 -0x7FFFFFFF RAM Cached

0x80000000 -0xFFFFFFFF Internal Non-cacheable

Cache Capability List

Operation During normal operation, the processor accesses instructions and data using ASI 0x8 - 0xB as
defined in the SPARC standard.

Using the LDA/STA instructions, alternative address spaces as caches can be accessed.
ASI[3:0] are used for the mapping when ASI[7:4] have no influence on operation.
• Access with ASI 0 - 3 will force a cache miss, update the cache if the data was previously

cached or allocate a new line if the data was not in the cache and the address refers to a
cacheable location.

• Access to ASI 4 and 7 will force a cache miss and update the cache if the data was
previously cached.

The following table shows the ASI implementation on the AT697F.
Table 18. ASI Usage

ASI Usage

0x0, 0x1, 0x2, 0x3 Forced cache miss (replace if cacheable)

0x4, 0x7 Forced cache miss (update on hit)

0x5 Flush instruction cache

0x6 Flush data cache

0x8, 0x9, 0xA, 0xB Normal cached access (replace if cacheable)

0xC Instruction cache tags

0xD Instruction cache data

0xE Data cache tags

0xF Data cache data

Note: Please refer to the SPARC v8 specification for detailed information on ASI usage.

Instruction Cache

 44
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Overview The AT697F instruction cache is a multi-set cache of 32 kbyte divided in 4 memory sets. Multi-
set-cache use improves speed performance of the core. The instruction cache is divided into
cache lines with 32 bytes of data. Each line has a cache tag associated with it consisting of a tag
field and one valid bit per 4-byte sub-block.

Cache Control The instruction cache operations are controled with the cache control register (CCR).

Operation On an instruction cache miss to a cachable location, the instruction is fetched and the corre-
sponding tag and data line updated. The instruction cache always works in one of three modes:
• disabled,
• enabled
• or frozen.

The instruction cache current state is reported in the instruction cache state CCR ICS.

Disabled mode If disabled, no cache operation is performed and load and store requests are passed directly to
the memory controller.

Enabled mode If enabled, the cache operates as described above. In the frozen state, the cache is accessed
and kept in synchronisation with the main memory as if it was enabled, but no new lines are allo-
cated on read misses.

Freeze mode If CCR IF is set logical one, the instruction cache is frozen when an asynchronous interrupt is
taken. This can be beneficial in real-time system to allow a more accurate calculation of worst-
case execution time for a code segment. The execution of the interrupt handler will not evict any
cache lines and when control is returned to the interrupted task, the cache state is identical to
what it was before the interrupt.

If a cache has been frozen by an interrupt, it can only be enabled again by enabling the cache in
the CCR. This is typically done at the end of the interrupt handler before control is returned to
the interrupted task.

Burst fetch An instruction burst fetch mode can be enabled setting logical one in CCR IB. If the burst fetch
is enabled, the cache line is filled from main memory starting at the missed address and until the
end of the line. At the same time, the instructions are forwarded to the IU. If the IU cannot accept
the streamed instructions due to internal dependencies or multi-cycle instruction, the IU is halted
until the line fill is completed.

If the IU executes a control transfer instruction during the line fill, the line fill will be terminated on
the next fetch. If instruction burst fetch is enabled, instruction streaming is enabled even when
the cache is disabled. In this case, the fetched instructions are only forwarded to the IU and the
cache is not updated.

Cache Flush Instruction cache can be flushed by executing the FLUSH instruction, setting logical one in
CCR FI, or writing any location with ASI=0x5. The flush operation takes one cycle per line dur-
ing which the IU will is not halted, but during which the cache is disabled. When the flush
operation is completed, the cache will resume the state indicated in the cache control register.

Error reporting If a memory access error occurs during a line fill with the IU halted, the corresponding valid bit in
the cache tag is not set. If the IU later fetches an instruction from the failed address, a cache
miss will occur, triggering a new access to the failed address.

If the error remains, an instruction access error trap (tt=0x1) is generated.

Instruction Cache
Parity

Error detection of cache tags and data is implemented using two parity bits per tag and per 4-
byte data sub-block. The tag parity is generated from the tag value and the valid bits. The data
parity is derived from the sub-block data. The parity bits are written simultaneously with the
associated tag or sub-block and checked on each access. The two parity bits correspond to the
parity of odd and even data (tag) bits.

 AT697F ADVANCE INFORMATION

 45
7703C–AERO–6/09

If a tag parity error is detected during a cache access, a cache miss is generated. The tag and
the data are automatically updated. All valid bits except the one corresponding to the newly
loaded data are cleared. Each error is reported in the instruction cache tag error counter from
the CCR. The instruction cache tag error counter CCR ITE is incremented after each instruc-
tion cache tag error detection.

If a data sub-block parity error occurs, a miss is also generated but only the failed sub-block is
updated with data from main memory. Each error is reported in the instruction cache data error
counter from the CCR. The instruction cache data error counter CCR IDE is incremented after
each instruction cache data error detection.

Data Cache

Overview The AT697F data cache is a multi-set cache of 16 kbyte divided in 2 memory sets. Multi-set-
cache use improves speed performance. The data cache is divided into cache lines with 16
bytes of data. Each line has a cache tag associated with it consisting of a tag field and one valid
bit per 4-byte sub-block.

Cache Control The instruction cache operations are controled with the cache control register (CCR).

Operation

Write The write policy for stores is write-through with no-allocate on write-miss. The write buffer (WRB)
consists of three 32-bit registers used to temporarily hold store data until it is sent to the destina-
tion device. For half-word or byte stores, the stored data replicated into proper byte alignment for
writing to a word-addressed device, before being loaded into one of the WRB registers.

The WRB is emptied prior to a load-miss cache-fill sequence to avoid any stale data from being
read in to the data cache.

Read On a data cache read-miss to a cachable location, 4 bytes of data are loaded into the cache
from main memory.

Cache Flush Data cache can be flushed by executing the FLUSH instruction, setting logical one in CCR FD
in the cache control register, or writing any location with ASI=0x6. The flush operation takes one
cycle per line during which the IU will is not halted, but during which the cache is disabled. When
the flush operation is completed, the cache will resume the state indicated in the cache control
register.

Error Reporting Since the processor executes in parallel with the write buffer, a write error will not cause an
exception to the store instruction. Depending on memory and cache activity, the write transac-
tion may not occur until several clock cycles after the store instructions has completed. If a write
error occurs, the currently executing instruction will take trap 0x2B.
Note: the 0x2B trap handler should flush the data cache, since a write hit would update the cache while

the memory would keep the old value due the write error.

If a memory access error occurs during a data load, the corresponding valid bit in the cache tag
will not be set. and a data access error trap (tt=0x09) is generated.

Data Cache Parity Error detection of cache tags and data is implemented using two parity bits per tag and per 4-
byte data sub-block. The tag parity is generated from the tag value and the valid bits. The data
parity is derived from the sub-block data. The parity bits are written simultaneously with the
associated tag or sub-block and checked on each access. The two parity bits correspond to the
parity of odd and even data (tag) bits.

If a tag parity error is detected during a cache access, a cache miss is generated. The tag and
the data are automatically updated. All valid bits except the one corresponding to the newly
loaded data are cleared. Each error is reported in the instruction cache tag error counter from
the CCR. CCR DTE is incremented after each data cache tag error detection.

 46
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

If a data sub-block parity error occurs, a miss is also generated but only the failed sub-block is
updated with data from main memory. Each error is reported in the data cache data error coun-
ter from the CCR. CCR DDE is incremented after each data cache data error detection.

Data Cache Snooper In addition to the cache controller, a snooper is implemented on the on-chip cache subsystem.
The cache snooper is enabled setting logical one in CCR DS.

This snooper is able to verify if a master on the internal bus accesses and modifies some
cached data. If a master accesses a data in memory and this data is cached, the snooper will
invalidate the corresponding cache tag. Next time the IU will access the modified data, a cache
miss will be generated due to not valid tag.

Diagnostic Cache
Access

Tags and data in the instruction and data cache can be accessed through ASI address space
0xC, 0xD, 0xE and 0xF by executing LDA and STA instructions. Address bits making up the
cache offset will be used to index the tag to be accessed while the least significant bits of the bits
making up the address tag will be used to index the cache set.

Diagnostic read of tags is possible by executing an LDA instruction with ASI=0xC for instruction
cache tags and ASI=0xE for data cache tags. The cache line and the cache set are indexed by
the address bits making up the cache offset and the least significant bits of the address bits
making up the address tag.

Similarly, the data sub-blocks may be read by executing an LDA instruction with ASI=0xD for
instruction cache data and ASI=0xF for data cache data. The sub-block to be read in the
indexed cache line and set is selected by A[4:2].

The tags can be directly written by executing a STA instruction with ASI=0xC for the instruction
cache tags and ASI=0xE for the data cache tags. The cache line and cache set are indexed by
the address bits making up the cache offset and the least significant bits of the address bits
making up the address tag.

D[31:10] is written into the ATAG filed and the valid bits are written with the D[7:0] of the write
data. The data sub-blocks can be directly written by executing a STA instruction with ASI=0xD
for the instruction cache data and ASI=0xF for the data cache data. The sub-block to be read in
the indexed cache line and set is selected by A[4:2].
Note: Diagnostic access to the cache is not possible during a FLUSH operation and will cause a data

exception (trap=0x09) if attempted.

 AT697F ADVANCE INFORMATION

 47
7703C–AERO–6/09

Timer Unit

Prescaler Timer/Counter1, Timer/Counter2 and the watchdog share the same prescaler.

The prescaler consists of a 10-bit down counter clocked by the system clock. The prescaler is
decremented on each clock cycle. When the prescaler underflows, it is automatically reloaded
with the content of the prescaler reload register. A count tick is generated for the two timers and
the watchdog.

The effective division rate is equal to prescaler reload register value + 1.

Figure 30. Prescaler Block Diagram

Control Logic

Reload Reg.

Counter Reg.
=0x3FF

clock

count tick

load

SCAR

SCAC

D
at

a
B

us

Note: The reset value for SCAR is 0. This is not a legal value, it is however equivalent to a value of 3
and leads to a division rate of 4.

Caution :

The two timers and watchdog share the same decrementer. The minimum allowed prescaler
division factor is 4 (reload register = 3).

Timer/Counter 1 &
Timer/Counter 2

Timer/Counter1, Timer/Counter2 are two general purpose 32-bit timers. They share the same
decrementer. The timer value is then decremented each time the prescaler generates a timer
pulse.

Each timer operation is controlled through a dedicated Timer Control register (TIMCTR). A timer
is enabled/disabled by setting TIMCTRx ENx.

Each time a timer underflows, an interrupt is generated. These interrupts can be masked with
the Interrupt Mask and Priority register (ITMP).

Setting TIMCTRx RLx, the content of the reload register (TIMR) is automatically reloaded in the
Timer Counter register (TIMC) after an underflow and the timer continue running. If the reload bit
is reset, the timer stops running after its first underflow.

Timer Counter can be forced with the Timer Reload value at any time by asserting the load bit
TIMCTRx LDx in the Timer Control register.

Figure 31. Timer/Counter 1/2 Block Diagram

Control Logic

Reload Reg.

Counter Reg.

Control Reg.

=0xFFFFFFFF

count tick

timer interrupts

load

enable/disable

TIMCTRn

TIMRn

TIMCn

D
at

a
B

us

(irq 8 & 9)

 48
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Watchdog The watchdog operates the same way as the timers, with the difference that it is always enabled
and upon underflow asserts the external signal WDOG. This signal can be used to generate a
system reset.

If the watchdog counter is refreshed by writing to WDG register before the counter reaches zero, the coun-
ter restarts counting from the new value.

If the counter is not refreshed before the counter reaches zero, WDOG signal is asserted.

After reset, the watchdog is automatically enabled and starts running. The watchdog is reset to a “all
ones”. Together with the default prescaler ratio of 4, the time until first expiration of the watchdog after
reset is about 2^34 clock cycles.

Note: A read access gives the decounting value of the watchdog, the reload value itself is not stored in
the processor.

Figure 32. Watchdog Block Diagram

Control Logic
Watchdog Reg.

=0xFFFFFFFF

clockWDG

D
at

a
B

us WDOG

 AT697F ADVANCE INFORMATION

 49
7703C–AERO–6/09

General
Purpose
Interface

The general purpose interface (GPI) consists in a 32-bit wide I/O port with alternate facilities.

GPI as 32-bit I/O
port

The interface is based on bi-directional I/O ports.The port is split in two parts, with the lower 16-
bits accessible by the parallel IO pads and the upper 16-bits via the data bus.

lower 16-bits The lower 16-bits of the general purpose interface are accessible through PIO[15:0]. All I/O ports
have true Read-Modify-Write functionality when used as general I/O ports. This means that the
direction of one port pin can be changed without unintentionally the direction of any other pin.
The same applies when changing the drive value of the port.

Figure 33. I/O port block diagram

IO Direction Reg.

IO Data Reg.

IODIR

IODATD
at

a
B

us

D Q

DQ

D Q

PIOx

clock

 - PIO[15:0]

configuring the pin Each pin from PIO[15:0] consists of two register bits : IODIRx and IODATx. As shown in the
“Register Description” section, the IODIRx bits are accessed at IODIR address and iodatx at
IODAT address.

The IODIR IODIRx bit selects the direction for port number x. If IODIRx is written logic one, the
corresponding pin is configured as output. If written logic zero, the pin is configured as an input.

When the pin is configured as an input, a read of the IODAT IODATx bit returns the current
value of the pin. When the pin is configured as an output, if a logical one is written to IODAT-

IODATx bit, the port x is driven high. If a logical zero is written to IODAT IODATx bit, the port
x is driven low.

switching between input
& output

When the port x is switched from input to output by switching IODIRx, the value of IODATx is
immediatly driven on the corresponding pin.When switched from output to input by toggling
IODIRx, the value from the pin is immediatly written to IODATx.

upper 16-bits The upper 16-bits of the general purpose interface are accessible through D[15:0]. They can
only be used when all memory areas (ROM, RAM and I/O) are 8-bit wide. If the SDRAM control-
ler is enabled, the upper 16-bits cannot be used.

Figure 34. I/O port block diagram

IO Direction Reg.

IO Data Reg.

MEDDIR/LOWDIR

MEDDAT/LOWDATD
at

a
B

us

D Q

DQ

D Q

Dx

clock

 - D[15:0]

 50
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

configuring the pin The upper 16 bits of the general purpose interface can only be configured as outputs or inputs
on byte basis. D[15:8] is referenced as the medium byte when D[7:0] is referenced as the lower
byte.

Each byte from D[15:0] consists of two register fields. As shown in the “Register Description”
section, the direction fields are accessed at IODIR address when data fields at IODAT address.

The IODIR MEDDIR bit and the IODIR LOWDIR bit select the direction for respectively the
medium byte (D[15:8]) and the lower byte (D[7:0]). If MEDDIR (or LOWDIR) is written logic
one, the corresponding byte in D[15:0] is configured as output. If written logic zero, the byte is
configured as an input.

When configured as an input, a read of the IODAT MEDDAT fileds returns the current value of
D[15:8]. When configured as an output, the logical value from IODAT MEDDAT field is trans-
lated in physical values on D[15:8] bus.

When configured as an input, a read of the IODAT LOWDAT fileds returns the current value of
D[7:0]. When configured as an output, the logical value from IODAT LOWDAT field is trans-
lated in physical values on D[7:0] bus.

switching between input
& output

When the medium byte (or the lower) is switched from input to output by switching MEDDIR (or
LOWDIR), the value of MEDDAT (or LOWDAT) is immediatly driven on the corresponding pin.
When switched from output to input by toggling MEDDIR (or LOWDIR), the value from the pins
are immediatly written to MEDDAT (or LOWDAT).

GPI Alternate
functions

Most GPI pins have alternate functions in addition to being general I/O. Facilities like serial com-
munication link, interrupt input and configuration are made available through these functions.
The following table summaryses the assignement of the alternate functions.

Table 19.

GPI port pin Alternate function

PIO[15] TXD1 - UART1 transmitter data

PIO[14] RXD1 - UART1 receiver data

PIO[13] RTS1 - UART1 request-to-send

PIO[12] CTS1 - UART1 clear-to-send

PIO[11] TXD2 - UART2 transmitter data

PIO[10] RXD2 - UART2 receiver data

PIO[9] RTS2 - UART2 request-to-send

PIO[8] CTS2 - UART2 clear-to-send

PIO[3] UART clock - Use as alternative UART clock

PIO[2] EDAC enable - Enable EDAC checking at reset

PIO[1:0] Prom width - Defines PROM bus width at reset

GPI alternate functions

In addition to these alternate functions, each GPI interface pin can be configured as an interrupt
input to catch interrupt from external devices. Up to four interrupts can be configured on the GPI
interface by programming the I/O interrupt register (IOIT).

For a detailed description of the external interrupt configuration, please refer to the “Traps and
Interrupts” section.

 AT697F ADVANCE INFORMATION

 51
7703C–AERO–6/09

PCI Arbiter A PCI arbiter is embedded on the AT697 chip. The¨PCI arbiter enables the arbitration of 4 PCI
agents numbered from 3 downto 0. A round-robin algorithm is implemented as arbitration policy.
The PCI arbiter is totally independent from the PCI interface

Operation An Agent on the PCI bus requests the bus by driving low its REQ* line. When the arbiter deter-
mines that the bus can be granted to an agent, it drives low the corresponding GNT* line.

When the bus is granted to a PCI agent, the agent keeps the bus for only one transaction. If the
agent desires more accesses, it shall continue to assert its REQ* line and wait to be granted the
bus again.

Round Robin The round robin algorithm used for the arbitration is based on various loops with different priority
levels. The implementation in the AT697 is based on two priority loops. A high priority loop is
defined as level 0. A low priority loop is defined as level 1.

Operation The arbitration is done checking the REQ* lines of the PCI agents one after each other. In first
place, the loop with level 0 is checked. If a a REQ* is active and no master is currently granted
ther bus, the corresponding GNT* line is driven low. Then, the agent is granted the bus. At each
complete round-turn in level 0, one step is done in level 1. The following figure illustrates the
operation of the arbitre.

Figure 35. Arbitre operation - Agent

Agent 0 Agent 1

Agent 2 Agent 2Agent 3

Agent 0 Agent 1 Agent 0 Agent 1level 0
level 1
time

With : agents 0 and 1 at level 0
agents 2 and 3 at level 1

If all agents have a request at the same time, the following probabilities of access are
implemented:
• All agents in one level have equal probability
• All agents in level 1 together have the same probability of access as one agent in level 0.
• If no agent is in level 0, or no agent in level 0 has a request, all agents in level 1 are granted

with equal probability

Bus Parking As long as no bus request is active on the arbiter, the bus is granted to the last owner. It remains
granted to the last owner until another agent requests the bus. When another request is
asserted, re-arbitration occurs after one turnover cycle.

After reset, the bus is parked to agent 0. Agent 0 is the default owner after a reset operation.

Re-arbitration When a master is managing a transfer and another one makes a request to the arbiter, re-arbi-
tration occurs. Only one re-arbitration is performed during a transfer. A new arbitration will take
place when the master which was granted the bus frees the bus. As long as all the PCI agents
have no request pending, the arbitration is performed. A re-arbitration cycle also occurs when
living the bus parking state.

Priority definition Two different priority levels are defined for the PCI arbiter. Level 0 is defined as the high priority
level. Level 1 defines the low priority level. Assignment of the PCI agents priority level is pro-
grammable through the arbiter configuration register (ACR).

Each PCI agent can be individually configured to operate either on level 0 or on level 1, except
agent 3 that is defined by hardware with a low priority (level 1).

Setting logical one in PCIA Px leads the agents x to a low priority level. Setting this bit logical
zero leads to a high priority.

After reset, all the PCI agents are configured in the low priority loop.

 52
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

PCI Interface

Overview The PCI interface implementation is compliant with the PCI 2.2 specification. It is a high perfor-
mance 32-bit bus interface with multiplexed address and data lines. It is intended for use as an
interconnect mechanism between processor/memory systems and peripheral controller
components.

The AT697 processor embedds the In-Silicon PCI core. It is interfaced to the processor core
through the PCI to AMBA bridge developped by the European Space Agency.

The PCI bus operations can be clocked at a frequency up to 33MHz, independently of the pro-
cessor clock. Synchronization of the operation between PCI interface and AT697 core implies
numerous FIFO usage. This implementation allows to use the device for Initiator (Master) and
Target operations. In each mode single word and burst transfer can be executed.

Two different operating modes can be used with the PCI interface :
• Host Bridge

The host-bridge connects the local bus of a processor to the PCI bus. Its PCI configuration
registers are accessible locally by the processor, but not through PCI configuration cycles.
Host-bridge initialises other satellite devices through PCI configuration commands.

• Satellite
The satellite is a PCI device, configurable via PCI configuration cycles and the idsel line, but
not locally.

Both, host-bridge and satellites can be initiator and/or target on the bus. The present interface
has universal functionality, allowing both operation modes. The mode is configured via a hard-
ware bootstrap on the SYSEN* pin. The state of the SYSEN* pin is copied in PCIIS SYS. This
enables plug and play boot programs loading the appropriate driver depending on the hardware
configuration. In the same manner, the configuration registers are made visible as read only
when the device is configured as satellite

Some other features are supported by this interface like
• Target lock support
• Zero-latency Fast Back-to-Back transfers
• Zero wait state burst mode transfers
• Support for memory read line/multiple
• Support for memory write and invalidate commands
• Delayed read support
• Flexible error reporting by polling

The PCI bus is a multiplexed one. In this way, address and data through the same medium. That
is why PCI communication is based on two phase burst transfer. Each transfer is composed of
the following phases :
• An address phase

During the address phase, the initiator of the communication drives the 32-bit address
concerned by the transfer and the command involved through this transfer. The command
defines the space area concerned with the transfer and the direction of the transfer.

• A data phase
During the data phase the initiator of the communication drives the enable bit signal so that
only active part of the bus is enabled. When reading, the initiator drives the enable bits and
the target set the data on the bus.

PCI Initiator
(Master)

The PCI initiator mode of the AT697 gives a direct memory-mapped (initiator) access to the PCI
bus. Any access to a memory address in the PCI address range is automatically translated by
the interface into the appropriate PCI transaction. In this configuration, the PCI bus is accessed
by the same instructions as the main memory. The SPARC instruction set foresees various
load/store instruction types. The PCI bus foresees 32 bit wide transactions with byte-enables for
each byte lane.

 AT697F ADVANCE INFORMATION

 53
7703C–AERO–6/09

Initiator Mapping For standard operation, the PCI interface only works in a limited address range. The address
range for such initiator transaction is limited to addresses between 0xA0000000 and
0xF0000000.

PCI addresses outside of this predefined range can be accessed only via DMA transactions.

Instructions of different width (byte, half-word, word, double) can be performed for each address
of the PCI address range. The three low significant bits of the address A[2:0] are used to deter-
mine which PCI byte enable line C/BE*[3:0] should be active during the transaction.

According to the SPARC architecture, big-endian mapping is implemented, the most significant
byte standing at the lower address (0x..00) and the least significant byte standing to the upper
address (0x..03).

A byte-writing to A[1:0] = 00 results in the byte enable pattern 0111, indicating that the e most
significant byte lane (bits 31:24) of the PCI data bus is selected.

The following table presents the transaction width authorized for PCI transfers.

Table 20. Byte Enable Settings

width 8 16 32 64

Assembler ld[s/u]b, stb ld[s/u]h, sth ld, st ldd, std

C-datatype char short int long long

A[2:0]=000 0111 0011 0000 0000 (burst)

A[2:0]=100 0111 0011 0000 not aligned

A[2:0]=x01 1011 not aligned not aligned not aligned

A[2:0]=x10 1101 1100 not aligned not aligned

A[2:0]=x11 1110 not aligned not aligned not aligned

Note: PCI byte enables are active low.

For non-aligned accesses, the byte enable pattern (1111) is issued on PCI, to avoid destroying
data in the remote PCI target.

Memory cycles Many memory transactions such as memory-read/write and memory-read-line/write-invalidate
can be issued from the processor with common SPARC instruction set. Selection of the com-
mand to execute is performed setting the value PCIIC COMMSB.

Setting logical ‘01’ in PCIIC COMMSB result in the generation of memory read/write access
when PCI address is accessed. A logical value of ‘10’ result in a memory read line or write and
invalidate on PCI address access.

For the memory commands the address issued on the PCI bus is a word address with bits (1:0)
set to 00. This indicates that the linear incrementing mode is used.

operation The following procedure shall be used to engage memory transaction on the PCI interface:
1. Select the initiator mode by setting logical one in the PCIIC MOD.
2. Select the memory load/store command or the memory read-line/write and invalidate

command in the PCI initiator configuration register. The PCIIC COMMSB shall be set
logical ‘01’ for simple load/store operation and shall be set logical ’11’ for read-line/write-
&-invalidate.

3. Enabling the interrupt signalisation is optionnal. It can be enabled setting logical one in
PCIITE IMIER. Up to four interrupt sources can be defined : Initiator Error, Initiator Par-
ity Error, PCI core error and system error.

4. Engage an access to a memory address mapped in the PCI address range.

 54
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

IO transaction cycles

operation The following procedure shall be used to engage I/O transaction on the PCI interface:
1. Select the initiator mode by setting logical one in PCIIC MOD.
2. Select the I/O load/store command in the PCI initiator configuration register. The PCI-

IC COMMSB shall be set logical ‘00’ for I/O operation.
3. Enabling the interrupt signalisation is optionnal. It can be enabled setting logical one in

PCIITE IMIER. Up to four interrupt sources can be defined : Initiator Error, Initiator Par-
ity Error, PCI core error and system error.

4. Engage an access to an I/O address mapped in the PCI address range.

Configuration cycles

Target selection Accesses to a configuration address space requires the target device to be selected. Due to the
address range limitation, the chip-select (IDSEL) connection necessary for device selection shall
be done using only A/D[27:16]. This allows up to 12 PCI devices to be connected on the bus.

Devices with chip-select line connected to A/D[31:28] can’t be configured through standard
operations. DMA configuration cycles shall be used to configure the devices connected to
A/D[31:28].

The PCI bus configuration cycles can be performed using the same instructions as the main
memory. To generate such configuration cycle with the standard instructions,PCIIC COMMS
shall be programmed to ‘01’.

Then, if a load (or store) cycle is performed to an addresss in the PCI address range, a physical
configuration cycle is performed on the PCI bus. The full 32-bit address defined on the internal
bus is propagated on the PCI bus. Once a target is selected (DEVSEL* asserted).

Operation The following procedure shall be used to engage configuration cycle on the PCI interface:
1. Select the initiator mode by setting logical one tin PCIIC MOD
2. Select the configuration load/store command in PCIIC COMMS shall be set logical ‘10’

for configuration operation.
3. Enabling the interrupt signalisation is optionnal. It can be enabled setting logical one in

PCIITE IMIER. Up to four interrupt sources can be defined : Initiator Error, Initiator Par-
ity Error, PCI core error and system error.

4. Engage an access to an configuration space.

Limitation Configuration cycles shall only be generated by the PCI host of the bus or by a PCI-to-PCI
bridges.

Special cycles By default, all requests are translated into single cycle PCI transactions, each transaction con-
sisting in an address phase followed by a single data phase.

Linear incrementing
store-word

Linear incrementing store-word sequences are translated into undetermined length PCI write
bursts with up to a maximum of 255 words. The PCI burst mode is then maintained as long as
possible. Read/write direction is unchanged and the address An+1 = An + 4. When the sequence
is discontinued, the PCI burst stops with a last data phase during which byte enables are 1111.

Fast back2back cycles The PCI implementation only supports fast back2back cycles to the same target. Before using
fast back-2-back transfers, fast back-2-back cycles shall be enabled setting logical one the bit
COM9 in the status command register (PCISC). PCISC COM9 shall only be set one if all tar-
gets on the bus support fast back-2-back transfers. Issuing a fast back to back transfer is done
setting logical one in PCIDMA B2B.
Note: Fast back-2-back can only be generated by the initiator. It is not accepted by the AT697 PCI tar-

get.

 AT697F ADVANCE INFORMATION

 55
7703C–AERO–6/09

Error reporting

Fatal (abort) and
address parity errors

On a fatal error (or address parity error), the interface flushes all the current buffer requests and
all other buffer requests. Then, the interface reports the fatal error driven logical one the
PCIITE CMFER.

The PCI core is restarted as soon as a new request is engaged.

DMA transfer A DMA facility is available on the AT697 processor. The DMA transfer are performed through the
PCI interface. The DMA controller executes data transfer between the local memory and a
remote target on the PCI bus.

The processor core only intervenes for the initiation of the transfer. Once transfer is initiated,
DMA controller is fully autonomous. DMA transfers take place in background of the processor
core activity. Thus, interrupts are provided to help to synchronise the application with start and
end of the transfer.

The DMA interface executes only word-size transactions with all 4 byte lanes enabled.

Operation The DMA is enabled setting logical one the PCIIC MOD. To synchronize the application with
the start and the end of the transaction, two interrupts can be enabled : PCIITE DMAER for
transfer control and PCIITE IMIER for error control.

Each DMA sequence shall program the following parameters :
• PCI start address
• PCI command type
• number of words to be transferred
• the start address in the local memory

A DMA transfer is performed assuming the following operations are done in the given order :
1. Write the PCI start address of burst to the PCI start address register (PCISA). The PCISA

register shall be re-writen each time a DMA transfer is initiated, even if the address is
identical to the address of the previous DMA request.

2. Write together the PCI command and the number of words to be transfered in the PCI
DMA configuration register (PCIDMA).
Writing to the PCIDMA passes the PCI address, the word count and the PCI command to
the PCI core and initiates the transaction on the PCI bus.

3. Write the start address in the local memory map to the PCI DMA address register
(PCIDMAA).

Once the three operation are executed, data transfer is started in background. Once the speci-
fied number of words is transfered, the interface set logical one the PCIITE DMAER and
generate an interrupt if enabled. Then DMA controller goes back to idle state.

Error Reporting If the PCI core does not accept the DMA cycle request, the DMA state controller remains locked
and an error is reported as initiator error with the PCIITE IMIER bit set logical one. If the
request on the PCI core was just delayed, rewriting PCIDMAA may succeed. If the problem per-
sists, reset the interface by writing –1 (0xFFFFFFFF) to PCIIC.

Transfer Limitation A DMA transaction may never cross a 1 KByte border. The value represented by PCIDMAA(9:2)
+ PCIDMA(7:0) must be less than 256. If this restriction is not respected, the data transfer stops
at the 1 kByte border. Then the PCI core is flushed. Simultaneously, in the PCI interrupt pending
register (PCIITP) the dma error bit PCIITE DMAER and the initiator error bit PCIITE IMIER
are asserted logical one.

If enabled with the PCI interrupr enable register (PCIITE) and unmasked in the general interrupt
mask register, the PCI interrupt 14 is generated (TT = 0x1E).

Debug Facilities Not implemented for application use.

 56
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Target Mode
Transfer

In the target mode, the PCI interface receives requests originated from remote PCI initiators
(masters). Target data transfer is executed in background without AT697 core intervention.
AT697 core can only intervenes is the configuration of the target.
• In host bridge mode the target is configured by the AT697 core
• In satellite mode the configuration is done by a remote device using the PCI command set

Target Programming The target is configured through the following registers :
• PCISC register

bits 0/1 for memory and I/O command response
bit 6 for check of data and address parity error
bit 7 for response to data and address parity error

• base address registers
memory base address : MEMBAR1, MEMBAR2
I/O base address : IOBAR

• PCITPA register to indicate the storage location
• PCITSC FRTY bit to write data in memory

transaction Ordering As specified in the PCI standard, delayed read functionality is implemented, obeying to the fol-
lowing rules:
• The interface stores one delayed read at a time. When a read request was retried (because

local data not yet available), the interface remains locked for any other target read (targeting
different addresses). The initiator of the original read has to repeat its request to the same
address.

• A retried (delayed) read can be interrupted by one or more PCI write accesses. The PCI
standard requires this write command to be processed first, to prevent a system lock-up.

• Meanwhile, the interface will prefetch read-data into the TXMT FIFO. After the (interfering)
write, when the read request is repeated, and the requested data is available in the FIFO the
delayed transfer completes normally.

All target read accesses are generally prefetching, also reads with I/O command. Once a start
address is given, the interface prefetches up to 8 words into the TXMT FIFO. After the last
required data word was transferred to PCI, the PCI core automatically flushes the FIFO to dis-
card the unused prefetched data. The interface assumes the complete local address space to be
‘prefetchable’, defined here as the fact, that reading from an address does not alter the data.
This behaviour is to be considered if non-prefetchable devices (for example the UART’s) shall
be read through the PCI target.

PCI Error
Reporting

According to the PCI standard, error and status bits are implemented in the PCI status regis-
ter.(PCISC). The PCI standard foresees a single parity check, by which bus-errors can be
detected, but not corrected. Errors which occur in the PCI interface or on the PCI bus are also
saved in status bits in the PCIITP register, and optionally, the PCI interrupt (IRQ14) is asserted.

Different events can be selected to assert the interrupt. By the interrupt enable register (PCIITE)
configuration you can select the interrupt events which will assert IRQ14. then an interrupt han-
dler can read the interrupting event in the status register (PCIITP).

Furthermore, interrupts can be forced for test purposes by writing to PCIITF.

In host-bridge configuration, this allows an error detection by polling. Certain events and errors
are also reported by the interface in the interrupt status register. For each bit of this register ,
interrupt generation can be programmed individualy. All PCI interrupt generated are then
reported to AT697 core through the PCI interrupt (IT14). The different interrupt causes are distin-
guished by the interrupt status registers settings.

Please refer to the register description chapter for more details on interrupt status register.

 AT697F ADVANCE INFORMATION

 57
7703C–AERO–6/09

UARTs (UART1
and UART2)

The Universal Asynchronous Receiver and Transmitter (UART) is a highly flexible serial commu-
nication module. The AT697 implements two uarts : UART1 and UART2. Uarts on the processor
are defined as alternate functions of the general purpose interface (GPI).

Overview The two UART’s provide double buffering. Each UART consists of a transmitter holding register,
a receiver holding register, a transmitter shift register, and a receiver shift register. Each of these
registers are 8-bit wide.

Figure 36. UART Block Diagram

RX TX

CTS

RTS

Baud-rate
generator

Receiver Shift Register

Receiver Holding Register

Transmitter Shift Register

Transmitter Holding Register

Uart Status Reg.
UASn

Uart Scaler Reg.
UASCAn

Uart Data Reg.

Uart Control Reg.

UADn

UACn

control logic

D
at

a
B

us

Each UART is fully controlled by a set of four registers including :
• a control register
• a status register
• a scaler register
• and a data register

Serial Frame A serial frame is defined to be one character of data bits with synchronisation bits (start and stop
bits), and optionnaly a parity bit for error checking.

Frame formats Two frame formats are accepted by the AT697 UARTs, the only difference being the presence
or the absence of the parity bit. All the frames are built on an eight data bits basis.

A frame starts with the synchronization start bit followed by the least significant data bit. Then
the next data bits, up to a total of eight, are succeeding, ending with the most significant bit. If
enabled by setting the UACx PEx, the parity bit is inserted after the data bits and before the
stop bit.

The following figure illustrates the accepted frame formats.

Figure 37. Data frame format

Start D0 StopD6D5D4D3D2D1 D7

Start D0 D6D5D4D3D2D1 D7 StopParity

Data frame, no parity:

Data frame with parity:

Parity bit The parity bit is calculated by doing an exclusive-or of all the data bits. The odd parity is configured set-
ting logical one the UACx PSx . In this case, the result of the exclusive or is inverted. An even parity can
be selected setting logical zero the UACx PSx.

 58
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

If used, the parity bit is located between the last data bit and the stop bit of the serial frame.

The relation between the parity bit and data bits is as follows:
Peven d7 … d3 d2 d1 d0 0
Podd

⊕ ⊕ ⊕ ⊕ ⊕ ⊕
d7 … d3 d2 d1 d0 1⊕ ⊕ ⊕ ⊕ ⊕ ⊕

=
=

Peven Parity bit using even parity
Podd Parity bit using odd parity
dn Data bit n of the character

Clock Generation The clock generation logic generates the base clock for the Transmitters and Receivers. The bit rate of the
UART is issued from the clock generator after a combination between the input clock of the clock module
and a scaler.

Uart Clock Two clock inputs can be used by the clock generator :
• An internal clock
• An external clock

Each UART can be configured to use either the internal or the external clock source by program-
ming the UACx ECx. If set logical zero, the UART is clocked by the internal clock. If
UACx ECx is set logical one, the UART is clocked by the external clock. When using the exter-
nal configuration, the UART clock shall be provided by PIO[3] from the general purpose
interface. This clock input is used as an alternate function for PIO[3].

caution :

When using the external clock source, the frequency of PIO[3] must be less than half the fre-
quency of the system clock.

Baud Rate Generation To generate the bit-rate, each UART has a programmable 12-bits clock divider (UASCAx).
According to the configuration of the UACx ECx, the scaler is clocked either by the system or
by an external clock.

Each time the scaler underflows, a UART tick is generated. The scaler is automatically reloaded
with the value of the UART scaler register after each underflow. The resulting UART tick fre-
quency should be 8 times the desired baud-rate.

The following equation shall be used to calculate the scaler value to define, depending on the
clock source and the expected baud rate.

scaler

uartclk 10×
baudrate 8×
--------------------------------- 5–

10
---=

variable description :
• uartclk : frequency of the uart clock
• baudrate : expected baud rate
• scaler : value to set in (UASCAx) to reach the expected baudrate

Communication
Operations

UARTS operations are controlled through the uart control registers (UACx) and the Uart status
registers (UASx).

Transmitter Operation The transmitter is enabled setting logical one the UACx TEx . When ready to transmit, data is
transferred from the transmitter holding register to the transmitter shift register and converted to
a serial frame on the transmitter serial output pin (TX).

Following the transmission of the stop bit, if a new character is not available in the transmitter
holding register, the transmitter serial data output remains high and the transmitter shift register

 AT697F ADVANCE INFORMATION

 59
7703C–AERO–6/09

empty bit UASx TSx. Transmission resumes and the UASx TSx is cleared when a new char-
acter is loaded in the transmitter holding register.

If the transmitter is disabled, it will continue operating until the character currently being transmit-
ted is completely sent out. The transmitter holding register cannot be loaded when the
transmitter is disabled.

If flow control is enabled, the CTS input must be low in order for the character to be transmitted.
If it is deasserted in the middle of a transmission, the character in the shift register is transmitted
and the transmitter serial output then remains inactive until CTS is asserted again. If the CTS is
connected to a receivers RTS, overrun can effectively be prevented.

Receiver Operation The receiver is enabled for data reception when the receiver enable bit UACx REx is set logical
one. The receiver looks for a high to low transition of a start bit on the receiver serial data input
pin. If a transition is detected, the state of the serial input is sampled a half bit clocks later. If the
serial input is sampled high the start bit is invalid and the search for a valid start bit continues. If
the serial input is still low, a valid start bit is assumed and the receiver continues to sample the
serial input at one bit time intervals until the proper number of data bits and the parity bit have
been assembled and one stop bit has been detected. During this process the least significant bit
is received first.

The serial input is sampled three times for each bit and averaged to filter out noise.

The data is then transferred to the receiver holding register and the data ready bit UASx DRx is
set logical one. The parity, framing and overrun error bits are set at the received byte boundary,
at the same time as the receiver ready bit is set.

If both receiver holding and shift registers contain an un-read character when a new start bit is
detected, then the character held in the receiver shift register will be lost and the overrun bit
UASx OVx is set logical one.

If flow control is enabled, then the RTS will be negated (high) when a valid start bit is detected
and the receiver holding register contains an un-read character. When the holding register is
read, the RTS will automatically be reasserted again.

A correctly received byte is indicated by the data ready bit UASx DRx. In case of error (framing
error, stop bit error,...), the respective bits UASx FEx, UASx PEx, ... are set logical one when
the data ready bit remains logical zero.

Interrupt Generation The two UARTs can be configured to generate interrupt each time a byte is received or a byte is
sent.

If the UACx TIx is set logical one, an interrupt is issued after each character sending. If set log-
ical zero, no interrupt is issued on character sending.

If the UACx RIx is set logical one, an interrupt is issued after each character reception. If set
logical zero, no interrupt is issued after a character reception.

If the receiver interrupt is enabled, when error is detected during the reception of a character,an
interrupt is generated. To identify the origin of the transaction failure, refer to the uart status reg-
ister bits (UASx OVx, UASx PEx, UASx TEx) that indicate either it is a parity, a framing or an
overrun error.

Loop back mode If the UACx LBx is set, the UART will be in loop back mode. In this mode, the transmitter output
is internally connected to the receiver input and the RTS is connected to the CTS. It is then pos-
sible to perform loop back tests to verify operation of receiver, transmitter and associated
software routines. In this mode, the outputs remain in the inactive state, in order to avoid send-
ing out data.

 60
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Debug Support Unit - DSU

Overview The AT697 processor includes an hardware debug support unit to aid software debugging on
target hardware. The support is provided through two modules: a debug support unit (DSU) and
a debug communication link (DCL).

The DSU can put the processor in debug mode, allowing read/write access to all processor reg-
isters and cache memories. The DSU also contains a trace buffer which stores executed
instructions or data transfers on the internal bus. The debug communications link implements a
simple read/write protocol and uses standard asynchronous UART communications.

Figure 38. Debug Support Unit and Communication Link

AT697 SPARC V8
Integer unit

I-Cache D-Cache

AMBA AHB

AT697 processor

Debug
Support Unit

Debug
Comm. Link

AHB interface

Debug I/F
Trace
Buffer

DSUTX
DSURX

DSUEN
DSUBRE
DSUACT

It is possible to debug the processor through any master on the internal bus. The PCI interface is
build in as a master on the internal bus. All debug features are available from any PCI master.

Debug Support
Unit

The debug support unit is used to control the trace buffer and the processor debug mode. The
DSU master occupies a 2 Mbyte address space on the internal bus. Through this address
space, any other masters like PCI can access the processor registers and the contents of the
trace buffer.

The DSU control registers can be accessed at any time, while the processor registers and
caches can only be accessed when the processor has entered debug mode. The trace buffer
can be accessed only when tracing is disabled or completed. In debug mode, the processor
pipeline is held and the processor is controlled by the DSU. Entering the debug mode can occur
on the following events:
• executing a breakpoint instruction (ta 1)
• integer unit hardware breakpoint/watchpoint hit (trap 0x0B)
• rising edge of the external break signal (DSUBRE)
• setting the break-now DSUC BN
• a trap that would cause the processor to enter error mode
• occurrence of any, or a selection of traps as defined in the DSU control register
• after a single-step operation
• DSU breakpoint hit

The debug mode can only be entered when the debug support unit is enabled through an exter-
nal pin (DSUEN). Driving the DSUEN pin high enables the debug mode. When the debug mode
is entered, the following actions are taken:
• PC and nPC are saved in temporary registers (accessible by the debug unit)
• an output signal (DSUACT) is asserted to indicate the debug state

 AT697F ADVANCE INFORMATION

 61
7703C–AERO–6/09

• the timer unit is (optionally) stopped to freeze the AT697 timers and watchdog

The instruction that caused the processor to enter debug mode is not executed, and the proces-
sor state is kept unmodified. Execution is resumed by clearing the DSUC BN or by de-
asserting DSUEN. The timer unit will be re-enabled and execution will continue from the saved
PC and nPC. Debug mode can also be entered after the processor has entered error mode, for
instance when an application has terminated and halted the processor. The error mode can be
reset and the processor restarted at any address.

DSU Breakpoint The DSU contains two breakpoint registers for matching either internal bus addresses or exe-
cuted processor instructions. A breakpoint hit is typically used to freeze the trace buffer, but can
also put the processor in debug mode.

Freeze operation can be delayed by programming the DSUC DCNT to a non-zero value. In this
case, the DSUC DCNT value will be decremented for each additional trace until it reaches
zero, after which the trace buffer is frozen. If the brake on trace freeze bit DSUC BT is set logi-
cal one, the DSU forces the processor into debug mode when the trace buffer is frozen.
Note: Due to pipeline delays, up to 4 additional instruction can be executed before the processor is

placed in debug mode.

A mask register is associated with each breakpoint, allowing breaking on a block of addresses.
Only address bits with the corresponding mask bit set to ‘1’ are compared during breakpoint
detection.

Time Tag The DSU implements a time tag counter. This counter is decremented each clock as long as the
processor is running. The counter is stopped when the processor enters debug mode. It is
restarted when execution is resumed.

This time tag counter is stored in the trace as an execution time reference.

Trace Buffer The trace buffer consists of a circular buffer that stores the executed instructions or the internal
bus data transfers. The size of the trace buffer is 512 lines of 16 bytes. The trace buffer opera-
tion is controlled through the DSU control register (DSUC) and the trace buffer control register
(TBC). When the processor enters debug mode, tracing is suspended.

The trace buffer can contain the executed instructions, the transfers on the internal bus or both
(mixed-mode). The trace buffer control register (TBC) contains two counters TBC BCNT and
TBC ICNT that store the address of the trace buffer location that will be written on next trace.
Since the buffer is circular, it actually points to the oldest entry in the buffer. The indexes are
automatically incremented after each stored trace entry.

Instruction trace The instruction trace mode is enabled setting logical one the trace instruction enable bit
TBC TI.

During instruction tracing, one instruction is stored per line in the trace buffer with the exception
of multi-cycle instructions. Multi-cycle instructions can be entered two or three times in the trace
buffer :
• For store instructions, bits [63:32] correspond to the store address on the first entry and to

the stored data on the second entry (and third in case of STD). Bit 126 is set logical one on
the second and third entry to indicate this.

• A double load (LDD) is entered twice in the trace buffer, with bits [63:32] containing the
loaded data.

• Multiply and divide instructions are entered twice, but only the last entry contains the result.
Bit 126 is set for the second entry.

• For FPU operation producing a double-precision result, the first entry puts the MSB 32 bits
of the results in bit [63:32] while the second entry puts the LSB 32 bits in this field.

 62
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Table 21. Trace buffer data allocation, Instruction tracing mode

Bits Name Definition

127 Instruction breakpoint hit Set to ‘1’ if a DSU instruction breakpoint hit occurred.

126 Multi-cycle instruction Set to ‘1’ on the second and third instance of a multi-cycle
instruction (LDD, ST or FPOP)

125:96 DSU counter The value of the DSU counter

95:64 Load/Store parameters Instruction result, Store address or Store data

63:34 Program counter Program counter (2 lsb bits removed since they are always
zero)

33 Instruction trap Set to ‘1’ if traced instruction trapped

32 Processor error mode Set to ‘1’ if the traced instruction caused processor error mode

31:0 Opcode Instruction opcode

When a trace is frozen, interrupt 11 is generated.

Bus Trace The bus trace mode is enabled setting logical one the trace instruction enable bit TBC TA.

During bus tracing, one operation of the internal bus is stored per line in the trace buffer.

Table 22.

Bits Name Definition

127 AHB breakpoint hit Set to ‘1’ if a DSU AHB breakpoint hit occurred.

126 - Unused

125:96 DSU counter The value of the DSU counter

95:92 IRL Processor interrupt request input

91:88 PIL Processor interrupt level (psr.pil)

95:80 Trap type Processor trap type (psr.tt)

79 Hwrite AHB HWRITE

78:77 Htrans AHB HTRANS

76:74 Hsize AHB HSIZE

73:71 Hburst AHB HBURST

70:67 Hmaster AHB HMASTER

66 Hmastlock AHB HMASTLOCK

65:64 Hresp AHB HRESP

63:32 Load/Store data AHB HRDATA or HWDATA

31:0 Load/Store address AHB HADDR

Trace Buffer Data Allocation, Internal bus Tracing Mode

Mixed Trace In mixed mode, the buffer is divided on two halves, with instructions stored in the lower half and
bus transfers in the upper half. The MSB bit of the AHB index counter is then automatically kept
high, while the MSB of the instruction index counter is kept low.

 AT697F ADVANCE INFORMATION

 63
7703C–AERO–6/09

DSU Memory Map Table 23.

Address Register

0x800000c4 DSU UART status register

0x800000c8 DSU UART control register

0x800000cc DSU UART scaler register

0x90000000 DSU control register

0x90000004 Trace buffer control register

0x90000008 Time tag counter

0x90000010 AHB break address 1

0x90000014 AHB mask 1

0x90000018 AHB break address 2

0x9000001C AHB mask 2

0x90010000 - 0x90020000 Trace buffer

..0 Trace bits 127 - 96

...4 Trace bits 95 - 64

...8 Trace bits 63 - 32

...C Trace bits 31 - 0

0x90020000 - 0x90040000 IU/FPU register file

0x90080000 - 0x90100000 IU special purpose registers

0x90080000 Y register

0x90080004 PSR register

0x90080008 WIM register

0x9008000C TBR register

0x90080010 PC register

0x90080014 NPC register

0x90080018 FSR register

0x9008001C DSU trap register

0x90080040 - 0x9008007C ASR16 - ASR31 (when implemented)

0x90100000 - 0x90140000 Instruction cache tags

0x90140000 - 0x90180000 Instruction cache data

0x90180000 - 0x901C0000 Data cache tags

0x901C0000 - 0x90200000 Data cache data

DSU Map

The addresses of the IU/FPU registersis defined according to how many register windows has
been implemented. The registers can be accessed at the following addresses (NWINDOWS =
number of SPARC register windows = 8):
• %on: 0x90020000 + (((psr.cwp * 64) + 32 + n) mod (NWINDOWS*64))
• %ln: 0x90020000 + (((psr.cwp * 64) + 64 + n) mod (NWINDOWS*64))
• %in: 0x90020000 + (((psr.cwp * 64) + 96 + n) mod (NWINDOWS*64))
• %gn: 0x90020000 + (NWINDOWS*64) + 128
• %fn: 0x90020000 + (NWINDOWS*64)

 64
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Debug Operations

Instruction Breakpoints To insert instruction breakpoints, the breakpoint instruction (ta 1) should be used. This will leave
the four IU hardware breakpoints free to be used as data watchpoints. Since cache snooping is
only done on the data cache, the instruction cache must be flushed after the insertion or removal
of breakpoints. To minimize the influence on execution, it is enough to clear the corresponding
instruction cache tag (which is accesible through the DSU).

The DSU hardware breakpoints should only be used to freeze the trace buffer, and not for soft-
ware debugging since there is a 4-cycle delay from the breakpoint hit before the processor
enters the debug mode.

Single Stepping By writing the TBC SS and reseting the TBC BN bit, the processor will resume execution for
one instruction and then automatically enter debug mode.

DSU Trap The DSU trap register (DTR) consists in a read-only register that indicates which SPARC trap
type caused the processor to enter debug mode.

When debug mode is forced by setting the TBC BN, the trap type is 0x0B.

 AT697F ADVANCE INFORMATION

 65
7703C–AERO–6/09

DSU
Communication
Link

DSU communication link consists of a UART connected to the internal bus as a master.

Figure 39. DSU Communication Link Block Diagram

DSURX DSUTXReceiver shift register Transmitter shift register

AHB master interface AHB data/response

AMBA AHB

Serial port
Controller

8*bitclkBaud-rate
generator AMBA APB

A simple communication protocol is supported to transmit access parameters and data. A link
command consist of a control byte, followed by a 32-bit address, followed by optional write data.
If the TBC LR is set, a response byte will be sent after each AHB transfer. If the TBC LR is not
set, a write access does not return any response, while a read access only returns the read
data.

Data Frame Data is sent on 8-bit basis.

Figure 40. DSU UART Data Frame

Start D0 StopD6D5D4D3D2D1 D7

Commands Through the communication link, a read or write transfer can be generated to any address on the
internal bus. A response byte is can optionally be sent when the processor goes from execution
mode to debug mode. Block transfers can be performed be setting the length field to n-1, where
n denotes the number of transferred words. For write accesses, the control byte and address is
sent once, followed by the number of data words to be written. The address is automatically
incremented after each data word. For read accesses, the control byte and address is sent once
and the corresponding number of data words is returned.

Figure 41. DSU Commands

DSU Write Command

11 Length -1 Addr[31:24] Addr[7:0]Addr[15:8]Addr[23:16] Data[31:24] Data[7:0]Data[15:8]Data[23:16]Send

Receive

10 Length -1 Addr[31:24] Addr[7:0]Addr[15:8]Addr[23:16]Send

DSU Read command

Resp. byte (optional)

Receive Data[31:24] Data[7:0]Data[15:8]Data[23:16] Resp. byte (optional)

bit 7:3 = 000000

bit 1:0 = HRESP

Response byte encoding

bit 2 = DMODE

Clock Generation The UART contains a 14-bit down-counting scaler to generate the desired baud-rate. The scaler
is clocked by the system clock and generates a UART tick each time it underflows. The scaler is
reloaded with the value of the UART scaler reload register after each underflow. The resulting
UART tick frequency should be 8 times the desired baud-rate.

 66
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

If not programmed by software, the baud rate will be automatically be discovered. This is done
by searching for the shortest period between two falling edges of the received data (correspond-
ing to two bit periods). When three identical two-bit periods has been found, the corresponding
scaler reload value is latched into the reload register, and the DSUUC BL bit is set . If the
DSUUC BL is reset by software, the baud rate discovery process is restarted. The baud-rate
discovey is also restarted when a ‘break’ is received by the receiver, allowing to change to
baudrate from the external transmitter. For proper baudrate detection, the value 0x55 should be
transmitted to the receiver after reset or after sending break.

The best scaler value for manually programming the baudrate can be calculated as follows:

scaler =

sdclk frequency x 10
baudrate x 8

5

10

Booting from DSU By asserting DSUEN and DSUBRE at reset time, the processor will directly enter debug mode
without executing any instructions. The system can then be initialised from the communication
link, and applications can be downloaded and debugged. Additionally, external (flash) PROMs
for standalone booting can be re-programmed.

 AT697F ADVANCE INFORMATION

 67
7703C–AERO–6/09

JTAG Interface

Overview The AT697 implements a standard interface compliant with the IEEE 1149.1 JTAG specification.
This interface can be used for PCB testing using the JTAG boundary-scan capability.

The JTAG interface is accessed through five dedicated pins. In JTAG terminology, these pins
constitute the Test Access Port (TAP).

The following table summarizes the TAP pins and there function at JTAG level.
Table 24.

Pin Name Type Description

TCK Test Clock Input
Used to clock serial data boundary into scan latches and control
sequence of the test state machine. TCK can be asynchronous
with CLK

TMS Test Mode select Input
Primary control signal for the state machine. Synchronous with
TCK. A sequence of values on TMS adjusts the current state of
the TAP.

TDI Test Data Input Input Serial input data to the boundary scan latches. Synchronous
with TCK

TDO Test Data Output Output Serial output data from the boundary scan latches.
Synchronous with TCK

TRST Test Reset Input Resets the test state machine. can be asynchronous with TCK

TAP Pins

For more details, please refer to the ‘IEEE Standard Test Access Port and Boundary Scan’
specification.

Any AT697 based system will contain several JTAG compatible chips. These are connected
using the minimum (single TMS signal) configuration. This configuration contains three broad-
cast signals (TMS, TCK, and TRST,) which are fed from the JTAG master to all JTAG slaves in
parallel, and a serial path formed by a daisy-chain connection of the serial test data pins (TDI
and TDO) of all slaves.

The TAP supports a BYPASS instruction which places a minimum shift path (1 bit) between the
chip’s TDI and TDO pins. This allows efficient access to any single chip in the daisy-chain with-
out board-level multiplexing.

Figure 42. JTAG Serial connection using 1 TMS Signal

TDI TDO

TMS TCK TRST

TDI TDO

TMS TCK TRST

TDI TDO

TMS TCK TRST

TDI TDO

TMS TCK TRST

TDI

TMS
TCK

TRST

TDO

Part 1 Part 2 Part 3 Part n

 68
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

TAP Architecture The TAP implemented in the AT697 consists of a TAP interface, a TAP controller, plus a number
of shift registers including an instruction register (IR) and some registers .

Figure 43. AT697 TAP Architecture

TCK

Reset

TRST

TAP

TAP
Controller

TDO
TDI

TMS
TCK

Clock DR
Shift DR
Update DR

Clock IR
Shift IR
Update IR

EN
∇

EN
∇D Q0

1

. . . .

. . . .

Select

Ena TDO

Design-Specific Data

Mux

. . . .

.

Test
Data Registers

Instruction Decode

Instruction Register

Bypass Register

Boundary Scan Register

Device ID Register

TAP Controller The TAP controller is a synchronous finite state machine (FSM) which controls the sequence of
operations of the JTAG test circuitry, in response to changes at the JTAG bus. (Specifically, in
response to changes at the TMS input with respect to the TCK input.)

The TAP controller FSM implements the state (16 states) diagram as detailed in the following
diagram. The IR is a 3-bit register which allows a test instruction to be shifted into the AT697.
The instruction selects the test to be performed and the test data register to be accessed.
Although any number of loops may be supported by the TAP, the finite state machine in the TAP
controller only distinguishes between the IR and a DR. The specific DR can be decoded from the
instruction in the IR.

 AT697F ADVANCE INFORMATION

 69
7703C–AERO–6/09

Figure 44. TAP - State Machine

Test Logic Reset

Run Test/Idle
Select DR Scan Select IR Scan

Capture DR[1]

Shift DR

Exit_1 DR

Pause DR

Exit_2 DR

Update DR[1]

Capture IR

Shift IR

Exit_1 IR

Pause IR

Exit_2 IR

Update IR

1

0 1
1

0

0 0

0 0

1 1

1

11

1

0 0

0 0

00

1 1

1

1 1

0 0

1 10 0

Transitions between
states are controlled
by TMS input value.

Due to the scan cell layout, "Capture DR" and "Update DR" are states without associated action
during the scanning of internal chains.

TAP Instructions The following instruction are supported by the AT697 TAP.

Table 25. TAP instruction set

Binary Value Instruction Name Data Register Scan Chain Accessed

000 EXTEST Boundary scan register Boundary scan chain

001 SAMPLE/PRELOAD Boundary scan register Boundary scan chain

010 BYPASS Bypass register Bypassscan chain

111 IDCODE Device id register ID register scan chain

BYPASS This instruction is binary coded "010"

It is used to speed up shifting at board level through components that are not to be activated.

EXTEST This instruction is binary coded "000"

 70
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

It is used to test connections between components at board level. Components output pins are
controlled by boundary scan register during Capture DR on the rising edge of TCK.

SAMPLE/PRELOAD This instruction is binary coded "001"

It is used to get a snapshot of the normal operation by sampling I/O states during Capture DR on
the rising edge of TCK. It allows also to preload a value on the output latches during Update DR
on falling edge of TCK. It do not modify system behaviour.

IDCODE This instruction is binary coded "111"

Value of the IDCODE is loaded during Capture DR.

Test Data
Registers

The following data registers are supported in the AT697 TAP:

Bypass Register Bypass register containing a single shift register stage is connected between TDI and TDO.

Figure 45. Bypass Register Cell

D
from TDI

to TDO

Clock DR

Shift DR
&

Device ID register

Device ID register is a read only 32-bit register. It is connected between TDI and TDO.

Figure 46. Device ID Register

Vers. Part ID Manufacturer’s ID Const.
011112272831

0001 1011 . 0110 . 0100 . 0101 000 . 0101 . 1000 1

ID. register value: 0x 1b64 50b1

Field Definitions:

[31:28]: Vers - Version number - 0x1

[27:12]: Part ID - Represent part number as assigned by Vendor- 0x b645

[11:01]: Manufacturer’s ID - Represent manufacturer’s ID as per JEDEC - 0x 058

[0]: Const - Constant tied to logic ’1’.

 AT697F ADVANCE INFORMATION

 71
7703C–AERO–6/09

Boundary Scan Register A single scan chain consisting of all of the boundary scan cells (input, output and in/out cells).
• The purpose of the boundary scan is the support of scan-based board testing.

Boundary Scan register is connected between TDI and TDO.

To use the boundary scan feature, the PLL will be in bypass mode, i.e. BYPASS signal direction
to VCC.

Checker Scan Register A single scan chain consisting of all of the scan cells of IU parity checkers. The checkers scan is
only used for factory test. Checkers scan register is connected between TDI and TDO.

 72
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Execution Mode

Reset Mode When the RESET input is asserted for at least two cycles, the processor enters reset mode.
Under this mode, the CPU and all the peripherals are halted. Only the following registers are
affected by the reset. All other registers maintain their value or are undefined.

Table 26.

Register Description Reset Value

PC program counter 0x0000 0000

nPC new program counter 0x0000 0004

PSR processor status register et = 0
s = 1

CCR cache control register 0x0000 0000

MCFG1 PRWDH PROM bus width PIO[1:0]

MCFG3 PE PROM EDAC enable PIO[2]

Reset Operation

When RESET is deasserted, execution restarts from address 0.

Debug Mode Debug mode can be entered when the DSU is enabled through the external DSUEN pin. This
allows read/write access to all processor registers and caches memories. In debug mode, the
processor pipeline is held and the processor is controlled by the DSU.

Power-down/Idle
Mode

AT697 can be idled by writing any value to the power-down register. During power-down mode,
only the integer unit is halted. All other functions and peripherals operate as nominal.

When a single write to the idle register is performed, idle mode is entered on the next load
instruction. Idle mode is terminated when an unmasked interrupt with higher level than the cur-
rent processor interrupt level is pending. Then, the integer unit is re-enabled.

Here is a simple example allowing Idle mode entry :
! write any value to Idle register
st %g2,[%g1 + 0x18]
! enter Idle mode
ld [%o1 + 0x08],%g3

 AT697F ADVANCE INFORMATION

 73
7703C–AERO–6/09

System Clock

Overview The AT697F clock system is mainly based on two main clock trees: the PCI clock and the CPU
clock. The following figure presents the clock system of the processor and its distribution.

Figure 47.

PLL

Alternate

PCI clock

C
P

U
 c

lo
ck

CLK

BYPASS

PDIV4
LOCK

UART clock

Uart Control Reg.
UACn

PCI Core

SDCLK

CPU Core

GPITimers

Uarts

Memory
Control

PCI
Wrapper

Interrupt
Controller

Caches Reg. File

Clock Distribution

PCI Clock The PCI clock is dedicated to the PCI Interface. It is used in particular by the PCI wrapper that
shares its activity between the two clock domains.

External Clock The PCI interface and its associated wrapper can only be driven from an external clock. The PCI
clock shall be connected to the PCI_CLK pin of the PCI interface. This input shall be driven at a
frequency in the range of 0 up to 33MHz.

CPU Clock The CPU clock is routed to the parts of the system concerned with operation of the SPARC core.
Examples of such modules are the CPU core itself, the register files... The CPU clock is also
used by the majority of the I/O modules like Timers, Memory controller, Interrupt Controller, with
the exception of the PCI Interface.

The CPU clock is driven either directly by an external oscillator or by the internal PLL.

External Clock To drive the device directly from an external clock source, the CLK input shall be driven by an
external clock generator while the BYPASS pin is driven high. In that way, the CPU clock is the
direct representation of the clock applied to CLK.

When the external CPU clock source is selected, the clock input can be driven at a frequency in
the range of 0MHz up to 100MHz.

PLL

Overview The CPU clock can be issued from the internal PLL. This PLL contains a phase/frequency
detector, charge pump, voltage control oscillator, low pass filter, lock detector and divider.

 74
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

The PLL implemented is configured by hardware to provide a cpu clock frequency four times the
frequency of the input clock.

PLL control The PLL control is done by hardware through dedicated ports, including a bypass, a clock input
and a filter input.

The following table presents the assignement and functions of the PLL control signals.

Table 27. PLL ports description

Pin name Function

LOCK Lock

CLK Board clock input

BYPASS Bypass

Operation To drive the device from the internal PLL, the CLK input shall be driven by an external clock gen-
erator while the BYPASS pin is driven low. In that way, the CPU clock frequency is four time the
frequency of the clock applied to CLK.

When the PLL based CPU clock source is selected, the clock input shall be driven at a fre-
quency in the range of 18MHz up to 25MHz.

Fault Tolerance &
Clock

To prevent erroneous operations from single event transient (SET) errors and single event upset
(SEU), the AT697F processor is based on full triple modular redundancy (TMR) architecture.

Figure 48. TMR structure

Such architecture is based on a fully triplicated clock distribution (CLK1, CLK2 and CLK3). In
that way, each one of the PCI clock and the cpu clock are build as three-clock trees.

Skew To prevent the processor from corruption by single event transient (SET) phenomenon, addi-
tional skew can be programmed on the clock trees. The two dedicated pins SKEW1 and SKEW0
are used to program the delay induced by the skew.

Here is a short description of the skew implementation :

 AT697F ADVANCE INFORMATION

 75
7703C–AERO–6/09

Figure 49.

D1

D2

D3

D4

i1
i2

i3

i1

i2

i3

i1

i2

i3

SKEW[1:0]

SKEW[1:0]

SKEW[1:0]

CLK1 tree

CLK2 tree

CLK3 tree

BYPASS

CLK
PLL cpu clock

D2 = D1

D4 = D3 = 2 * D1

CPU clock tree overview

Three configuration of skew are available :
• SKEW[1:0] = ’00’ : natural skew corresponding to the intrinsec routage of the chip
• SKEW[1:0] = ’01’ : medium skew ‘artificially’ injected
• SKEW[1:0] = ’10’ : maximum skew ‘artificially’ injected

The remaining configuration (SKEW[1:0] = ’11’) is reserved and must not be used at application
level.

Table 28. SKEW assignements

SKEW[1:0]

DELAY

CommentsCLK1 -> CLK2 CLK1 -> CLK3

‘00’ natural natural natural skew

‘01’ D1 D3 medium skew

‘10’ D1 + D2 D3 + D4 maximum skew

‘11’ Reserved

Use of a high level of skew improves the efficiency of SET prevention but leads to an operating
loss performance. Maximum speed is decreased and timings on the interfaces are slower than
with natural skew. Refer to the ’Electrical Characteristics’ section for detailed timings at each
skew.

 76
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Package MCGA 349

Mechanical
Outlines

AA2
A1

e

min max min max
D/E 24,8 25,2 0,976 0,992

D1/E1
A1 1,4 1,85 0,055 0,073
A2 2,4 3,45 0,094 0,136
A 4,3 5,9 0,169 0,232
b 0,79 0,99 0,031 0,04
e

0,9

0,05

inch

22,86

1,27

mm

 AT697F ADVANCE INFORMATION

 77
7703C–AERO–6/09

QFP256
package

Package
Description

 78
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Registers
Description
Table 29. Register legend
Address = 0x01010101

Bit Number 31 30 29 28 27 26 25 24 23 9 8 7 6 5 4 3 2 1 0

field name field reserved bit

access type r=read access w=write acces r/w=read and write access

default value after reset 0 100 1 x = undefined or non affected by reset

Integer Unit
Registers
Table 30. Processor State Register- PSR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

impl[3:0] ver[3:0] n z v c reserved ec ef pil[3:0] s ps et cwp[4:0]

r r r/w r/w r r r/w r/w r/w

0001 0001 x x x x xxxxxx 0 x xxxx 1 1 1 00000

Bit Number Mnemonic Description

31..28 impl[3:0] Implementation or class of implementations of the architecture.

27..24 ver[3:0] Identify one or more particular implementations or is a readable and writable state field whose properties are
implementation-dependent.

23 n
indicates whether the ALU result was negative for the last instruction modifying icc field.
1 = negative
0 = not negative.

22 z
indicates whether the ALU result was zero for the last instruction modifying icc field.
1 = zero
0 = not zero.

21 v indicates whether the ALU result was within the range of (was representable in) 32-bit 2’s complement notation
for the last instruction that modified the icc field. 1 = overflow, 0 = no overflow.

20 c
indicates whether a 2’s complement carry out (or borrow) occurred for the last instruction that modified the icc
field. Carry is set on addition if there is a carry out of bit 31. Carry is set on subtraction if there is borrow into bit
31. 1 = carry, 0 = no carry.

13 ec

determines whether the implementation-dependent oprocessor is enabled. If disabled, a coprocessor
instruction will trap. 1 = enabled, 0 = disabled. If an
implementation does not support a coprocessor in ardware, PSR.EC should always read as 0 and writes to it
should be ignored.

12 ef
determines whether the FPU is enabled. If disabled, a floating-point instruction will trap. 1 = enabled, 0 =
disabled. If an implementation does not support a hardware FPU, PSR.EF should always read as 0 and writes
to it should be ignored.

11..8 pil[3:0] identify the interrupt level above which the processor will accept an interrupt.

7 s determines whether the processor is in supervisor or user mode. 1 = supervisor mode, 0 = user mode.

6 ps contains the value of the S bit at the time of the most recent trap.

5 et
determines whether traps are enabled. A trap automatically resets ET to 0. When ET=0, an interrupt request is
ignored and an exception trap causes the IU to halt execution, which typically results in a reset trap that
resumes execution at address 0. 1 = traps enabled, 0 = traps disabled.

 AT697F ADVANCE INFORMATION

 79
7703C–AERO–6/09

The WIM can be read by the privileged RDWIM instruction and written by the WRWIM
instruction.

Table 32. Y Register - Y
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

y

r/w

xxxx xxxx

The Y register can be read and written with the RDY and WRY instructions.

Table 33. Trap Base Address - TBR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

tba[19:0] tt[7:0] reserved

r/w r r/w

0000

Bit Number Mnemonic Description

31..12 tba[19:0] Trap Base Address
This field contains the most-significant 20 bits of the trap table address.

11..4 tt[7:0]
Trap Type
This eight-bit field is written by the hardware when a trap occurs, and retains its value until the next trap. It
provides an offset into the trap table.

The tba field is written by the WRTBR instruction. Use of WRTBR is don’t care for tt field.

4..0 cwp[4:0]
comprise the current window pointer, a counter that identifies the current window into the r registers. The
hardware decrements the CWP on traps and SAVE instructions, and increments it on RESTORE and RETT
instructions (modulo NWINDOWS).

Table 31. Window Invalid Mask - WIM
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved
windows

7 6 5 4 3 2 1 0

r r/w

0 1 0 0 0 0 0 0 1

Bit Number Mnemonic Description

0 < n < 7 windows[n]
Indicated wether the window is a ‘valid’ or an ‘invalid’ one.
‘0’ : valid
‘1’ : invalid

Bit Number Mnemonic Description

Table 34. Program Counters - PC
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

address[31:0]

0x0000 0000

 80
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

The 32-bit PC contains the address of the instruction currently being executed by the IU.

When a trap occurs, the PC address is saved in the local register (l1). When returning from trap,
l1 value is copied back to PC.

Table 35. New Program Counters - nPC
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

address[31:0]

0x0000 0004

The nPC holds the address of the next instruction to be executed (assuming a trap does not
occur).

When a trap occurs, the nPC address is saved in the local register (l2). When returning from
trap, l2 value is copied back to nPC.

Table 36. Watch Point Address Registers
Address : %asr24, %asr26, %asr28, %asr30
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

waddr[29:0]

re
se

rv
ed

if

r/w r r/w

xxxx xxxx 0 0

BitNumber Mnemonic Description

31..2 waddr[20:0] Defines the addresses range to be watched

0 if
Enable hit generation on instruction fetch
0 = disabled
1 = enabled

These registers are accessed using the RDASR/WRASR instructions

Table 37. Watch Point Mask registers
Address :%asr25, %asr27, %asr29, %asr31
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

wmask[29:0] dl ds

r/w r/w r/w

xxxx xxxx 0 0

BitNumber Mnemonic Description

31..2 wmask[29:0]
Defines which bits are to be compared to waddr.
‘0’ = comparison disabled
‘1’ = comparison enabled

1 dl
Enable hit generation on data load
‘0’ = disabled
‘1’ = enabled

0 ds
Enable hit generation on data store
‘0’ = disabled
‘1’ = enabled

 AT697F ADVANCE INFORMATION

 81
7703C–AERO–6/09

These registers are accessed using the RDASR/WRASR instructions

Table 38. Register File Protection Control Register
Address :%asr16
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved cnt[2:0] tcb[6:0] te di

r r/w r/w r/w r/w

xxxx x 000 x 0 1

Bit Number Mnemonic Description

11..9 cnt[2:0]
Error counter.
Incremented for each corrected error

8..2 tcb[6:0] Test checkbits

1 te
EDAC test enable
‘0’ = disabled
‘1’ = enabled

0 di
Disable EDAC function
‘1’ = disabled
‘0’ = enabled

This register is accessed using the RDASR/WRASR instructions.

Table 39. Window Registers
Type Name Definition

in

i7 return address

i6 frame pointer

i5 incoming parameter register 5

i4 incoming parameter register 4

i3 incoming parameter register 3

i2 incoming parameter register 2

i1 incoming parameter register 1

i0 incoming parameter register 0

 82
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Floating Point Unit
Registers
Table 40. FPU Status register - FSR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rd[1:0]

re
se

rv
ed tem[4:0]

ns

re
se

rv
ed

ver[2:0] ftt[2:0]

re
se

rv
ed

fcc[1:0]
aexc[4:0] cexc[4:0]

nv
m

of
m

uf
m

dz
m

nx
m

nv
a

of
a

uf
a

dz
a

nx
a

nv
c

of
c

uf
c

dz
c

nx
c

r/w r/w r/w r r/w r r r/w r r r

xx xx 00000 x xx 001 xxx xx xxx xxxxx 00000

local

l7 local register 7

l6 local register 6

l5 local register 5

l4 local register 4

l3 local register 3

l2 nPC (for RETT)

l1 PC (for RETT)

l0 local register 0

out

o7 temp

o6 stack pointer

o5 outgoing parameter register 5

o4 outgoing parameter register 4

o3 outgoing parameter register 3

o2 outgoing parameter register 2

o1 outgoing parameter register 1

o0 outgoing parameter register 0

global

g7 global register 7

g6 global register 6

g5 global register 5

g4 global register 4

g3 global register 3

g2 global register 2

g1 global register 1

g0 global register 0 - always 0x00000000

Table 39. Window Registers
Type Name Definition

Bit Number Mnemonic Description

31..30 rd[1:0]
Rounding Direction
Defines the rounding direction used by the AT697 FPU during a floating-point arithmetic operation.

 AT697F ADVANCE INFORMATION

 83
7703C–AERO–6/09

Trap Types The ftt field can be read by the STFSR instruction. An LDFSR instruction does not affect ftt field.

Table 41.

TT Name Description

0 none No trap.

1 IEEE_exception An IEEE_754_exception floating-point trap type indicates that a floating-point exception occurred that conforms to
the ANSI/IEEE Standard 754-1985. The exception type is encoded in the cexc field.

2 Unfinished_FPop An unfinished_FPop indicates that an implementation’s FPU was unable to generate correct results or exceptions

3 unimplemented_FPop An unimplemented_FPop indicates that an implementation’s FPU decoded an FPop that it does not implement. In
this case, the cexc field is unchanged

4 sequence_error

A sequence_error indicates one of three abnormal error conditions in the FPU, all caused by erroneous supervisor
software:
- An attempt was made to execute a floating-point instruction when the FPU was not able to accept one. This type
of sequence_error arises from a logic error in supervisor software that has caused a previous floating-point trap to
be incompletely serviced (for example, the floating-point queue was not emptied after a previous floating-point
exception).
- An attempt was made to execute a STDFQ instruction when the floatingpoint deferred-trap queue (FQ) was
empty, that is, when FSR.qne = 0. (Note that generation of sequence_error is recommended, but not required in
this case)

5 hardware error
A hardware_error indicates that the FPU detected a catastrophic internal error, such as an illegal state or a parity
error on an f register access. If a hardware_error occurs during execution of user code, it may not be possible to
recover sufficient state to continue execution of the user application.

6 invalid register

An invalid_fp_register trap type indicates that one (or more) operands of an FPop are misaligned, that is, a double-
precision register number is not 0 mod 2, or a quadruple-precision register number is not 0 mod 4. It is
recommended that implementations generate an fp_exception trap with FSR.ftt = invalid_fp_register in this case,
but an implementation may choose not to generate a trap.

Trap Type Definition

27..23 tem[4:0]

Trap Enable Mask
tem field enables traps caused by FPops. These bits are ANDed with the bits of the cexc (current exception
field) to determine whether to force a floating-point exception to IU. All trap enable fields correspond to the
similarly named bit in the cexc field.
0 = trap disabled
1 = trap enabled

22 ns
Causes the FPU to produce implementation-defined results that may not correspond to ANSI/IEEE Standard
754-1985. For instance, to obtain higher performance, implementations may convert a subnormal floatingpoint
operand or result to zero when NS is set.

19..17 ver[2:0]
Identify one or more particular implementations of the FPU architecture. For each SPARC IU implementation
there may be one or more FPU implementations, or none. This field identifies the particular FPU implementation
present.

16..14 ftt[2:0]
Floating point trap type
Identify floating-point exception trap types.when floating point exception occurs, the ftt field encodes the type of
floating-point exception until an STFSR or another FPop is executed.

11..10 fcc[1:0]
Contain the FPU condition codes. These bits are updated by floating-point compare instructions (FCMP and
FCMPE). They are read and written by the STFSR and LDFSR instructions, respectively. FBfcc bases its
control transfer on this field.

9..5 aexc[4:0]

Accumulate IEEE floating-point exceptions while fp_exception traps are disabled using the TEM field. After an
FPop completes, the TEM and cexc fields are logically anded together. If the result is nonzero, an fp_exception
trap is generated; otherwise, the new cexc field is or’d into the aexc field. Thus, while traps are masked,
exceptions are accumulated in the aexc field.

4..0 cexc[4:0] Indicate that one or more IEEE floating-point exceptions were generated by the most recently executed FPop
instruction. The absence of an exception causes the corresponding bit to be cleared.

Bit Number Mnemonic Description

 84
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Floating Point Condition
Code

Table 42.

FCC Description

0 f rs1 = f rs2

1 f rs1 < f rs2

2 f rs1 > f rs2

3 f rs1 ? f rs2
indicates an unordered relation, which is true if either f rs1 or f rs2 is a signaling NaN or quiet NaN

FCC Field Definition

Note: f rs1 and f rs2 correspond to the single, double, or quad values in the f registers specified by an
instruction’s rs1 and rs2 fields. Note that fcc is unchanged if FCMP or FCMPE generates an
IEEE_exception trap.

Floating Point Exception
Fields

The current and accrued exception fields and the trap enable mask assume the following defini-
tions of the floating-point exception conditions.

Table 43. Exception Fields
Aexc

Mnemonic
Cexc

Mnemonic Name Description

nva nvc Invalid
An operand is improper for the operation to be performed. 1 = invalid operand, 0 = valid operand(s).
Examples : 0 ÷ 0, ∞ − ∞ are invalid.

ofa ofc Overflow The rounded result would be larger in magnitude than the largest normalized number in the specified format. 1 =
overflow, 0 = no overflow.

ufa ufc Underflow

The rounded result is inexact and would be smaller in magnitude than the smallest normalized number in the
indicated format. 1 = underflow, 0 = no underflow. Underflow is never indicated when the correct unrounded
result is zero.
if UFM=0 : The ufc and ufa bits will be set if the correct unrounded result of an operation is less in magnitude than
the smallest normalized number and the correctly-rounded result is inexact. These bits will be set if the correct
unrounded result is less than the smallest normalized number, but the correct rounded result is the smallest
normalized number. nxc and nxa are always set as well.
if UFM=1 : An IEEE_exception trap will occur if the correct unrounded result of an operation would be smaller
than the smallest normalized number. A trap will occur if the correct unrounded result would be smaller than the
smallest normalized number, but the correct rounded result would be the smallest normalized number.

dza dzc Div_by_zero
X÷0, where X is subnormal or normalized.
Note that 0 ÷ 0 does not set the dzc bit.
1 = division-by-zero, 0 = no division-by-zero.

nxa nxc Inexact
The rounded result of an operation differs from the infinitely precise correct result.
1 = inexact result, 0 = exact result.

Table 44. f registers - fx (0 < x < 31)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

fx[31:0]

 AT697F ADVANCE INFORMATION

 85
7703C–AERO–6/09

Memory Interface
Registers
Table 45. Memory Configuration Register 1 - MCFG1
Address = 0x80000000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

re
se

rv
ed

pb
rd

y

ab
rd

y

io
w

dh
[1

:0
]

io
br

dy

be
xc

re
se

rv
ed

io
w

s[
3:

0]

io
p

re
se

rv
ed

pr
w

en

re
se

rv
ed

pr
w

dh
[1

:0
]

pr
w

w
s[

3:
0]

pr
rw

s[
3:

0]

r/w r/w r/w r/w r/w r/w r/w r/w r/w r/w r/w r/w r/w r/w r/w

x 0 0 xx 0 0 x xxx 0 xxx xxxx 0 x xx 1111 1111

Bit Number Mnemonic Description

30 pbrdy
PROM area bus ready enable

if set, a PROM access will be extended until BRDY* is asserted (driven low).

29 abrdy
Asynchronous bus ready
If set, the BRDY* input can be asserted without relation to the sysstem clock, provided it is at least 1.5 clock
cycles long. Termination of the access after assertion of BRDY* will be delayed by at least one clock cycle.

28:27 iowdh[1:0] I/O bus width.
Defines the data with of the I/O area (“00”=8, “10”=32).

26 iobrdy
IO area bus ready enable
if set to one, an IO access will be extended until BRDY* is asserted (Driven low)

25 bexc
Bus error enable for RAM, PROM and IO transactions.
If set to one, the (low) assertion of the BEXC* will generate an error response on the internal bus and causes a
trap (0x01, 0x09, 0x2B) depending on the type of access.

23:20 iows[3:0]

I/O waitstates.
Defines the number of waitstates during I/O accesses:
“0000” = 0 waitstate,
“0001” = 1 waitstates,
...,
“1111” = 15 waitstates.

19 iop
I/O protection.
‘0’ : Read and write accesses to I/O area are disabled
‘1’ : Read and write accesses to I/O area are enabled.

11 prwen Prom write enable.
If set, enables write cycles to the prom area.

9:8 prwdh[1:0]

Prom width.
Defines the data with of the prom area:
“00” = 8 bits,
“10” = 32 bits.

7..4 prwws[3:0]

Prom write waitstates.
Defines the number of waitstates during prom write cycles:
“0000” = 0 waitstate,
“0001” = 2 waitstates,
...,
“1111” = 30 waitstates.

3..0 prrws[3:0]

Prom read waitstates.
Defines the number of waitstates during prom read cycles
“0000” = 0 waitstate,
“0001” = 2 waitstates,
...,
“1111” = 30waitstates.

 86
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Note: The prom bank size is coded in the same way as the ram bank size in MCFG2. The prom bank
size is used when an 8-bit prom is used with EDAC enabled - the last 25% of the prom bank is
used to store the EDAC checksums and cannot be used to store instructions or data.

During power-up, the prom width (bits [9:8]) are set with value on PIO[1:0] inputs. The prom
waitstates fields are set to 15 (maximum) and prom bank size is set to “0000”. External bus error
and bus ready are disabled. All other fields are undefined.

Table 46. Memory Configuration Register 2 - MCFG2
Address = 0x80000004
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sd
rr

ef

trp

trf
c[

2:
0]

sd
rc

as

sd
rb

s[
2:

0]

sd
rc

ls
[1

:0
]

sd
rc

m
d[

1:
0]

reserved se si

ra
m

bs
[3

:0
]

re
se

rv
ed

ra
m

br
dy

rm
w

ra
m

w
dh

[1
:0

]

ra
m

w
w

s[
1:

0]

ra
m

rw
s[

1:
0]

r/w r/w r/w r/w r/w r/w r/w r/w r/w r/w r/w r/w r/w r/w r/w r/w r/w

0 1 111 1 000 10 00 xxxx 0 0 xxxx x x x xx xx xx

Bit Number Mnemonic Description

31 sdrref SDRAM refresh.
If set, the SDRAM refresh will be enabled.

30 trp SDRAM tRP timing.
tRP will be equal to 2 or 3 system clocks (0/1).

29..27 trfc[2:0]
SDRAM tRFC timing.
tRF will be equal to 3 + field-value system clocks.

26 sdrcas
SDRAM CAS delay.
Selects 2 or 3 cycle CAS delay (0/1). When changed, a LOAD-COMMAND-REGISTER command must be
issued at the same time. Also sets RAS/CAS delay (tRCD).

25..23 sdrbs[2:0]

SDRAM banks size.
Defines the banks size for SDRAM chip selects:
“000” = 4 Mbyte,
“001” = 8 Mbyte,
“010” = 16 Mbyte,
...,
“111”=512 Mbyte.

22..21 sdrcls[1:0]

SDRAM column size.
“00” = 256 when sdrbs = “111”,
“01” = 512 when sdrbs = “111”,
“10” = 1024 when sdrbs = “111”,
“11” = 4096 when sdrbs = “111”,
= 2048 otherwise.

20..19 sdrcmd[1:0]

SDRAM command.
Writing a non-zero value will generate an SDRAM command:
“01” = PRECHARGE,
“10” = AUTO-REFRESH,
“11” = LOAD-COMMAND-REGISTER.
The field is reset after command has been executed.

14 se SDRAM enable.
If set, the SDRAM controller will be enabled.

13 si SRAM disable.
If set together with bit 14 (SDRAM enable), the static ram access will be disabled.

 AT697F ADVANCE INFORMATION

 87
7703C–AERO–6/09

12..9 rambs[3:0]

SRAM bank size.
Defines the size of each ram bank
“0000” = 8 Kbyte,
“0001” = 16 Kbyte,
...
“1111” = 256 Mbyte.

7 rambrdy
RAM area bus ready enable.
For RAM Bank 4 (RAMSN[4]). If set to one, a RAM access will be extended until BRDY* is asserted (driven
low).

6 rmw
Read-modify-write.
if set, Enable read-modify-write cycles on sub-word writes to 32-bit areas with common write strobe (no byte
write strobe).

5..4 ramwdh[1:0]

SRAM bus width.
Defines the data with of the SRAMarea:
“00” = 8 bits,
“1X” = 32 bits.

3..2 ramwws[1:0]

SRAM write waitstates.
Defines the number of waitstates during SRAM write cycles:
“00” = 0 waitstate,
“01” = 1 waitstates,
“10” = 2 waitstates,
“11” = 3 waitstates.

1..0 ramrws[1:0]

SRAM read waitstates.
Defines the number of waitstates during SRAM read cycles:
“00” = 0 waitstate,
“01” = 1 waitstates,
“10” = 2 waitstates,
“11” = 3 waitstates.

Table 47. Memory Configuration Register 3 - MCFG3
Address = 0x80000008
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved srcrv[14:0] wb rb re pe tcb[6:0]

r r/w r/w r/w r/w r/w r/w

11101 xxx xxxx xxxx xxxx 0 0 x x xxxx xxxx

Bit Number Mnemonic Description

26..12 srcrv[14:0] SDRAM refresh counter reload value.

11 wb EDAC diagnostic write bypass

10 rb EDAC diagnostic read bypass

9 re RAM EDAC enable.
Enable EDAC checking of the RAM area

8 pe PROM EDAC enable.
Enable EDAC checking of the PROM area. At reset, this bit is initialised with the value of PIO[2]

7..0 tcb[6:0]
Test checkbits.
This field replaces the normal checkbits during store cycles when WB is set. TCB is also loaded with the
memory checkbits during load cycles when RB is set.

Bit Number Mnemonic Description

 88
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

The period between each AUTO-REFRESH command is calculated as follows:

tREFRESH = ((reload value) + 1) / SDCLK frequency

Table 48. Write Protection Register 1 - WPR1
Address = 0x8000001C
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

en bp tag[14:0] mask[14:0]

r/w r/w r/w r/w

0 x xx xxxx xxxx xxxx x xxx xxxx xxxx xxxx

Bit Number Mnemonic Description

31 en Enable.
If set, enables the write protect unit

30 bp Block protect
If set, selects block protect mode

29..15 tag[14:0] Address tag
This field is compared against address(29:15)

14..0 mask[14:0] Address mask
This field contains the address mask

Table 49. Write Protection Register 2 - WPR2
Address = 0x80000020
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

en bp tag[14:0] mask[14:0]

r/w r/w r/w r/w

0 x xx xxxx xxxx xxxx x xxx xxxx xxxx xxxx

Bit Number Mnemonic Description

31 en Enable.
If set, enables the write protect unit

30 bp Block protect
If set, selects block protect mode

29..15 tag[14:0] Address tag
This field is compared against address(29:15)

14..0 mask[14:0] Address mask
this field contains the address mask

Table 50. Write Protection Start Address 1 - WPSTA1
Address = 0x800000D0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

re
se

rv
ed

START1[27:0] bp

re
se

rv
ed

r/w r/w r/w r/w

00 xxxxxxx x 0

Bit Number Mnemonic Description

29..2 START1[27:0] Contains the first address of the protected block

1 bp Block protect
If set, selects block protect mode

Table 51. Write Protection End Address 1 - WPSTO1
Address = 0x800000D4
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

re
se

rv
ed

END1[27:0] us su

r/w r/w r/w r/w

00 xxxxxxx 0 0

Bit Number Mnemonic Description

29..2 END1[27:0] Contains the last address of the protected block

1 us
User mode
If set, write protection is enabled for user mode accesses

0 su
Supervisor mode
If set, write protection is enabled for supervisor mode accesses

Table 52. Write Protection Start Address 2 - WPSTA2
Address = 0x800000D8
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

re
se

rv
ed

START2[27:0] bp

re
se

rv
ed

r/w r/w r/w r/w

00 xxxxxxx x 0

Bit Number Mnemonic Description

29..2 START2[27:0] Contains the first address of the protected block

1 bp Block protect
If set, selects block protect mode

 AT697F ADVANCE INFORMATION

 89
7703C–AERO–6/09

Table 53. Write Protection End Address 2 - WPSTO2
Address = 0x800000DC
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

re
se

rv
ed

END2[27:0] us su

r/w r/w r/w r/w

00 xxxxxxx 0 0

Bit Number Mnemonic Description

29..2 END2[27:0] Contains the last address of the protected block

1 us
User mode
If set, write protection is enabled for user mode accesses

0 su
Supervisor mode
If set, write protection is enabled for supervisor mode accesses

 90
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

 AT697F ADVANCE INFORMATION

 91
7703C–AERO–6/09

System Registers

Table 54. Product Configuration Register - PCR
Address = 0x80000024
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

re
se

rv
ed

ds
u

sd
rc

trl

wtpnb[2:0]

im
ac nwindows[4:0] icsz[2:0] ilsz[2:0] dcsz[2:0] dlsz[1:0]

di
vi

ns
t

m
ul

in
st

re
se

rv
ed

m
em

st
at

fpu[1:0] pci[1:0] wprt[1:0]

r/w r r r r r r r r r r r r/w r r r r

x 1 1 100 0 00111 100 11 100 11 1 1 x 1 01 01 01

Bit Number Mnemonic Description

30 dsu
Debug Support Unit present
“0” = disabled
“1” = present

29 sdrctrl
SDRAM controller present
“0” = disabled
“1” = present

28..26 wtpnt[2:0] Number of implemented watchpoints (0 - 4)

25 imac UMAC/SMAC instruction implemented

24..20 nwindows[4:0] Number of register windows.
The implemented number of SPARC register windows - 1

19..17 icsz[2:0]
Instruction cache size.
The size (in Kbytes) of the instruction cache.
Cache size = 2^(icsz).

16..15 ilsz[2:0]
Instruction cache line size.
The line size (in 32-bit words) of each line.
Line size = 2^(ilsz).

14..12 dcsz[2:0]
Data cache size.
The size (in kbytes) of the data cache.
Cache size = 2^(dcsz).

11..10 dlsz[1:0]
Data cache line size.
The line size (in 32-bit words) of each line.
Line size = 2^(dlsz).

9 divinst UDIV/SDIV instruction implemented

8 mulinst UMUL/SMUL instruction implemented

6 memstat Memory status and failing address register present

5..4 fpu[1:0] FPU type

3..2 pci[1:0] PCI core type

1..0 wprt[1:0] Write protection type

Table 55. Fail Address Register - FAILAR
Address = 0x8000000C
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

fa[31:0]

r

xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

Bit Number Mnemonic Description

31..0 fa[31:0]
Failing Address
This field contains the address of the access that triggered an error response. This register is updated each
time an error occurs on the internal bus.

Table 56. Fail Status Register - FAILSR
Address = 0x80000010
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved ee ev rw hmaster[3:0] hsize[2:0]

r/w r/w r/w r r r

xxxxxxxxxxxxxxx 0 0 0 0 0 0 0 0 0 0

Bit Number Mnemonic Description

9 ee
EDAC Correctable error
Set when a correctable EDAC error is detected.

8 ev Error Valid.
Set when a new error occurred.

7 rw Read/Write.
This bit is set if the failed access was a read cycle, otherwise it is cleared.

6..3 hmaster[3:0] AHB master.
This field contains the HMASTER[3:0] of the failed access.

2..0 hsize[2:0]
Transfer Size.
This filed contains the HSIZE[2:0] of the failed transfer.

 92
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Note: Any access triggering an error response on the AHB bus will be registered in two registers; AHB
failing address register and AHB status register.The failing address register will store the address
of the access while the AHB status register will store the access and error type.The registers are
updated when an error occur, and the EV (error valid) is not set. When the EV bit is set, interrupt 1
is generated to inform the processor about the error. After an error, the EV bit has to be reset by
software.

 AT697F ADVANCE INFORMATION

 93
7703C–AERO–6/09

Caches Register
Table 57. Cache Control Register - CCR
Address = 0x80000014
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved ds fd fi

cp
c[

1:
0]

cp
te

[1
:0

]

ib ip dp

ite
[1

:0
]

id
e[

1:
0]

dt
e[

1:
0]

dd
e[

1:
0]

df if

dc
s[

1:
0]

ic
s[

1:
0]

r r/w r/w r/w r r/w r/w r r r/w r/w r/w r/w r/w r/w r/w r/w

11110111 0 0 0 10 xx 0 x x 00 00 00 00 x x 00 00

Bit Number Mnemonic Description

23 ds Data cache snoop enable
If set, will enable data cache snooping.

22 fd Flush data cache
If set, will flush the data cache. Always reads as zero.

21 fi Flush Instruction cache
If set, will flush the instruction cache. Always reads as zero.

20..19 cpc[1:0]

Cache parity bits
Indicates how many parity bits are used to protect the caches
“00” = none,
“01” = 1 parity bits,
“10” = 2 parity bits,
“11” = not used

18..17 cpte[1:0] Cache parity test bits
These bits are XOR’ed to the data and tag parity bits during diagnostic writes.

16 ib Instruction burst fetch
This bit enables burst fill during instruction fetch.

15 ip Instruction cache flush pending
This bit is set when an instruction cache flush operation is in progress.

14 dp Data cache flush pending
This bit is set when an data cache flush operation is in progress.

13..12 ite[1:0]
Instruction cache tag error counter
This filed is incremented every time an instruction cache tag parity error is detected.

11.10 ide[1:0]
Instruction cache data error counter
This field is incremented each time an instruction cache data sub-block parity error is detected.

9..8 dte[1:0]
Data cache tag error counter
This filed is incremented every time a data cache tag parity error is detected.

7..6 dde[1:0]
Data cache data error counter
This field is incremented each time an instruction cache data sub-block parity error is detected

5 df Data Cache Freeze on Interrupt
If set, the data cache will automatically be frozen when an asynchronous interrupt is taken.

4 if Instruction Cache Freeze on Interrupt
If set, the instruction cache will automatically be frozen when an asynchronous interrupt is taken.

3..2 dcs[1:0]

Data Cache state
Define the current data cache according to the following :
“X0” = disabled
“01” = frozen
“11” = enabled
Set to “00” at reset.

 94
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

1..0 ics[1:0]

Instruction Cache state
Define the current instruction cache according to the following :
“X0” = disabled
“01” = frozen
“11” = enabled.
Set to “00” at reset.

Bit Number Mnemonic Description

Table 58. Idle Register - IDLE
Address = 0x80000018
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

idle[31:0]

w

xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

Bit Number Mnemonic Description

31..0 idle[31:0] Write only with any data. A write to this register followed by a load access will cause the system to enter power
down mode

 AT697F ADVANCE INFORMATION

 95
7703C–AERO–6/09

Power Down Reg.

 96
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Timers
Table 59. Timer 1 Counter Register - TIMC1
Address = 0x80000040
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

tim1val[31:0]

r/w

xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

Bit Number Mnemonic Description

31..0 tim1val[31:0]
Timer 1 counter value
A read access gives the decounting value of the scaler.

 Registers

Table 60. Timer 1 Reload Register - TIMR1
Address = 0x80000044
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

tim1rld

r/w

XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Bit Number Mnemonic Description

31..0 tim1rld[31:0] Timer 1 reload value
A write access programs the reload value of Timer 1 counter.

Table 61. Timer 1 Control Register - TIMCTR1
Address = 0x80000048
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved ld
1 rl1 en
1

r/w r/w

xxxx xxxx xxxx xxxx xxxx xxxx xxxx x 0 x 0

Bit Number Mnemonic Description

2 ld1
Load counter
when written with ‘one’, will load the timer reload register into the timer counter register. Always reads as a
‘zero’.

1 rl1 Reload counter
If rl1 is set, then the counter will automatically be reloaded with the reload value after each underflow.

0 en1 Enable counter
enables the timer when set.

Table 62. Watchdog Register - WDG
Address = 0x8000004C
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

wdc[31:0]

r/w

1111 1111 1111 1111 1111 1111 1111 1111

Bit Number Mnemonic Description

31..0 wdc[31:0] Watchdog counter.
Fixes the watchdog ’Timeout’.

 AT697F ADVANCE INFORMATION

 97
7703C–AERO–6/09

The ’Timeout’ is the time between the loading (or re-loading) and the watchdog interrupt. ’Reset-
Timeout’ is greater than ’Timeout’.
Note: A read access gives the decounting value of the watchdog, the reload value itself is not stored in

the processor.

Table 63. Timer 2 Counter Register - TIMC2
Address = 0x80000050
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

tim2val[31:0]

r/w

xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

Bit Number Mnemonic Description

31..0 tim2val[31:0]
Timer 2 counter value
A read access gives the decounting value of the scaler.

Table 64. Timer 2 Reload Register - TIMR2
Address = 0x80000054
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

tim2rld[31:0]

r/w

XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Bit Number Mnemonic Description

31..0 tim2rld[31:0] Timer 2 reload value
A write access programs the reload value of Timer 1 counter.

Table 65. Timer 2 Control Register - TIMCTR2
Address = 0x80000058
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved ld
2

rl2 en
2

r/w r/w

xxxx xxxx xxxx xxxx xxxx xxxx xxxx x 0 x 0

Bit Number Mnemonic Description

2 ld2
Load counter
when written with ‘one’, will load the timer reload register into the timer counter register. Always reads as a
‘zero’.

1 rl2 Reload counter
If rl2 is set, then the counter will automatically be reloaded with the reload value after each underflow.

0 en2 Enable counter
enables the timer when set.

Table 66. Prescaler Counter Register - SCAC
Address = 0x80000060
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved counter value [9:0]

r/w r/w

xxxx xxxx xxxx xxxx xxxx xxx 00 0000 0000

Bit Number Mnemonic Description

9..0 counter value[9:0] prescaler counter value

 98
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

A read access gives the decounting value of the prescaler.

Table 67. Prescaler Reload Register - SCAR
Address = 0x80000064
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved reload value [9:0]

r/w r/w

xxxx xxxx xxxx xxxx xxxx xxx 00 0000 0000

Bit Number Mnemonic Description

9..0 reload value [9:0] Prescaler reload value

A write access programs the reload value of the prescaler.

A read access gives the reload value of the prescaler.
Note: The reset value for SCAR is 0. This is not a legal value, it is however equivalent to a value of 3

and leads to a division rate of 4.

 AT697F ADVANCE INFORMATION

 99
7703C–AERO–6/09

UARTs Registers

Table 68. UART 1 Data Register - UAD1
Address = 0x80000070
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved rtd1[7:0]

r/w r/w

xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

Bit Number Mnemonic Description

7..0 rtd1[7:0] Received or Transmitted Data of UART1

rtd1 field has 2 meanings:
• A write access enables the sending of the written 8-bit data on UART 1.
• A read access provides the received 8-bit data on UART1.

Table 69. UART 1 Status Register - UAS1
Address = 0x80000074
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved fe
1

pe
1

ov
1

br
1

th
1

ts
1

dr
1

r/w r/w

xxxx xxxx xxxx xxxx xxxx xxxx x 0 0 0 0 1 1 0

Bit Number Mnemonic Description

6 fe1 Framing error
Indicates that a framing error was detected.

5 pe1 Parity error
indicates that a parity error was detected.

4 ov1 Overrun
Indicates that one or more character have been lost due to overrun.

3 br1 Break received
Indicates that a BREAK has been received.

2 th1 Transmitter hold register empty
Indicates that the transmitter hold register is empty.

1 ts1 Transmitter shift register empty
Indicates that the transmitter shift register is empty.

0 dr 1 Data ready
Indicates that new data is available in the receiver holding register.

Table 70. UART 1 Control Register - UAC1
Address = 0x80000078
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved ec
1

lb
1 fl1 pe
1

ps
1

ti1 ri1 te
1

re
1

r/w r/w

xxxx xxxx xxxx xxxx xxxx xxx 0 x 0 x x x x 0 0

Bit Number Mnemonic Description

8 ec1 External Clock
if set, the UART scaler will be clocked by PIO[3]

7 lb1 Loop back
If set, loop back mode will be enabled.

6 fl1 Flow control
If set, enables flow control using CTS/RTS.

5 pe1 Parity enable
If set, enables parity generation and checking.

4 ps1

Parity select
Selects parity polarity
‘0’ = even parity
‘1’ = odd parity

3 ti1 Transmitter interrupt enable
If set, enables generation of transmitter interrupt.

2 ri1 Receiver interrupt enable
If set, enables generation of receiver interrupt.

1 te1 Transmitter enable
If set, enables the transmitter.

0 re1 Receiver enable
If set, enables the receiver.

Table 71. UART 1 Scaler Register - UASCA1
Address = 0x8000007C
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved scaler value1 [11:0]

r/w r/w

xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

Table 72. UART 2 Data Register - UAD2
Address = 0x80000080
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved rtd2 [7:0]

r/w r/w

xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

Bit Number Mnemonic Description

7..0 rtd2[7:0] Received or Transmitted Data of UART2

 100
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

rtd1 field has 2 meanings :

A write access enables the sending of the written 8-bit data on UART 2.

A read access provides the received 8-bit data on UART2.

Table 73. UART 2 Status Register - UAS2
Address 0x80000084
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved fe
2

pe
2

ov
2

br
2

th
2

ts
2

dr
2

r/w r/w

xxxx xxxx xxxx xxxx xxxx xxxx x 0 0 0 0 1 1 0

Bit Number Mnemonic Description

6 fe2 Framing error
Indicates that a framing error was detected.

5 pe2 Parity error
indicates that a parity error was detected.

4 ov2 Overrun
Indicates that one or more character have been lost due to overrun.

3 br2 Break received
Indicates that a BREAK has been received.

2 th2 Transmitter hold register empty
Indicates that the transmitter hold register is empty.

1 ts2 Transmitter shift register empty
Indicates that the transmitter shift register is empty.

0 dr2 Data ready
Indicates that new data is available in the receiver holding register.

Table 74. UART 2 Control Register - UAC2
Address = 0x80000088
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved ec
2

lb
2 fl2 pe
2

ps
2

ti2 ri2 te
2

re
2

r/w r/w

xxxx xxxx xxxx xxxx xxxx xxx 0 x 0 x x x x 0 0

 AT697F ADVANCE INFORMATION

 101
7703C–AERO–6/09

Bit Number Mnemonic Description

8 ec2 External Clock
if set, the UART scaler will be clocked by PIO[3]

7 lb2 Loop back
If set, loop back mode will be enabled.

6 fl2 Flow control
If set, enables flow control using CTS/RTS.

5 pe2 Parity enable
If set, enables parity generation and checking.

4 ps2

Parity select
Selects parity polarity
“0” = even parity
“1” = odd parity

3 ti2 Transmitter interrupt enable
If set, enables generation of transmitter interrupt.

 102
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

2 ri2 Receiver interrupt enable
If set, enables generation of receiver interrupt.

1 te2 Transmitter enable
If set, enables the transmitter.

0 re2 Receiver enable
If set, enables the receiver.

Table 75. UART 2 Scaler Register - UASCA2
Address = 0x8000008C
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved scaler value2 [11:0]

r/w r/w

xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

Bit Number Mnemonic Description

Table 76. Interrupt Mask and Priority Register - ITMP
Address = 0x80000090
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ilevel[14:0]

re
se

rv
ed

imask[14:0]

re
se

rv
ed

I/O
7

P
C

I

I/O
6

I/O
5

D
S

U

I/O
4

Ti
m

er
2

Ti
m

er
1

I/O
3

I/O
2

I/O
1

I/O
0

U
A

R
T1

U
A

R
T2

AM
B

A

I/O
7

P
C

I

I/O
6

I/O
5

D
S

U

I/O
4

Ti
m

er
2

Ti
m

er
1

I/O
3

I/O
2

I/O
1

I/O
0

U
A

R
T1

U
A

R
T2

AM
B

A

r/w r/w r/w r/w

xxxx xxxx xxxx xxx x 000 0000 0000 0000 x

Bit Number Mnemonic Description

31..17 ilevel[14:0] Interrupt level
indicates whether an interrupt belongs to priority level 1 (ilevel[n]=1) or level 0 (ilevel[n]=0).

15..1 imask[14:0]

Interrupt mask
indicates whether an interrupt is masked or enabled
‘0’ = masked
‘1’ = enabled
After reset, the interrupt mask register is set to all zeros while the remaining control registers are undefined.

 AT697F ADVANCE INFORMATION

 103
7703C–AERO–6/09

Interrupt Registers

Table 77. Interrupt Pending Register - ITP
Address = 0x80000094
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved

ipend[14:0]

re
se

rv
ed

I/O
7

P
C

I

I/O
6

I/O
5

D
S

U

I/O
4

Ti
m

er
2

Ti
m

er
1

I/O
3

I/O
2

I/O
1

I/O
0

U
A

R
T1

U
A

R
T2

A
M

B
A

r/w r r/w

xxxx xxxx xxxx xxxx 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x

Bit Number Mnemonic Description

15..1 ipend[14:0]

Interrupt pending
indicates whether an interrupt is pending
“1” = interrupt pending
“0” = interrupt not pending

When the IU acknowledges the interrupt, the corresponding pending bit is automatically cleared.

Table 78. Interrupt Force Register - ITF
Address = 0x80000098
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved

iforce[14:0]

re
se

rv
ed

I/O
7

P
C

I

I/O
6

I/O
5

D
S

U

I/O
4

Ti
m

er
2

Ti
m

er
1

I/O
3

I/O
2

I/O
1

I/O
0

U
A

R
T1

U
A

R
T2

A
M

B
A

r/w r/w r/w

xxxx xxxx xxxx xxxx 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x

Bit Number Mnemonic Description

15..1 iforce[14:0]

Interrupt force
indicates whether an interrupt is being forced
‘1’ = interrupt forced
‘0’ = interrupt not forced

 104
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Interrupt can be forced by setting a bit in the interrupt force register. IU acknowledgement will
clear the force bit.

Table 79. Interrupt Clear Register - ITC
Address = 0x8000009C
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved

iclear[14:0]

re
se

rv
ed

I/O
7

P
C

I

I/O
6

I/O
5

D
S

U

I/O
4

Ti
m

er
2

Ti
m

er
1

I/O
3

I/O
2

I/O
1

I/O
0

U
A

R
T1

U
A

R
T2

A
M

B
A

r/w r r/w

xxxx xxxx xxxx xxxx 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x

Bit Number Mnemonic Description

15..1 iclear[14:0]
Interrupt clear
If written with a ‘1’, will clear the corresponding bit(s) in the interrupt pending register.
Aread return zero.

Table 80. Secondary Interrupt Mask Register - SITM
Address = 0x800000B0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

simask[31:0]

r/w

0000 0000 0000 0000 0000 0000 0000 0000

Bit Number Mnemonic Description

32..0 simask[31:0]
Second interrupt mask
indicates whether an interrupt is masked (simask[n] = ‘0’) or enabled (simask[n] = ’1’)
After reset, the interrupt mask register is set to all zeros while the remaining control registers are undefined.

.
Table 81. Secondary Interrupt Pending Register - SITP
Address = 0x800000B4
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sipend[31:0]

r/w

xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

Bit Number Mnemonic Description

32..0 sipend[31:0] Second interrupt pending
indicates whether a iterrupt is pending (sipend[n] = ‘1’)

.
Table 82. Secondary Interrupt Status Register - SITS
Address = 0x800000B8
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved ip irl[4:0]

r/w r/w r/w

xxxx xxxx xxxx xxxx xxxx xxxx xx x x xxxx

Bit Number Mnemonic Description

5 ip
Second interrupt pending
If set, then irl[4:0] is valid.
If cleared, no unmasked interrupt is pending.

4..0 irl[4..0]
Second request level
Indicates the highest unmasked pending interrupt.

Table 83. Secondary Interrupt Clear Register - SITC
Address = 0x800000BC
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

siclear[31:0]

r/w

xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

Bit Number Mnemonic Description

31..0 siclear[31:0]
Second interrupt clear
if written with a ‘1’, will clear the corresponding bit(s) in the interrupt pending register.

 AT697F ADVANCE INFORMATION

 105
7703C–AERO–6/09

 106
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

General Purpose
Interface Registers
Table 84. I/O Port Data Register - IODAT
Address = 0x800000A0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

meddat[7:0] lowdat[7:0] iodata[15:0]

r/w r/w

xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

Bit Number Mnemonic Description

15..0 iodata[15:0] I/O port data

23..16 meddat[7:0]
Meddium Data
Corresponding to the data D[15:8]

31..24 lowdat[7:0]
Low Data
Corresponding to the data D[7:0]

when read, returns the current value of the I/O port;

when written, value is driven on the I/O port signals (if enabled as Output)

Table 85. I/O Port Direction Register - IODIR
Address = 0x800000A4
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved

m
ed

di
r

lo
w

di
r

iodir[15:0]

r/w r/w r/w r/w

xxxx xxxx xxxx xx 00 0000 0000 0000 0000

Bit Number Mnemonic Description

17 meddir Defines the direction of D[15..8]

16 lowdir Defines the direction of D[7..0]

15..0 iodir[15:0]

I/O port direction
Defines the direction of I/O ports 15 - 0.
‘1’ = output
‘0’ = input

Table 86. I/O Port Interrupt Register - IOIT1
Address = 0x800000A8
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

en
3

le
3

pl
3 isel3[4:0] en
2

le
2

pl
2 isel2[4:0] en
1

le
1

pl
1 isel1[4:0] en
0

le
0

pl
0 isel0[4:0]

r/w r/w r/w r/w r/w r/w r/w r/w r/w r/w r/w r/w r/w r/w r/w r/w

0 x x x xxxx 0 x x x xxxx 0 x x x xxxx 0 x x x xxxx

Bit Number Mnemonic Description

31 en3 Enable.
If set, the corresponding interrupt will be enabled, otherwise it will be masked.

30 le3 Level/edge triggered.
If set, the interrupt will be edge-triggered, otherwise level sensitive.

29 pl3
Polarity
If set, the corresponding interrupt will be active high (or edge-triggered on positive edge). Otherwise, it will be
active low (or edge-triggered on negative edge).

28..24 isel3[4:0] I/O port select.
The value of this field defines which I/O port (0 - 31) should generate parallel I/O port interrupt 3.

23 en2 Enable.
If set, the corresponding interrupt will be enabled, otherwise it will be masked.

22 le2 Level/edge triggered.
If set, the interrupt will be edge-triggered, otherwise level sensitive.

21 pl2
Polarity
If set, the corresponding interrupt will be active high (or edge-triggered on positive edge). Otherwise, it will be
active low (or edge-triggered on negative edge).

20..16 isel2[4:0] I/O port select.
The value of this field defines which I/O port (0 - 31) should generate parallel I/O port interrupt 2.

15 en1 Enable.
If set, the corresponding interrupt will be enabled, otherwise it will be masked.

14 le1 Level/edge triggered.
If set, the interrupt will be edge-triggered, otherwise level sensitive.

13 pl1
Polarity
If set, the corresponding interrupt will be active high (or edge-triggered on positive edge). Otherwise, it will be
active low (or edge-triggered on negative edge).

12..8 isel1[4:0] I/O port select.
The value of this field defines which I/O port (0 - 31) should generate parallel I/O port interrupt 1.

7 en0 Enable.
If set, the corresponding interrupt will be enabled, otherwise it will be masked.

6 le0 Level/edge triggered.
If set, the interrupt will be edge-triggered, otherwise level sensitive.

5 pl0
Polarity
If set, the corresponding interrupt will be active high (or edge-triggered on positive edge). Otherwise, it will be
active low (or edge-triggered on negative edge).

4..0 isel0[4:0] I/O port select.
The value of this field defines which I/O port (0 - 31) should generate parallel I/O port interrupt 0.

Table 87. I/O Port Interrupt Register - IOIT2
Address = 0x800000AC
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

en
7

le
7

pl
7 isel7[4:0] en
6

le
6

pl
6 isel6[4:0] en
5

le
5

pl
5 isel5[4:0] en
4

le
4

pl
4 isel4[4:0]

r/w r/w r/w r/w r/w r/w r/w r/w r/w r/w r/w r/w r/w r/w r/w r/w

0 x x x xxxx 0 x x x xxxx 0 x x x xxxx 0 x x x xxxx

 AT697F ADVANCE INFORMATION

 107
7703C–AERO–6/09

Bit Number Mnemonic Description

31 en7 Enable.
If set, the corresponding interrupt will be enabled, otherwise it will be masked.

30 le7 Level/edge triggered.
If set, the interrupt will be edge-triggered, otherwise level sensitive.

29 pl7
Polarity
If set, the corresponding interrupt will be active high (or edge-triggered on positive edge). Otherwise, it will be
active low (or edge-triggered on negative edge).

28..24 isel7[4:0] I/O port select.
The value of this field defines which I/O port (0 - 31) should generate parallel I/O port interrupt 7.

23 en6 Enable.
If set, the corresponding interrupt will be enabled, otherwise it will be masked.

22 le6 Level/edge triggered.
If set, the interrupt will be edge-triggered, otherwise level sensitive.

21 pl6
Polarity
If set, the corresponding interrupt will be active high (or edge-triggered on positive edge). Otherwise, it will be
active low (or edge-triggered on negative edge).

20..16 isel6[4:0] I/O port select.
The value of this field defines which I/O port (0 - 31) should generate parallel I/O port interrupt 6.

15 en5 Enable.
If set, the corresponding interrupt will be enabled, otherwise it will be masked.

14 le5 Level/edge triggered.
If set, the interrupt will be edge-triggered, otherwise level sensitive.

13 pl5
Polarity
If set, the corresponding interrupt will be active high (or edge-triggered on positive edge). Otherwise, it will be
active low (or edge-triggered on negative edge).

12..8 isel5[4:0] I/O port select.
The value of this field defines which I/O port (0 - 31) should generate parallel I/O port interrupt 5.

7 en4 Enable.
If set, the corresponding interrupt will be enabled, otherwise it will be masked.

6 le4 Level/edge triggered.
If set, the interrupt will be edge-triggered, otherwise level sensitive.

5 pl4
Polarity
If set, the corresponding interrupt will be active high (or edge-triggered on positive edge). Otherwise, it will be
active low (or edge-triggered on negative edge).

4..0 isel4[4:0] I/O port select.
The value of this field defines which I/O port (0 - 31) should generate parallel I/O port interrupt 4.

 108
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

 AT697F ADVANCE INFORMATION

 109
7703C–AERO–6/09

PCI Registers

Table 88. PCI Device Identification Register 1 - PCIID1
Address = 0x80000100
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

device id [15:0] vendor id [15:0]

r r

0x1202 0x1438

Bit Number Mnemonic Description

31..16 device id [15:0] This field identifies the particular device. This identifier is allocated by the vendor.

15..0 vendor id [15:0] This field identifies the manufacturer of the device. Valid vendor identifiers are allocated by the PCI SIG to
ensure uniqueness. 0FFFFh is an invalid value for Vendor ID.

Table 89. PCI Status - Command Register - PCISC
Address = 0x80000104
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

st
at

15

st
at

14

st
at

13

st
at

12

st
at

11

st
at

10
_9

[1
:0

]

st
at

8

st
at

7

st
at

6

st
at

5

st
at

4

st
at

3

re
se

rv
ed

co
m

10

co
m

9

co
m

8

co
m

7

co
m

6

co
m

5

co
m

4

co
m

3

co
m

2

co
m

1

co
m

0

rr rr rr rr rr r rr r r r r r r r/w r/w r/w r r/w r r/w r r/w r/w r/w

0 0 0 0 0 01 0 1 0 0 0 0 0x0000 0000 0 0 0 0 0 0 0 0 0 0 0
Note: 1. rr = Read and Reset by writing 1

Bit Number Mnemonic Description

31 stat15
Parity error detected.
This bit must be set by the device whenever it detects a parity error, even if parity error handling is disabled (as
controlled by bit 6 in the Command register).

30 stat14
SERR asserted.
This bit must be set whenever the device asserts SERR*. Devices who will never assert SERR* do not need to
implement this bit.

29 stat13
Master has terminated master abort.
This bit must be set by a master device whenever its transaction except for Special Cycle) is terminated with
Master-Abort. All master devices must implement this bit.

28 stat12
Master has terminated target abort
This bit must be set by a master device whenever its transaction is terminated with Target-Abort. All master
devices must implement this bit.

27 stat11
Target signal target abort.
This bit must be set by a target device whenever it terminates a transaction with Target-Abort. Devices that will
never signal Target-Abort do not need to implement this bit.

26..25 stat10_9[1:0]

Devsel timing.
These bits encode the timing of DEVSEL*. Three allowable timings for assertion of DEVSEL* are specified.
These are encoded as 00 for fast, 01 for medium, and 10 for slow (11b is reserved). These bits are read-only
and must indicate the slowest time that a device asserts DEVSEL* for any bus command except Configuration
Read and Configuration Write.

 110
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

24 stat8

Master received/asserted PERR
This bit is only implemented by bus masters. It is set when three conditions are met:

1) the bus agent asserted PERR* itself (on a read) or observed PERR* asserted (on a write);
2) the agent setting the bit acted as the bus master for the operation in which the error occurred;
3) the Parity Error Response bit (Command register) is set.

23 stat7

Target supports fast back2back
This optional read-only bit indicates whether or not the target is capable of accepting fast back-to-back
transactions when the transactions are not to the same agent. This bit can be set to 1 if the device can accept
these transactions and must be set to 0 otherwise.

22 stat6 User definable features

21 stat5
66 MHz capabality
This optional read-only bit indicates whether or not this device is capable of running at 66 MHz as defined in
Chapter 7. A value of zero indicates 33 MHz. A value of 1 indicates that the device is 66 MHz capable

20 stat4

Power management capability.
This optional read-only bit indicates whether or not this device implements the pointer for a New Capabilities
linked list at offset 34h. A value of zero indicates that no New Capabilities linked list is available. A value of one
indicates that the value read at offset 34h is a pointer in Configuration Space to a linked list of new capabilities.

10 com10
Interrupt command.
This bit disables the device/function from asserting INTx*. A value of 0 enables the assertion of its INTx*
signal. A value of 1 disables the assertion of its INTx* signal. This bit’s state after RST* is 0.

9 com9

Master can generate fast back2back.
This optional read/write bit controls whether or not a master can do fast back-to-back transactions to different
devices. Initialization software will set the bit if all targets are fast back-to-back capable. A value of 1 means the
master is allowed to generate fast back-to-back transactions to different agents. A value of 0 means fast back-
to-back transactions are only allowed to the same agent. This bit's state after RST* is 0.

8 com8

Enable SERR driver
-This bit is an enable bit for the SERR* driver. A value of 0 disables the SERR* driver. A value of 1 enables

the SERR* driver. This bit's state after RST* is 0. All devices that have an SERR* pin must implement this bit.
Address parity errors are reported only if this bit and bit 6 are 1.

7 com7 Address/Data stepping on PCI bus

6 com6

Enable Parity Check
This bit controls the device's response to parity errors. When the bitis set, the device must take its normal
action when a parity error is detected. When the bit is 0, the device sets its Detected Parity Error status bit (bit
15 in the Status register) when an error is detected, but does not assert PERR* and continues normal
operation. This bit's state after RST* is 0. Devices that check parity must implement this bit. Devices are still
required to generate parity even if parity checking is disabled.

5 com5

VGA palette snooping
This bit controls how VGA compatible and graphics devices handle accesses to VGA palette registers. When
this bit is 1, palette snooping is enabled (i.e., the device does not respond to palette register writes and snoops
the data). When the bit is 0, the device should treat palette write accesses like all other accesses. VGA
compatible devices should implement this bit.

4 com4

Enable memory write and invalidate. This is an enable bit for using the Memory Write and Invalidate command.
When this bit is 1, masters may generate the command. When it is 0, Memory Write must be used instead.
State after RST* is 0. This bit must be implemented by master devices that can generate the Memory Write and
Invalidate command.

3 com3
Enable special cycles
Controls a device's action on Special Cycle operations. A value of 0 causes the device to ignore all Special
Cycle operations. A value of 1 allows the device to monitor Special Cycle operations. State after RST* is 0.

2 com2
Enable PCI master
Controls a device's ability to act as a master on the PCI bus. A value of 0 disables the device from generating
PCI accesses. A value of 1 allows the device to behave as a bus master. State after RST* is 0.

1 com1
Enable target memory command response
Controls a device's response to Memory Space accesses. A value of 0 disables the device response. A value of
1 allows the device to respond to Memory Space accesses. State after RST* is 0.

Bit Number Mnemonic Description

 AT697F ADVANCE INFORMATION

 111
7703C–AERO–6/09

0 com1
Enable target IO command response
Controls a device's response to I/O Space accesses. A value of 0 disables the device response. A value of 1
allows the device to respond to I/O Space accesses. State after RST* is 0.

Table 90. PCI Device Identification 2 - PCIID2
Address = 0x80000108
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

class code [23:0] revision id [7:0]

r r

0x0B4000 0x10

Bit Number Mnemonic Description

31..8 class code [23:0]

The Class Code register is read-only and is used to identify the generic function of the device and, in some
cases, a specific register-level programming interface. The register is broken into three byte-size fields. The
upper byte (at offset 0Bh) is a base class code which broadly classifies the type of function the device performs.
The middle byte (at offset 0Ah) is a sub-class code which identifies more specifically the function of the device.
The lower byte (at offset 09h) identifies a specific register-level programming interface (if any) so that device
independent software can interact with the device.

7..0 revision id [7:0] This register specifies a device specific revision identifier. The value is chosen by the vendor. Zero is an
acceptable value. This field should be viewed as a vendor defined extension to the Device ID.

Table 91. Bist, Header type, Latency, Cache line size Register - PCIBHLC
Address = 0x8000010C
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

bist[7:0] header type [7:0] latency timer [7:0] cache line size [7:0]

r/w r/w r/w r/w

0x00 0x00 0x00 0x00

Bit Number Mnemonic Description

31..24 bist[7:0]

bist7 : Return 1 if device supports BIST. Return 0 if the device is not BIST capable.
bist6 : Write a 1 to invoke BIST. Device resets the bit when BIST is complete. Software should fail the device if
BIST is not complete after 2 seconds.
bist[3..0] : A value of 0 means the device has passed its test. Non-zero values mean the device failed. Device-
specific failure codes can be encoded in the non-zero value.

23..16 header type [7:0]

header 7 : multi-function device
“0” : device is single function
“1” : device is multi-function
header[6..0] : header second part layout

15..8 latency timer [7:0] this field specifies the value for latency timer in PCI bus clock unit

7..0 cache line size
[7:0] Specifies the cache line size

Bit Number Mnemonic Description

Table 92. Memory Base Address Register 1 - MBAR1
Address = 0x80000110
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEMBAR1 [27:0]

pr
ef

1

ty
pe

1[
1:

0]

m
si

1

r/w r r r

0x000 0000 1 00 0

Bit Number Mnemonic Description

31..4 MEMBAR1[27:0] Memory base address.

3 pref1
Prefetchable
indicates there are no side effects on reads. The device returns all bytes on reads regardless of the byte
enables.

2..1
type1[1:0]

“00” Base register is 32 bits wide and mapping can be done anywhere in the 32-bit Memory Space.
“10” Base register is 64 bits wide and can be mapped anywhere in the 64-bit address space.
“11” & “01” Reserved

0 msi1 “0” : Indicates that base address mapes Memory Space

 112
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Table 93. Memory Base Address Register 2 - MBAR2
Address = 0x80000114
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEMBAR2[27:0]

pr
ef

2

ty
pe

2

m
si

2

r/w r r r

0x000 0000 1 00 0

Bit Number Mnemonic Description

31..4 MEMBAR2[27:0] Memory base address.

3 pref2
Prefetchable
indicates there are no side effects on reads. The device returns all bytes on reads regardless of the byte
enables.

2..1
type2

“00” Base register is 32 bits wide and mapping can be done anywhere in the 32-bit Memory Space.
“10” Base register is 64 bits wide and can be mapped anywhere in the 64-bit address space.
“11” & “01” Reserved

0 msi2 “0” : Indicates that base address mapes Memory Space

Table 94. IO Base Address Register 3 - IOBAR3
Address = 0x80000118
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IOBAR[29:0]

re
se

rv
ed

m
si

r/w r r

0x0 000 0000 0 1

Bit Number Mnemonic Description

31..2 IOBAR[29:0] Memory base address.

0 msi “1” : Indicates that base address mapes I/O Space

 AT697F ADVANCE INFORMATION

 113
7703C–AERO–6/09

Table 95. Subsystem Identification Register - PCISID
Address = 0x8000012C
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

subsystem id [15:0] svi[15:0]

r r

0x0001 0x1438

Bit Number Mnemonic Description

31..16 sid[15:0] subsystem id

15..0 svi[15:0] subsystem vendor id

Table 96. PCI Capabilities Pointer Register - PCICP
Address = 0x80000134
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved pointer[7:0]

r r

0x0000 00 0xDC

Bit Number Mnemonic Description

7..0 pointer[7:0] index for the extended capabilities registers

Table 97. PCI Latency Interrupt Register - PCILI
Address = 0x8000013C
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

max_lat[7:0] min_gnt[7:0] int_pin[7:0] int_line[7:0]

r/w r/w r r/w

0 0 0 0

Bit Number Mnemonic Description

31..24 maxlat[7:0] maxlat field specifies how often the processor need to gain access to the PCI bus. Units are 0.25 micosecond

23..16 mingnt[7:0] min_gnt identifies the length of burst period, assuming a 33MHz clock. Units are 0.25 micosecond

15..8 intpin[7:0] indicates which interrupt pin the processor uses - Always 0 due to absence of PCI interrupt management.

7..0 intlin[7:0] Indicates the interrupt line register to which the core is connected to. - Always 0 due to absence of PCI interrupt
management.

 114
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Table 98. PCI Retry _trdy - PCIRT
Address = 0x80000140
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved retry[7:0] trdy[7:0]

r/w r/w

0 0x80 0x80

Bit Number Mnemonic Description

15..8 retry[7:0] Indicates the number of retry the core will performe when configured as master

7..0 trdy[7:0] Indicates the number of PCI clock the processor configured as master will wait for TRDY

Table 99. PCI Configuration Write Register - PCICW
Address = 0x80000144
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved ben[3:0]

r/w r/w

0x0000 000 0x0

Bit Number Mnemonic Description

3..0 ben[3:0]
Byte enables for writes to the PCI core configuration space
‘0’ = enabled
‘1’ = disabled

 AT697F ADVANCE INFORMATION

 115
7703C–AERO–6/09

Each of the 4 bits is assigned to one 8-bit lane.
• bit ben[3] is applied to Byte 3, the most significant byte (MSB)
• bit ben[2] is applied to Byte 2
• bit ben[1] is applied to Byte 1
• bit ben[0] is applied to Byte 0, the less significant byte (LSB)

Table 100. PCI Initiator Start Address - PCISA
Address = 0x80000148
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

start address [31:0]

r/w

x x

Bit Number Mnemonic Description

31..0 start address
[31:0] PCI start address for PCI initiator transactions in APB and DMA mode.

Table 101. PCI Initiator Write Register - PCIIW
Address = 0x8000014C
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved ben[3:0]

r/w r/w

0x0000 000 0x0

Bit Number Mnemonic Description

3..0 ben[3:0]
Byte enables for writes to the PCI core configuration space
‘0’ = enabled
‘1’ = disabled

 116
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Each of the 4 bits is assigned to one 8-bit lane.
• bit ben[3] is applied to Byte 3, the most significant byte (MSB)
• bit ben[2] is applied to Byte 2
• bit ben[1] is applied to Byte 1
• bit ben[0] is applied to Byte 0, the less significant byte (LSB)

Table 102. PCI DMA configuration Register - PCIDMA
address = 0x80000150
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved b2
b com[3:0] wdcnt[7:0]

r/w r/w r/w

0x0000 0 0 0x0 0x00

Bit Number Mnemonic Description

12 b2b
Use back2back-mode.
Can be written to 1, if this transaction is to the same target, as the last one.
Note: works only, if the core is enabled for back2back mode.

11..8 com[3:0] PCI command to be used in DMA mode.

7..0 wdcnt[7:0] Word count.
Minimum number of words for the burst.

Table 103. PCI Initiator Status Register - PCIIS
address = 0x80000154
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved sys dmas[3:0] act xff xfe rfe ss[3:0]

r/w r r r r r r r

0x0000 0 x 0x0 0 0 1 1 0x0

Bit Number Mnemonic Description

12 sys
Value of the SYSEN* pin
0 : Host mode
1 : Satellite mode

11..8 dmas[3:0] DMA state

7 act
PCI core active
1 = active
0 = inactive

6 ff If set 1, the transmitter fifo is full

5 xfe If set 1, the transmitter fifo is empty

4 rfe If set 1, the receiver fifo is empty

3..0 ss[3:0] Slave status

Table 104. PCI Initiator Configuration - PCIIC
Address = 0x80000158
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved

co
m

m
sb

[1
:0

]

reserved m
od

r/w r/w r/w r/w

0x0000 00 01 00000 0

Bit Number Mnemonic Description

7.6 commsb[1:0]

Specifies the two most significant bits of the command used by AHB slave interface.
‘00’ = IO write
‘01’ = memory read/write
‘10’ = configuration read/write
‘11’ = mem-read-line/write-invalidate

0 mod
PCI command source mode
‘1’ = AHB slave - DMA mode
‘0’ = APB mode

Table 105. PCI Target Page Address Register - PCITPA
Address = 0x8000015C
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

tpa1[7:0] reserved tpa2[7:0] reserved

r/w r/w r/w r/w

0x40 0x00 0x90 0x00

Bit Number Mnemonic Description

31..24 tpa1[7:0] Target page address
defines the 8 most significant bits of the 16 MByte memory page on which PCI addresses are mapped

15..8 tpa2[7:0] Target page address
defines the 8 most significant bits for the second memory BAR.

 AT697F ADVANCE INFORMATION

 117
7703C–AERO–6/09

Table 106. PCI Target Status-Command Register - PCITSC
Address = 0x80000160
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved frt
y

er
rm

em

xf
f

xf
e

rfe tms[3:0]

r/w r/w r/w r/w r/w r/w r/w

0x0000 00 0 0 0 1 1 0000

Bit Number Mnemonic Description

8 frty

Force Retry
Set automatically during long delayed read to prevent the read from being overwritten
(Debug Purpose only)
Cleared by writing a 1.

7 errmem
Reception Fifo parity error
‘0’ = Do not save data with parity error
‘1’ = Data with parity error is saved to memory

6 xff TXMT Fifo full
‘1’ = force transmistion to abort

5 xfe TXMT Fifo empty
‘1’ = flushes TXMT Fifo

4 rfe TRCV Fifo empty
‘1’ = flushes TRCV Fifo

3..0 tms[3:0] Target AHB master state
‘1111’ = reset the state machine

Table 107. PCI Interrupt Enable Register - PCIITE
Address = 0x80000164
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved

dm
ae

r

im
ie

r

cm
fe

r

im
pe

r

tie
r

tb
ee

r

tp
er

sy
se

r

r/w r/w r/w r/w r/w r/w r/w r/w r/w

0x0000 00 0 0 0 0 0 0 0 0

 118
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Bit Number Mnemonic Description

7 dmaer
DMA end of transfer
‘0’ = disable
‘1’ = enable

6 imier
Initiator error
‘0’ = disable
‘1’ = enable

5 cmfer
PCI core error
‘0’ = disable
‘1’ = enable

4 imper
Initiator Parity error
‘0’ = disable
‘1’ = enable

3 tier
Target error
‘0’ = disable
‘1’ = enable

 AT697F ADVANCE INFORMATION

 119
7703C–AERO–6/09

Note: 1. Bits are cleared when written with a 1. Writing a 0 to the register has no effect.

2 tbeer
Target byte enable error
‘0’ = disable
‘1’ = enable

1 tper
Target parity error
‘0’ = disable
‘1’ = enable

0 syser
System error asserted on PCI bus
‘0’ = disable
‘1’ = enable

Table 108. PCI Interrupt Pending Register - PCIITP(1)

Address = 0x80000168
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved

dm
ae

r

im
ie

r

cm
fe

r

im
pe

r

tie
r

tb
ee

r

tp
er

sy
se

r

r/w r/w r/w r/w r/w r/w r/w r/w r/w

0x0000 00 0 0 0 0 0 0 0 0

Bit Number Mnemonic Description

7 dmaer
DMA end of transfer
‘0’ = not pending
‘1’ = pending

6 imier
Initiator error
‘0’ = not pending
‘1’ = pending

5 cmfer
PCI core error
‘0’ = not pending
‘1’ = pending

4 imper
Initiator Parity error
‘0’ = not pending
‘1’ = pending

3 tier
Target error
‘0’ = not pending
‘1’ = pending

2 tbeer
Target byte enable error
‘0’ = not pending
‘1’ = pending

1 tper
Target parity error
‘0’ = not pending
‘1’ = pending

0 syser
System error asserted on PCI bus
‘0’ = not pending
‘1’ = pending

Bit Number Mnemonic Description

Table 109. PCI Interrupt Force Register - PCIITF
Address = 0x8000016C
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved

dm
ae

r

im
ie

r

cm
fe

r

im
pe

r

tie
r

tb
ee

r

tp
er

sy
se

r

r/w r/w r/w r/w r/w r/w r/w r/w r/w

0x0000 00 0 0 0 0 0 0 0 0

Bit Number Mnemonic Description

7 dmaer
DMA end of transfer
‘0’ = not forced
‘1’ = forced

6 imier
Initiator error
‘0’ = not forced
‘1’ = forced

5 cmfer
PCI core error
‘0’ = not forced
‘1’ = forced

4 imper
Initiator Parity error
‘0’ = not forced
‘1’ = forced

3 tier
Target error
‘0’ = not forced
‘1’ = forced

2 tbeer
Target byte enable error
‘0’ = not forced
‘1’ = forced

1 tper
Target parity error
‘0’ = not forced
‘1’ = forced

0 syser
System error asserted on PCI bus
‘0’ = not forced
‘1’ = forced

Table 110. PCI Data Register - PCID
Address = 0x80000170
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

dat[31:0]

r/w

xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

Bit Number Mnemonic Description

31..0 dat[31:0] data writen/read to/from Fifo

 120
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Table 111. PCI Burst End Register - PCIBE
Address = 0x80000174
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

dat[31:0]

r/w

xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

Bit Number Mnemonic Description

31..0 dat[31:0] Last data of a burst in APB mode

Table 112. PCI DMA Address Register - PCIDMAA
Address = 0x80000178
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

addr[31:0]

r/w

xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

Bit Number Mnemonic Description

31..0 addr[31:0] Defines the start address of a DMA transaction

Table 113. PCI Arbiter Register - PCIA
Address = 0x80000280
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved p3 p2 p1 p0

r r r/w r/w r/w

0x0000 000 1 1 1 1

Bit Number Mnemonic Description

3 p3 Round robin level for agent 3

2 p2 Round robin level for agent 2

1 p1 Round robin level for agent 1

0 p0 Round robin level for agent 0

 AT697F ADVANCE INFORMATION

 121
7703C–AERO–6/09

 122
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

DSU Registers
Table 114. Trace Buffer Control Register - TBC
Address = 0x90000004
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved af ta ti reserved BCNT (AHB index [8:0]) reserved ICNT (Inst Index [8:0])

r/w r/w r/w r/w r/w r/w

000000 x x x xxx x xxxx xxxx xxx xxxx xxxx

Bit Number Mnemonic Description

26 af
AHB trace buffer freeze
If set, the trace buffer will be frozen when the processor enters in
debug mode

25 ta Trace AHB enable

24 ti Trace instruction enable

20..12 BCNT AHB trace index counter (AHB Index [8:0])

8..0 ICNT Instruction trace index counter (Inst Index [8:0])

Table 115. DSU Control Register - DSUC
Address = 0x90000000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved dcnt[11:0] bz

r r r

re dr lr ss pe ee eb dm de bx bd bn bs bw be ft bt dm te

Bit Number Mnemonic Description

31..20 dcnt[11:0] Trace buffer delay counter

19 re Reset error mode
if set, will clear the error mode in the processor.

18 dr Debug mode response
If set, the DSU communication link will send a response word when the processor enters debug mode

17 lr Link response
If set, the DSU communication link will send a response word after AHB transfer.

16 ss Single step
If set, the processor will execute one instruction and the return to debug mode

15 pe
Processor error mode
returns ‘1’ on read when processor is in error mode
else return ‘0’.

14 ee value of the external DSUEN signal (read-only)

13 eb value of the external DSUBRE signal (read-only)

12 dm Debug mode
Indicates when the processor has entered debug mode (read-only).

11 de
Delay counter enable
If set, the trace buffer delay counter will decrement for each stored trace. This bit is set automatically when an
DSU breakpoint is hit and the delay counter is not equal to zero.

 AT697F ADVANCE INFORMATION

 123
7703C–AERO–6/09

10 bz
Break on error traps
If set, will force the processor into debug mode on all except the following traps: priviledged_instruction,
fpu_disabled, window_overflow, window_underflow, asynchronous_interrupt, ticc_trap.

9 bx Break on trap
If set, will force the processor into debug mode when any trap occurs.

8 bd Break on DSU breakpoint
If set, will force the processor to debug mode when an DSU breakpoint is hit.

7 bn Break now
Force processor into debug mode. If cleared, the processor will resume execution.

6 bs Break on S/W breakpoint
If set, debug mode will be forced when an breakpoint instruction (ta 1) is executed

5 bw Break on IU watchpoint
If set, debug mode will be forced on a IU watchpoint (trap 0xb).

4 be
Break on error
if set, will force the processor to debug mode when the processor would have entered error condition (trap in
trap).

3 ft
Freeze timers
If set, the scaler in the LEON timer unit will be stopped during debug mode to preserve the time for the software
application.

2 bt Break on trace
If set, will generate a DSU break condition on trace freeze.

1 dm
Delay counter mode
In mixed tracing mode, setting this bit will cause the delay counter to decrement on AHB traces. If reset, the
delay counter will decrement on instruction traces

0 te Trace enable.
Enables the trace buffer.

Table 116. DSU UART Status Register - DSUUS
Address = 0x800000C4
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved fe

re
se

rv
ed

ov
re

se
rv

ed
th ts dr

r/w r r/w r r/w r r r

xxxx xxxx xxxx xxxx xxxx xxxx x 0 x 0 x 0 0 0

Bit Number Mnemonic Description

6 fe Framing error
Indicates that a framing error was detected.

4 ov Overrun
Indicates that one or more character have been lost due to overrun.

2 th Transmitter hold register empty
Indicates that the transmitter hold register is empty.

1 ts Transmitter shift register empty
Indicates that the transmitter shift register is empty.

0 dr Data ready
Indicates that new data is available in the receiver holding register.

Bit Number Mnemonic Description

Table 117. DSU Trap Register - DTR
Address = 0x9008001C
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0000

Bit Number Bit Mnemonic Description

12 em Error Mode.
Set if the trap would have cause the processor to enter error mode

11..4 trap type [7:0] 8-bit SPARC trap type

Table 118. Break Address Register 1 - BAD1
Address = 0x90000010
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BADD1[29:0]

Bit Number Bit mnemonic Description

31..2 BADD1[29:0] Breakpoint address

0 ex1 Enables break on executed instruction

Table 119. Break Mask Register 1 - BMA1
Address = 0x90000014
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BMA1[29:0]

Bit Number Bit mnemonic Description

31..2 BMA1[29:0] Breaking Mask

1 ld1 Enables break on AHB load

0 st1 Enables break on AHB write

 124
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

reserved em trap type [7:0] reserved

re
se

rv
ed

ex
1

ld
1

st
1

Table 120. Break Address Register 2- BAD2
Address = 0x90000018
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BADD2[29:0]

Bit Number Bit mnemonic Description

31..2 BADD2[29:0] Breakpoint address

0 ex2 Enables break on executed instruction

Table 121. Break Mask Register - BMA2
Address = 0x9000001C
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BMA2[29:0]

Bit Number Bit mnemonic Description

31..0 BMA2[29:0] Breaking Mask

1 ld2 Enables break on AHB load

0 st2 Enables break on AHB write

Table 122. DSU UART Control Register - DSUUC
Address = 0x800000C8
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved bl re

r/w r r/w

xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 0 x

Bit Number Mnemonic Description

1 bl Baud rate locked
Is automatically set when the baud rate is locked.

0 re Receiver enable
If set, enables both the transmitter and receiver.

 AT697F ADVANCE INFORMATION

 125
7703C–AERO–6/09

re
se

rv
ed

ex
2

ld
2

st
2

Table 123. DSU UART Scaler Reload Register - DSUUS
Address = 0x800000CC
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved scaler reload value [12:0]

r/w r/w

 xxxx xxxx xxxx xxxx xx xx xxxx xxxx xxxx

Bit Number Mnemonic Description

13..0 Scaler reload
value [13:0] Scaler reload Value(1)

 126
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Note: 1. The best scaler value for manually programming the baudrate can be calculated as follows:

scaler =

sdclk frequency x 10
baudrate x 8

5

10

 AT697F ADVANCE INFORMATION

 127
7703C–AERO–6/09

Electrical Characteristics
Electrical Characteristics for this product have not yet been finalized. Please consider all values listed here
as preliminary and non contractual

Absolute Maximum Ratings
Operating Temperature ...-55 °C to +125 °C

Storage Temperature ..-65 °C to +150 °C

Voltage on VDD with respect to Ground ..-0.3 V to + 2.0 V

Voltage on VCC with respect to Ground ..-0.3 V to + 4.0 V

DC current VCC (VDD) and VSS Pins ...200 mA

Input Voltage on I/O pins with respect to Ground-0.5 V to +4 V

DC current per I/O pins..40 mA

ESD ... 1000 V

Notes: 1. Stresses at or above those listed under “Absolute Maximum Ratings” may cause permanent
damage to the device. This is a stress rating only and functional operation of the device at
these or any other conditions above those indicated in the operational sections of this specifi-
cation is not implied. Exposure to absolute maximum rating conditions for extended periods
may affect device reliability.

DC Characteristics
Table 124.

Symbol Parameter Min Typ Max Unit Test Conditions

VDD Core Power Supply 1.65 1.8 1.95 V

VCC I/O Power Supply Voltage 3 3.3 3.6 V

IILpu Low Level Input Pull-up Current 100 500 uA Vin = VSS

IIHpd High Level Input Pull-downCurrent 100 500 uA Vin = VCC (max)

IIL Low Level Input Leakage Current -1 1 uA Vin = VSS

IIH High Level Input Leakage Current -1 1 uA Vin = VCC (max)

IOZ High Impedance Current 100 500 uA Vin = VSS or VCC (max)

VIL TTL
Low Level Input Voltage

0.8 V

VIL CMOS 30%VCC V

VIH TTL
High Level Input Voltage

2 V

VIH CMOS 70%VCC V

VOL Low Level Output Voltage 0.4 V
VCC = VCC(min)

IOL = 2, 4, 8, 16mA

VOL pci
Low Level Output Voltage

for PCI buffers
0.1 VCC V

VCC = VCC(min)
IOL = 1.5mA

VOH High Level Output Voltage VCC - 0.4 V
VCC = VCC(min)

IOH = 2, 4, 8, 16mA

VOH pci
High Level Output Voltage

for PCI buffers
0.9 VCC V

VCC = VCC(min)
IOH = 0.5mA

ICCSb Standby Current 5 mA
VCC = VCC(max)

no clock active

DC characteristics

 128
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Power “On/Off”
Sequence

The AT697E is based on the Atmel 0.18 µm CMOS process. As VDD (1.8V) and VCC (3.3V)
power supplies are electrically isolated, there is no specified sequence in which the power rails
may be activated or deactivated.

Power
Consumption

The power dissipation is the sum of three basic contributions : P = Pcore + Pio + Ppci
• Pcore represents the contribute due to the internal activity.
• Pio represents the contribute due to the IO pads and output load current, except the PCI

bus.
• Ppci represents the contribute due to the PCI pads and output load current.

The following table gives the estimated current consumption for different conditions. The values
are coming from estimation and calculation and not from real measurement.

Table 125.

Mode Typical conditions Worst Conditions

P Core
(1.8V) in W

P I/O
(3.3V) in W

P PCI
(3.3V) in W

P Core
(1.8V) in W

P I/O
(3.3V) in W

P PCI
(3.3V) in W

Operating
(100MHz) 0.6 0.2 0.1 0.8 0.3 0.2

Power Dissipation

Typical conditions : 25°C, 1.8V core, 3.3V I/O, High I/O and core activity

Worst conditions : 125°C, 1.95 V core, 3.6V I/O; High I/O and core activity

In idle mode (100 MHz external clock), the core power consumption is 0.5W in typical conditions
and 0.7W in worst case conditions.

Decoupling
capacitance

Two main frequencies are involved in the AT697 processor environment :
• 33MHz from the PCI interface
• 100MHz from the master clock of the processor (either from PLL or directly from resonator

input)

The following hypothesis is taken for the calculation of the decoupling capacitance :
• 1.5nH is issued from the connection of the capacitor to the PCB
• 1.5nH is issued from the capacitor intrinsic inductance

Figure 50. Capacitor description

capacitor 0.75nH0.75nH
1.5nH

PCB

This hypothesis corresponds to a capacitor connected to two micro-vias on a PCB.

The filter defined by the self and the decoupling capacitor shall be able to filter the characteristic frequen-
cies of the application. Each frequency to filtre is defined by :

fc 1

2· π L·C
-------------------=

• L : the inductance equivalent to the global inductance on the VSS/VDD (VSS/VCC) line.
• C : the decoupling capacitance.

 AT697F ADVANCE INFORMATION

 129
7703C–AERO–6/09

For a processor running at 100MHz with a PCI interface at a characteristic frequency of 33MHz and con-
sidering that power supply pins ar grouped by multiple of four, the decoupling capacitance to set are :
• 33nF for 33MHz decoupling
• 3nF for 100MHz decoupling

Parameter Description MAX

CIN Standard Input Capacitance 5pF

CIO Standard Input/Output Capacitance 5pF

CINp PCI Input Capacitance 7pF

CIOp PCI Input/Output Capacitance 7pF

Capacitance

Rating

 130
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

AC Characteristics The AT697 processor implements a single event transient protection mechanism. The influence
of this protection is reflected by the timing figures presented in the following tables.

The following tables show the timing figures for the skew condition natural and maximum.

Natural Skew

Test Conditions • Natural Skew
• Temperature range : -55°C to 125°C
• Voltage range :

– I/O: 3.3V +/- 0.30V
– Core: 1.8V +/- 0.15V

• Output load : 30pF

Table 126. AC Characteristics - Natural Skew

Parameter
Min
(ns)

Max
(ns) Comment

Reference edge
(‘+’ for rising edge)

t1 10 CLK Period with PLL disable

t1_p 40 57 CLK Period with PLL enable

t2 4.5 CLK Low and High pulse width - PLL disabled

t2_p 18 CLK Low and High pulse width - PLL enabled

t3 10 SDCLK Period

t4 3.5 7 SDCLK output delay - PLL disabled CLK

t5 1.107 PLL setup time

t6 1*t3 Reset Pulse Width

t10 1.5 7 A[27:0] output delay SDCLK +

t11 1.5 8 D[31:0] and CB[7:0] output delay SDCLK +

t12 2 4 D[31:0] and CB[7:0] setup time SDCLK +

t13 0 D[31:0] and CB[7:0] hold time during load/fetch SDCLK +

t14 D[31:0] and CB[7:0] hold time during write SDCLK +

t15 1.5 8 OE*, READ and WRITE* output delay SDCLK +

t16 1 5 ROMS*[1:0] output delay SDCLK +

t17 1.5 6 RAMS*[4:0], RAMOE*[4:0] and RWE*[3:0] output delay SDCLK +

t18 1.5 6 IOS* output delay SDCLK +

t19 5 BRDY* setup time SDCLK +

t20 0 BRDY* hold time SDCLK +

t21 2.5 8.5 SDCAS* output delay SDCLK +

t22 2.5 8.5 SDCS*[1:0], SDRAS*, SDWE* and SDDQM*[3:0] output delay SDCLK +

t23 6 BEXC* setup time SDCLK +

t24 0 BEXC* hold time SDCLK +

t25 2.5 9 PIO[15:0] output delay SDCLK +

t26 6 PIO[15:0] setup time SDCLK +

 AT697F ADVANCE INFORMATION

 131
7703C–AERO–6/09

t27 0 PIO[15:0] hold time during load SDCLK +

t28 PIO[15:0] hold time during write SDCLK +

t101 30 PCI_CLK Period

t102 13.5 PCI_CLK Low and High pulse width

t110 2 12 A/D[31:0] and C/BE[3:0] output delay PCI_CLK +

t111 7 A/D[31:0] and C/BE[3:0] setup time PCI_CLK +

t112 0 A/D[31:0] and C/BE[3:0] hold time PCI_CLK +

t113 2 11 FRAME*, PAR, PERR*, SERR*, STOP* and DEVSEL* output delay PCI_CLK +

t114 2 11 IRDY* and TRDY* output delay PCI_CLK +

t115 2 12 REQ* output delay PCI_CLK +

t116 7 FRAME*, LOCK*, PAR, PERR*, SERR*, IDSEL*, STOP* and DEVSEL*
setup time PCI_CLK +

t117 7 IRDY* and TRDY* setup time PCI_CLK +

t118 10 GNT* setup time PCI_CLK +

t119 0 FRAME*, LOCK*, PAR, PERR*, SERR*, IDSEL*, STOP* and DEVSEL*
hold time PCI_CLK +

t120 0 IRDY* and TRDY* hold time PCI_CLK +

t121 0 GNT* hold time PCI_CLK +

Parameter
Min
(ns)

Max
(ns) Comment

Reference edge
(‘+’ for rising edge)

 132
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Maximum Skew

Test Conditions • Maximum Skew Programmed
• Temperature range : -55°C to 125°C
• Voltage range :

– I/O: 3,3V +/- 0,30V
– Core: 1,8V +/- 0,15V

• Output load : 30pF

Table 127. AC Characteristics - Maximum Skew

Parameter
Min
(ns)

Max
(ns) Comment

Reference edge
(‘+’ for rising edge)

t1 11 CLK Period with PLL disable

t1_p 44 57 CLK Period with PLL enable

t2 4.95 CLK Low and High pulse width - PLL disabled

t2_p 20 CLK Low and High pulse width - PLL enabled

t3 11 SDCLK Period

t4 3.5 7 SDCLK output delay - PLL disabled CLK

t5 1.107 PLL setup time

t6 1*t3 Reset Pulse Width

t10 1.5 8 A[27:0] output delay SDCLK +

t11 1.5 9 D[31:0] and CB[7:0] output delay SDCLK +

t12 4 D[31:0] and CB[7:0] setup time SDCLK +

t13 0 D[31:0] and CB[7:0] hold time SDCLK +

t14 D[31:0] and CB[7:0] hold time during write SDCLK +

t15 1.5 8.5 OE*, READ and WRITE* output delay SDCLK +

t16 1.5 6.5 ROMS*[1:0] output delay SDCLK +

t17 7 RAMS*[4:0], RAMOE*[4:0] and RWE*[3:0] output delay SDCLK +

t18 1.5 6.5 IOS* output delay SDCLK +

t19 5 BRDY* setup time SDCLK +

t20 0 BRDY* hold time SDCLK +

t21 3 9.5 SDCAS* output delay SDCLK +

t22 3 9.5 SDCS*[1:0], SDRAS*, SDWE* and SDDQM*[3:0] output delay SDCLK +

t23 6 BEXC* setup time SDCLK +

t24 0 BEXC* hold time SDCLK +

t25 2.5 9 PIO[15:0] output delay SDCLK +

t26 6 PIO[15:0] setup time SDCLK +

t27 0 PIO[15:0] hold time SDCLK +

t28 PIO[15:0] hold time during write SDCLK +

t101 30 PCI_CLK period

t102 13.5 PCI_CLK low and high pulse width

 AT697F ADVANCE INFORMATION

 133
7703C–AERO–6/09

t110 2 13 A/D[31:0] and C/BE[3:0] output delay PCI_CLK +

t111 7 A/D[31:0] and C/BE[3:0] setup time PCI_CLK +

t112 0 A/D[31:0] and C/BE[3:0] hold time PCI_CLK +

t113 2 11 FRAME*, PAR, PERR*, SERR*, STOP* and DEVSEL* output delay PCI_CLK +

t114 2 11.5 IRDY* and TRDY* output delay PCI_CLK +

t115 2 12 REQ* output delay PCI_CLK +

t116 7 FRAME*, LOCK*, PAR, PERR*, SERR*, IDSEL*, STOP* and DEVSEL*
setup time PCI_CLK +

t117 7 IRDY* and TRDY* setup time PCI_CLK +

t118 10 GNT* setup time PCI_CLK +

t119 0 FRAME*, LOCK*, PAR, PERR*, SERR*, IDSEL*, STOP* and DEVSEL*
hold time PCI_CLK +

t120 0 IRDY* and TRDY* hold time PCI_CLK +

t121 0 GNT* hold time PCI_CLK +

Parameter
Min
(ns)

Max
(ns) Comment

Reference edge
(‘+’ for rising edge)

 134
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Timing Derating Depending on the capacitance load on each pin, the timing figures change. The following figures
summarize the timing derating versus the load capacitance.

Figure 51. Timing derating

The timing derating figures will be included in next release

 AT697F ADVANCE INFORMATION

 135
7703C–AERO–6/09

Timing Diagrams - Will be updated for production release

Diagram List • Clock Input without PLL
• Clock Input with PLL
• Reset Sequence

• Fetch, Read and Write from/to 32-bit PROM - 0 Waitstate
• Fetch, Read and Write from/to 32-bit PROM - n Waitstates
• Fetch, Read and Write from/to 32-bit PROM - n Waitstates + BRDY*

• Fetch from 8-bit PROM with EDAC disabled - n Waitstates
• Word Write to 8-bit PROM with EDAC disabled - n Waitstates
• Byte and Half Word Write to 8-bit PROM with EDAC disabled - n Waitstates
• Fetch from 8-bit PROM with EDAC enabled - n Waitstates

• Fetch, Read and Write from/to 32-bit SRAM - 0 Waitstate
• Fetch, Read and Write from/to 32-bit SRAM - n Waitstates

• Burst of RAM Fetches and RAM Write Sequence - 0 Waitstate
• Burst of RAM Fetches and RAM Write Sequence - n Waitstates

• SDRAM Read (or Fetch) with Precharge - Burst length = 1; CL = 3
• SDRAM Write with Precharge - Burst length = 1; CL = 3

• Fetch from ROM, Read and Write from/to 32-bit I/O - 0 Waitstate
• Fetch from ROM, Read and Write from/to 32-bit I/O - n Waitstates
• Fetch from ROM, Read and Write from/to 32-bit I/O - n Waitstates + BRDY*

t4t4t4t4t4t4

t2
t1

t2t2t2
t1

CLK

SDCLK

BYPASS

LOCK

 136
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Figure 52. Clock Input without PLL (PRELIMINARY)

Figure 53. Clock Input with PLL (PRELIMINARY)

t5

t3t3

t1_p

t2_pt2_pt2_p

t1_p

t2_p
CLK

SDCLK

PLOCK

BYPASS

PDIV4

VCC

Figure 54. Reset Sequence(PRELIMINARY)

t6t6

t3t3
SDCLK

RESET*

 AT697F ADVANCE INFORMATION

 137
7703C–AERO–6/09

Figure 55. Fetch, Read and Write from 32-bit PROM - 0 Waitstate

 Fetch Inst 0 Load Data Fetch Inst 1 Write Data

Inst Addr 0 Data Addr 0 Inst Addr 1 Data Addr 1

Inst 0 Data Inst 1 WData

CB Inst 0 CB CB Inst 1 WCB
t14t11

t13
t12

t13
t12

t13
t12

t14t11
t13

t12
t13

t12
t13

t12

t15t15t15t15t15t15

t15t15

t15t15t15t15t15t15

t16t16 t16t16t16t16t16t16

t10 t10t10t10

SDCLK

A[27:0]

ROMS0*

OE*

WRITE*

READ

D[31:0]

CB[7:0]

(PRELIMINARY)

Figure 56. Fetch, Read and Write from 32-bit PROM - n Waitstates

 Fetch Inst 0 Load Data Fetch Inst 1 Write Data

Inst Addr 0 Data Addr 1 Inst Addr 1 Data Addr 2

Inst 0 Data Inst 1 WData

CB Inst 0 CB CB Inst 1 WCB
t14t11

t13
t12

t13
t12

t13
t12

t14t11
t13

t12
t13

t12
t13

t12

t15t15t15t15t15t15

t15t15

t15t15t15t15t15t15

t16t16t16t16t16t16t16t16

t10t10t10t10

n WSn WSn WSn WSn WSn WS
n WS

t3
n WS

t3
SDCLK

A[27:0]

ROMS0*

OE*

WRITE*

READ

D[31:0]

CB[7:0]

(PRELIMINARY)

 138
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Figure 57. Fetch, Read and Write from 32-bit PROM - n Waitstates + BRDY*

 Fetch Inst 0 Load Data Fetch Inst 1

Inst Addr 0 Data Addr 1 Inst Addr 1

Inst 0 Data Inst 1

CB Inst 0 CB CB Inst 1

t13
t12

t13
t12

t13
t12

t13
t12

t13
t12

t13
t12

t20
t19

t20
t19

t20
t19

t15t15t15t15t15t15

t15t15t15t15t15t15

t16t16t16t16t16t16t16

t10t10t10t10

brdybrdy
n WSn WS

brdybrdy
n W Sn W S

brdybrdy
n WSn WS

SDCLK

A[27:0]

ROMS0*

OE*

WRITE*

READ

BRDY*

D[31:0]

CB[7:0]

(PRELIMINARY)

Figure 58. Fetch from 8-bit PROM with EDAC disabled - n Waitstates

 Fetch Inst 0 Fetch Inst 1 Fetch Inst 2 Fetch Inst 3

Inst Addr 0 Inst Addr 1 Inst Addr 2 Inst Addr 3

Inst B0 Inst B1 Inst B2 Inst B3

t13
t12

t13
t12

t13
t12

t13
t12

t15t15t15t15t15t15t15t15

t15t15t15t15t15t15t15t15

t16t16t16t16t16t16t16t16

t10t10t10t10

n WSn WSn WSn WSn WSn WS
n WS

t3
n WS

t3
SDCLK

A[27:0]

ROMS0*

OE*

WRITE*

READ

D[31:0]

(PRELIMINARY)

 AT697F ADVANCE INFORMATION

 139
7703C–AERO–6/09

Figure 59. Word Write to 8-bit PROM with EDAC disabled - n Waitstates

 Store Byte 0 Store Byte 1 Store Byte 2 Store Byte 3

Addr Byte0 Addr Byte1 Addr Byte2 Addr Byte3

Byte 0 Byte 1 Byte 2 Byte 3
t14t11t14t11t14t11t14 t11

t15t15t15 t15t15t15t15t15

t16t16 t16 t16t16t16 t16t16

t10 t10t10 t10

n WSn WSn WSn WSn WSn WS
n WS

t3
n WS

t3
SDCLK

A[27:0]

ROMS0*

OE*

WRITE*

READ

D[31:24]

 (PRELIMINARY)

Figure 60. Byte and Half Word Write to 8-bit PROM with EDAC disabled - n Waitstates

 Store Byte Ram Fetch Store Half Word Byte0 Store Half Word Byte1

Byte Addr Inst Addr 1 Inst Addr 2 Inst Addr 3

Byte Inst HW - Byte 0 HW - Byte 1

Inst

t14t11t14t11
t13

t12t14t11

t15t15

t15t15t15t15t15t15

t15t15

t16t16 t16t16t16t16

t17t17

t17t17

t10 t10t10t10

n WSn WSn WSn WSn WSn WS
n WS

t3
n WS

t3
SDCLK

A[27:0]

RAMS0*

RAMOE0*

ROMS0*

OE*

WRITE*

READ

D[31:24]

D[23:0]

(PRELIMINARY)

 140
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Figure 61. Fetch from 8-bit PROM with EDAC enabled - n Waitstates

 Fetch Inst 0 Fetch Inst 1 Fetch Inst 2 Fetch Inst Byte3 Load Checkbit

Inst Addr 0 Inst Addr 1 Inst Addr 2 Inst Addr 3 CB Addr

Inst B0 Inst B1 Inst B2 Inst B3 CB

t13
t12

t13
t12

t13
t12

t13
t12

t13
t12

t14t14t14 t14t14t14t14t14t14t14

t14t14t14 t14t14t14t14t14t14t14

t16t16t16 t16t16t16t16t16t16t16

t10t10t10t10t10

n WSn WSn WSn WSn WSn WS
n WS

t3
n WS

t3
SDCLK

A[27:0]

ROMS0*

OE*

WRITE*

READ

D[31:24]

(PRELIMINARY)

Figure 62. Fetch, Read and Write from/to 32-bit SRAM - 0 Waitstate

 Fetch Inst 0 Load Data Fetch Inst 1 Write Data

Inst Addr 0 Data Addr 1 Inst Addr 1 Data Addr 2

Inst 0 Data Inst 1 WData

CB Inst 0 CB CB Inst 1 WCB
t14t11

t13
t12

t13
t12

t13
t12

t14t11
t13

t12
t13

t12
t13

t12

t17t17

t17t17t17t17 t17t17

t17t17 t17t17t17t17 t17t17

t10 t10t10 t10
SDCLK

A[27:0]

RAMS0*

RAMOE0*

RWE[3:0]*

D[31:0]

CB[7:0]

(PRELIMINARY)

 AT697F ADVANCE INFORMATION

 141
7703C–AERO–6/09

Figure 63. Fetch, Read and Write from/to 32-bit SRAM - n Waitstates

 Fetch Inst 0 Load Data Fetch Inst 1 Write Data

Inst Addr 0 Data Addr 1 Inst Addr 1 Data Addr 2

Inst 0 Data Inst 1 WData

CB Inst 0 CB CB Inst 1 WCB
t14t11

t13
t12

t13
t12

t13
t12

t14t11
t13

t12
t13

t12
t13

t12

t17t17

t17t17t17t17t17 t17

t17t17t17t17t17t17t17 t17

t10t10t10t10

n WSn WSn WSn WSn WSn WS
n WS

t3
n WS

t3
SDCLK

A[27:0]

RAMS0*

RAMOE0*

RWE[3:0]*

D[31:0]

CB[7:0]

(PRELIMINARY)

Figure 64. Burst of RAM Fetches and RAM Write Sequence - 0 Waitstate

 Fetch Inst 0 Load Data Fetch Inst 1 Write Data

Inst Addr 0 Data Addr 0 Inst Addr 1 Data Addr 1

Inst 0 Data Inst 1 WData

CB Inst 0 CB CB Inst 1 WCB
t14t11

t13
t12

t13
t12

t13
t12

t14t11
t13

t12
t13

t12
t13

t12

t17t17

t17t17

t17t17 t17t17

t10 t10t10 t10
SDCLK

A[27:0]

RAMS0*

RAMOE0*

RWE[3:0]*

D[31:0]

CB[7:0]

(PRELIMINARY)

 142
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Figure 65. Burst of RAM Fetches and RAM Write Sequence - n Waitstates

 Fetch Inst 0 Load Data Fetch Inst 1 Write Data

Inst Addr 0 Data Addr 1 Inst Addr 1 Data Addr 2

Inst 0 Data Inst 1 WData

CB Inst 0 CB CB Inst 1 WCB
t14t11

t13
t12

t13
t12

t13
t12

t14t11
t13

t12
t13

t12
t13

t12

t17t17

t17t17

t17t17t17t17

t10t10t10t10

n W Sn W Sn WSn WSn WSn WS
n WS

t3
n WS

t3
SDCLK

A[27:0]

RAMS0*

RAMOE0*

RWE[3:0]*

D[31:0]

CB[7:0]

(PRELIMINARY)

Figure 66. SDRAM Read (or Fetch) with Precharge - Burst length = 1; CL = 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1

ba ba ba ba

row co row

d1

t12
t12

t22
t22t22

t22
t22

t21
t21

t22
t22

t22
t22

t22
t22

t22
t22

t22
t22

t22
t22

t22
t22

t10t10t10

t10t10t10t10

trptrp
Tras

tcastcasTrcd
Tras

Trcd

Activate Read precharge activate

SDCLK

Memory - A[16:15]

A[14:2]

SDCS*

SDRAS*

SDCAS*

SDWE*

SDDQM[3:0]*

D[31:0]

(PRELIMINARY)

 AT697F ADVANCE INFORMATION

 143
7703C–AERO–6/09

Figure 67. SDRAM Write with Precharge - Burst length = 1; CL = 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1

ba ba ba ba

row co row

d1
t11

222222

t22
t22

t22
t22

t21
t21

t22
t22

t22
t22

t22
t22

t22
t22

t22
t22

t22
t22

t22
t22

t10

t10

trc

trptdpl trp
Tras

tdpltcastcasTrcd

trc
Tras

Trcd

Activate Write precharge activate

SDCLK

Memory - A[16:15]

A[14:2]

SDCS*

SDRAS*

SDCAS*

SDWE*

SDDQM[3:0]*

D[31:0]

(PRELIMINARY)

 144
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Figure 68. Fetch from ROM, Read and Write from/to 32-bit I/O - 0 Waitstate

Fetch Inst 0 Load Data Fetch Inst 1 Write Data

Inst Addr 0 Data Addr 1 Inst Addr 1 Data Addr 2

Inst 0 Data Inst 1 WData
t14t11

t13
t12

t13
t12

t13
t12

t15t15t15t15t15t15

t15t15

t15t15t15t15t15t15

t18t18t18t18

t16t16t16t16

t10t10t10t10

SDCLK

A[27:0]

ROMS0*

IOS*

OE*

WRITE*

READ

D[31:0]

(PRELIMINARY)

Figure 69. Fetch from ROM, Read and Write from/to 32-bit I/O - n Waitstates

 Fetch Inst 0 Load Data Fetch Inst 1 Write Da ta

Inst Addr 0 Data Addr 1 Inst Addr 1 Data Addr 2

Inst 0 Data Inst 1 WData

CB Inst 0 CB Inst 1

t13
t12

t13
t12

t14t11
t13

t12
t13

t12
t13

t12

t15t15t15t15t15t15

t15t15

t15t15t15t15t15t15

t18t18t18t18

t16t16t16t16

t10t10t10t10

n W Sn W Sn W Sn W Sn WSn WS
n WS

t3
n WS

t3

SDCLK

A[27:0]

ROMS0*

IOS*

OE*

WRITE*

READ

D[31:0]

CB[7 :0]

(PRELIMINARY)

 AT697F ADVANCE INFORMATION

 145
7703C–AERO–6/09

Figure 70. Fetch from ROM, Read and Write from/to 32-bit I /O - n Waitstates +
BRDY*(PRELIMINARY)

Fetch Inst 0 Load Data Fetch Inst 1 Write Data

Inst Addr 0 Data Addr 1 Inst Addr 1 Data Addr 2

Inst 0 Data Inst 1 WData

CB Inst 0 CB CB Inst 1 WCB
t14t11

t13
t12

t13
t12

t13
t12

t14t11
t13

t12
t13

t12
t13

t12

t20
t19

t20
t19

t20
t19

t20
t19

t15t15t15t15t15t15

t15t15

t15t15t15t15t15t15

t18t18t18t18

t16t16t16t16

t10t10t10t10

brdybrdy
n WSn WS

brdybrdy
n WSn WS

brdybrdy
n WSn WS

brdybrdy
n WSn WS

SDCLK

A[27:0]

ROMS0*

IOS*

OE*

WRITE*

READ

BRDY*

D[31:0]

CB[7:0]

 146
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Differences between AT697F and AT697E
This section summarizes the modifications, changes and improvements performed on the
AT697F with regards to the AT697E.

New/Modified Features
Table 128. Summary of the new/modified features

Feature AT697F AT697E

Write protection scheme Start/End addresses and MASK
based MASK based only

BRDY* capability over ROM area Implemented Not Implemented

Asynchronous BRDY* capability Implemented Not Implemented

16-bit wide memory bus support Not Implemented Implemented

32-bit timers and watchdog Implemented 24-bit only

8 external interrupts support Implemented limited to 4

PCI SYSEN* state visible in a register Implemented Not Implemented

PCI configuration registers local read capability in satellite mode Implemented Not Implemented

PCI double word transaction as two single transactions support Not Implemented Implemented

AHB trace buffer freeze on debug mode entry Implemented Not Implemented

In addition to the new/modified features presented in the above table, most of the functional
bugs known from the AT697E model are corrected. Please refer to the AT697 errata sheet -
4409C-AERO-07/07 available at www.atmel.com for detailled information on the functional bugs
status.

Register modifications
Table 129. Summary of the register changes

Register Address AT697F Description AT697E Description

MCFG1
0x80000000

bit 30 - PROM bus ready enable
bit 29 - Asynchronous bus read enable

bit 30 - reserved
bit 29 -reserved

WPSTA1 0x800000D0
Write Protection Start Address 1 register

bit 29:2 - Start address
bit 1 - Block protect mode enable

not available

WPSTO1 0x800000D4

Write Protection Stop Address 1 register
bit 29:2 - Stop address

bit 1 - User write protection enable
bit 0 - Supervisor write protection enable

not available

WPSTA2 0x800000D8
Write Protection Start Address 2 register

bit 29:2 - Start address
bit 1 - Block protect mode enable

not available

WPSTO2 0x800000DC

Write Protection Stop Address 2 register
bit 29:2 - Stop address

bit 1 - User write protection enable
bit 0 - Supervisor write protection enable

not available

TIMC1 0x80000040 bit 31:0 - timer counter bit 24:0 - timer counter

TIMR1 0x80000044 bit 31:0 - reload counter bit 24:0 - reload counter

TIMC2 0x80000050 bit 31:0 - timer counter bit 24:0 - timer counter

TIMR2 0x80000054 bit 31:0 - reload counter bit 24:0 - reload counter

WDG 0x8000004C bit 31:0 - counter bit 24:0 - counter

 AT697F ADVANCE INFORMATION

 147
7703C–AERO–6/09

ITMP 0x80000090

bit 31 - IO interrupt 7 priority level
bit 29- IO interrupt 6 priority level
bit 28 - IO interrupt 5 priority level
bit 26 - IO interrupt 4 priority level

bit 15 - IO interrupt 7 mask
bit 13 - IO interrupt 6 mask
bit 12 - IO interrupt 5mask
bit 10 - IO interrupt 4mask

bit 31 - reserved
bit 29 - reserved
bit 28 - reserved
bit 26 - reserved
bit 15 - reserved
bit 13 - reserved
bit 12 - reserved
bit 10 - reserved

ITP 0x80000094

bit 15 - IO interrupt 7 pending
bit 13 - IO interrupt 6 pending
bit 12 - IO interrupt 5 pending
bit 10 - IO interrupt 4 pending

bit 15 - reserved
bit 13 - reserved
bit 12 - reserved
bit 10 - reserved

ITF 0x80000098

bit 15 - IO interrupt 7 force
bit 13 - IO interrupt 6 force
bit 12 - IO interrupt 5 force
bit 10 - IO interrupt 4 force

bit 15 - reserved
bit 13 - reserved
bit 12 - reserved
bit 10 - reserved

ITC 0x8000009C

bit 15 - IO interrupt 7 clear
bit 13 - IO interrupt 6 clear
bit 12 - IO interrupt 5 clear
bit 10 - IO interrupt 4 clear

bit 15 - reserved
bit 13 - reserved
bit 12 - reserved
bit 10 - reserved

IOIT1 0x800000A8 Renaming of IOIT IOIT

IOIT2 0x800000AC
IO Port Interrupt Register

Configuration of IO interrupt for interrupt 4, 5, 6
and 7

not available

PCIID1 0x80000100
device id : 0x1E0F
vendor id : 16E3

device id : 0x1202
vendor id : 0x1438

PCIID2 0x80000108
class code : 0xB4000

revision id : 0x10
class code : 0xB
revision id : 0x01

PCISID 0x8000012C
subsystem id : 0x2103

subsystem vendor id : 0x16E3
subsystem id : 0x1

subsystem vendor id : 0x143E

PCIIS 0x80000154 bit 12 - SYSEN* state bit 12 - reserved

PCIIC 0x80000158
bit 3 - reserved
bit 2 - reserved
bit 1 - reserved

bit 3 - PERR retry enable
bit 2 - Double write configuration
bit 1 - Double read configuration

PCITSC 0x80000160 bit 8 - force retry bit 8 - reserved

TBC 0x90000004 bit 26 - AHB trace buffer freeze bit 26 - reserved

Register Address AT697F Description AT697E Description

 148
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Pin Modifications
Table 130. Summary if the pin changes

Pin Name Pin Number AT697F Description AT697E Description

LFT M16 Not Connected - The PLL filter is internal PLL filter

 AT697F ADVANCE INFORMATION

 149
7703C–AERO–6/09

Ordering
Information

Table 131.

Part-Number
Supply Voltage

(core / IOs)
Temperature

Range
Maximum Speed

(MHz) Packaging Quality Flow

AT697F-2H-E 1.8V / 3.3V +25°C 100 MCGA349 Engineering Samples

AT697F-KG-E 1.8V / 3.3V +25°C 100 MQFP 256 Engineering Samples

Possible Order Entries

Datasheet Revision History

7703A - 05/08 1. Document creation.

7703B - 12/08 1. ADVANCE INFORMATION DATASHEET Document.

7703C - 6/09 1. AB bit description change
2. Suffix N change to *.
3. modify <xxx> bit in <yyy> in register by <yyy> <xxx>
4. Replace SYSCLK by SDCLK
5. text and wording modifications

 150
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

 1
7703C–AERO–6/09

 AT697F ADVANCE INFORMATION

TABLE OF CONTENTS
Features 1

Description ... 2
Pin Configuration ... 4

MCGA349 package . 4
QFP256 Package . 7

Pin Description .. 10
ATMEL Convention . 10
IU and FPU Signals . 10
Memory Interface Signals . 10
System Signals . 11
DSU Signals . 11
JTAG . 12
PCI Arbiter . 12
PCI interface . 13

AT697F CPU Core 15
SPARC Architecture Overview .. 15

Program Counters . 16
ALU - Arithmetic Logic Unit . 16
Register File - Windows . 16
State Register . 18
Instruction Set . 18

Floating Point Unit ... 18
Fault Tolerance .. 18

Watch Points 20
Configuration ... 20
Operation ... 20

Traps and Interrupts 21
Overview .. 21
Synchronous Traps ... 21
Asynchronous Traps / Interrupts ... 23

Operation . 23
Interrupt List . 23
Non Maskable Interrupt (NMI) . 24
I/O interrupts . 24
Interrupt Priority . 25

Memory Interface 26
Overview .. 26
RAM Interface .. 27

SRAM interface . 27
Write Protection . 30
Start/End address Scheme . 30
Protection Priorities . 32
SDRAM . 33

PROM Interface ... 35
Memory Mapped I/O .. 37

BRDY Wait states . 38
Error Management - EDAC ... 40

Cache Memories 43
Overview .. 43

Cache mapping . 43

 2
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Operation . 43
Instruction Cache ... 43

Overview . 44
C ache Control . 44

Operation . 44
Error reporting . 44
Instruction Cache Parity . 44

Data Cache .. 45
Overview . 45
Cache Control . 45
Operation . 45
Error Reporting . 45
Data Cache Parity . 45
Data Cache Snooper . 46

Diagnostic Cache Access .. 46

Timer Unit 47
Prescaler ... 47
Timer/Counter 1 & Timer/Counter 2 .. 47
Watchdog .. 48

General Purpose Interface 49
GPI as 32-bit I/O port ... 49

lower 16-bits . 49
upper 16-bits . 49

GPI Alternate functions .. 50

PCI Arbiter 51
Operation ... 51
Round Robin .. 51

Operation . 51
Bus Parking . 51
Re-arbitration . 51

Priority definition .. 51

PCI Interface 52
Overview .. 52
PCI Initiator (Master) ... 52

Initiator Mapping . 53
Memory cycles . 53
IO transaction cycles . 54
Configuration cycles . 54
Special cycles . 54
Error reporting . 55
DMA transfer . 55
Debug Facilities . 55

Target Mode Transfer .. 56
PCI Error Reporting ... 56

UARTs (UART1 and UART2) 57
Overview .. 57
Serial Frame .. 57

Frame formats . 57
Parity bit . 57

Clock Generation ... 58
Uart Clock . 58
Baud Rate Generation . 58

 3
7703C–AERO–6/09

 AT697F ADVANCE INFORMATION

Communication Operations ... 58
Transmitter Operation . 58
Receiver Operation . 59
Interrupt Generation . 59
Loop back mode . 59

Debug Support Unit - DSU 60
Overview .. 60
Debug Support Unit ... 60

DSU Breakpoint . 61
Time Tag . 61
Trace Buffer . 61
DSU Memory Map . 63
Debug Operations . 64
DSU Trap . 64

DSU Communication Link ... 65
Data Frame . 65
Commands . 65
Clock Generation . 65

Booting from DSU .. 66

JTAG Interface 67
Overview .. 67
TAP Architecture ... 68

TAP Controller . 68
TAP Instructions . 69

Test Data Registers ... 70

Execution Mode 72
Reset Mode ... 72
Debug Mode .. 72
Power-down/Idle Mode .. 72

System Clock 73
Overview .. 73
PCI Clock ... 73

External Clock . 73
CPU Clock ... 73

External Clock . 73
PLL . 73

Fault Tolerance & Clock .. 74
Skew . 74

Package MCGA 349 76
Mechanical Outlines .. 76

QFP256 package 77
Package Description .. 77

Registers Description 78
Integer Unit Registers .. 78
Floating Point Unit Registers ... 82
Memory Interface Registers .. 85
System Registers .. 91
Caches Register .. 93
Power Down Reg. .. 95

 4
7703C–AERO–6/09

AT697F ADVANCE INFORMATION

Timers Registers ... 96
UARTs Registers ... 99
Interrupt Registers ... 103
General Purpose Interface Registers .. 106
PCI Registers .. 109
DSU Registers .. 122

Electrical Characteristics 127
Absolute Maximum Ratings ... 127
DC Characteristics ... 127
Power “On/Off” Sequence ... 128
Power Consumption .. 128
Decoupling capacitance .. 128
Capacitance Rating ... 129
AC Characteristics ... 130

Natural Skew . 130
Maximum Skew . 132
Timing Derating . 134

Timing Diagrams - Will be updated for production release 135
Diagram List . 135

Differences between AT697F and AT697E 146
New/Modified Features .. 146
Register modifications ... 146
Pin Modifications ... 148
Ordering Information .. 149

Datasheet Revision History 149
7703A - 05/08 . 149
7703B - 12/08 . 149
7703C - 6/09 . 149

7703C–AERO–6/09

Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Product Contact

Web Site
www.atmel.com

Technical Support
aerospace@nto.atmel.com

Sales Contact
www.atmel.com/contacts

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property
right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON
ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS
PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES
(INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR
INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties
with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without
notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not
be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corpora-
tion or its subsidiaries. Other terms and product names may be trademarks of others.

