RF Power MOSFET Transistor 10W, 100-500 MHz, 28V

Features

- N-Channel enhancement mode device
- DMOS structure
- Lower capacitances for broadband operation
- Common source configuration
- Lower noise floor
- 100 MHz to 500 MHz operation

ABSOLUTE MAXIMUM RATINGS AT 25° C

Parameter	Symbol	Rating	Units
Drain-Source Voltage	V _{DS}	65	V
Gate-Source Voltage	V _{GS}	20	V
Drain-Source Current	I _{DS}	1.4*	А
Power Dissipation	PD	26.9	W
Junction Temperature	TJ	200	°C
Storage Temperature	T _{STG}	-55 to +150	°C
Thermal Resistance	θ _{JC}	6.5	°C/W

TYPICAL DEVICE IMPEDANCES

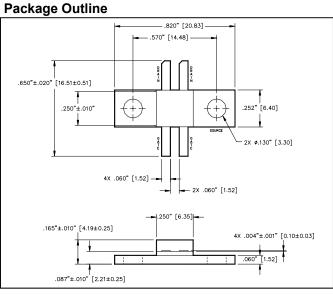
F (MHz)	Z _{IN} (Ω)	Z _{LOAD} (Ω)		
100	30.0-j150.0	70.0+j110.0		
300	15.0-j90.0	55.0+j80.0		
500	4.2-j46.0	48.0+j50.0		
V _{DD} =28V, I _{DQ} =100 Ma, P _{OUT} =10.0 W				

 $Z_{\mbox{\scriptsize IN}}$ is the series equivalent input impedance of the device from gate to gate.

 Z_{LOAD} is the optimum series equivalent load impedance as measured from drain to drain.

ELECTRICAL CHARACTERISTICS AT 25°C

Parameter	Symbol	Min	Max	Units	Test Conditions
Drain-Source Breakdown Voltage	BV _{DSS}	65	-	V	V_{GS} = 0.0 V , I _{DS} = 2.0 mA
Drain-Source Leakage Current	I _{DSS}	-	1.0	mA	V_{GS} = 28.0 V , V_{GS} = 0.0 V
Gate-Source Leakage Current	I _{GSS}	-	1.0	μA	V _{GS} = 20.0 V , V _{DS} = 0.0 V
Gate Threshold Voltage	V _{GS(TH)}	2.0	6.0	V	V _{DS} = 10.0 V , I _{DS} = 10.0 mA
Forward Transconductance	G _M	80	-	S	V_{DS} = 10.0 V , I_{DS} 100.0 mA , Δ V_{GS} = 1.0V, 80 μs Pulse
Input Capacitance	C _{ISS}	-	7	pF	V _{DS} = 28.0 V , F = 1.0 MHz
Output Capacitance	C _{OSS}	-	5	pF	V _{DS} = 28.0 V , F = 1.0 MHz
Reverse Capacitance	C _{RSS}	-	2.4	pF	V _{DS} = 28.0 V , F = 1.0 MHz
Power Gain	G _P	10	-	dB	V _{DD} = 28.0 V, I _{DQ} = 100.0 mA, P _{OUT} = 50.0 W F =500 MHz
Drain Efficiency	ŋ₀	50	-	%	V _{DD} = 28.0 V, I _{DQ} = 100.0 mA, P _{OUT} = 50.0 W F =500 MHz
Load Mismatch Tolerance	VSWR-T	-	20:1	-	V_{DD} = 28.0 V, I _{DQ} = 100.0 mA, P _{OUT} = 50.0 W F =500 MHz


*Per side

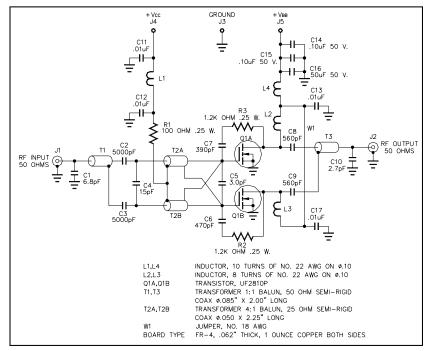
1

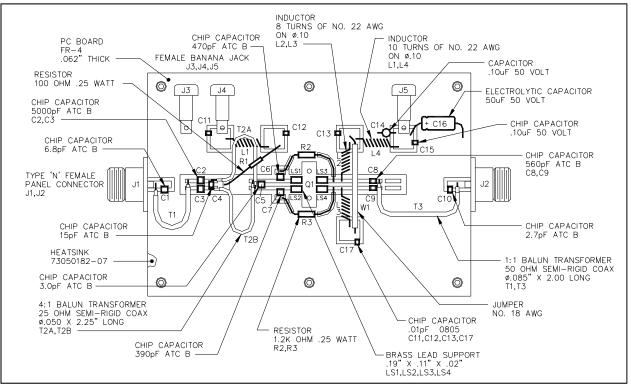
- ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology
- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

M/A-COM Products Released; RoHS Compliant

UNLESS OTHERWISE NOTED, TOLERANCES ARE INCHES $\pm .005"$ [MILLIMETERS $\pm 0.13mm$]


MA-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.


UF2810P

RF Power MOSFET Transistor 10W, 100-500 MHz, 28V

TEST FIXTURE SCHEMATIC

TEST FIXTURE ASSEMBLY

M/A-COM Products Released; RoHS Compliant

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available.

Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

e. M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.