

PM-CIXX CURRENT SENSE INDUCTORS

- Designed for Switch Mode Power Supply ApplicationsTapped and Untapped Versions
- Prequency Range from 10KHz to 200KHz
- **3** Fully Encapsulated Construction

- 6 2500Vrms Minimum Isolation Voltage

pmci 4/97

6 Center Hole for Primary Lead

ELECTRICAL SPECIFICATIONS AT 25°C - OPERATING TEMPERATURE RANGE -40°C TO +80°C

CONTROL VALUES					EREN	CE VAL	UES	CALC. VALUES		
PART NUMBER	TURNS N _s + 1%	INDUCTANCE L _s (mH Min.)	DCR R _s (Ohms Max.)	I _{PK} (Amps)	R _T (Ohms)	K _v (Volt/Amp)	DROOP (%)	FLUX FACTOR K _B	LOSS FACTOR K _L	SCHEMATIC
PM-CI01	50	5.0	0.70	35	15	0.30	2.4	273.97x10 ³	3.31x10 ⁻⁹	Α
PM-CI02	100	20.0	1.40	50	50	0.50	2.0	68.49x10 ³	3.33x10 ⁻⁹	Α
PM-CI03	200	80.0	4.50	50	200	1.00	2.0	17.12x10 ³	3.35x10 ⁻⁹	А
PM-CI04	300	180.0	9.00	75	300	1.00	1.4	7.61x10 ³	3.37x10 ⁻⁹	Α
PM-CI05	50ct	5.0	0.70	35	15	0.30	2.4	273.97x10 ³	3.31x10 ⁻⁹	В
PM-CI06	100ct	20.0	1.40	50	50	0.50	2.0	68.49x10 ³	3.33x10 ⁻⁹	В
PM-CI07	200ct	80.0	4.50	50	200	1.00	2.0	17.12x10 ³	3.35x10 ⁻⁹	В
PM-Cl08	300ct	180.0	9.00	75	300	1.00	1.4	7.61x10 ³	3.37x10 ⁻⁹	В

REFER TO CALCULATION EXAMPLE FOR PM-CIXX SERIES ON PAGE 2 OF THIS DATA SHEET.

- 1) REFERENCE VALUES ARE FOR UNIPOLAR OPERATION @ 50KHz, 40% DUTY CYCLE (Dmax = .40).
- 2) THE MAXIMUM USABLE PEAK SENSE CURRENT (I,k) IS DEPENDENT ON CORE SATURATION FACTORS AND SHOULD BE EVALUATED FOR THE ACTUAL OPERATING CONDITIONS. SEE APPLICATION DATA AND EXAMPLE ON PAGE 51.
- 3) THE MAXIMUM RECOMMENDED OPERATING FLUX DENSITY (B_{OP}) @ AN OPERATING TEMPERATURE OF 105°C IS 2000 GAUSS.
- 4) THE TERM. RESISTOR (R.) CAN BE VARIED TO ADJUST THE OPERATING FLUX DENSITY (B_{OP}), DROOP, AND SCALE FACTOR (K_{ν}).
- 5) THE SCALE FACTOR (K,) IS PROPORTIONAL TO THE TERMINATING RESISTOR (R,) AND IS EQUAL TO 1VOLT/AMP WHEN $R_T = N_S$
- 6) SECONDARY INDUCTANCE IS MEASURED AT 20KHz, 1.0VRMS.

Specifications subject to change without notice

SCHEMATIC MECHANICAL SCHEMATIC "A" PHYSICAL Dimensions in inches (mm) 410 **←**(10.4)→ MAX .180 DIA. .35 (4.57) MIN (8,8)Y .838 (21.3) $ullet_M^P$ PM-CIXX **ARROW INDICATES** MAX 3 **CURRENT FLOW** PIN#1 IN PHASE **SCHEMATIC "B"** .030 0 .040 (.762)3 (1.02)250 LEAD 2 PRESENT .19 (6.35)ON CENTER TAPPED .500 (4.8)**VERSION ONLY** (12.70)2 3

PM-CIXX CURRENT SENSE INDUCTORS

APPLICATION EXAMPLE

APPLICATION EXAMPLE

GIVEN:

Part# = PM-CI02 Peak Current (I_{PK}) = 30.0 Amps Terminating Resistor (R_{τ}) = 100 Ohms Operating Frequency (f) = 100KHz Duty Cycle (Dmax) = .40 (40% on time)

CALCULATE OPERATING FLUX DENSISTY

From the Table the FLUX FACTOR is: $K_{\rm p} = 68.49 \times 10^3$

Flux Utilization Constant (K_F) is: 1.0 For Unipolar Operation 2.0 For Bipolar Operation

THEN:

$$B_{OP} = K_B \times I_{PK} \times R_T \times (Dmax / K_F \times f)$$

 $= 68.49 \times 10^3 \times 30 \times 100 \times (.4 / 1 \times 100 \times 10^3)$

= 822 gauss (OK less than 2000 gauss)

CALCULATE PULSE DROOP

From the Table the Secondary Inductance is: $L_s = 20 \mathrm{mHy}$ Minimum

Note: The actual droop is dependent on the actual $\rm L_{\rm S}$ in the circuits enviorment.

Droop Exponent (D) = $R_T \times Dmax / (L_S \times f)$ = $100 \times .4 / (20 \times 10^{-3} \times 100 \times 10^{3})$ = 0.020

THEN:

CALCULATE THE SCALE FACTOR

From the Table the Secondary Turns are: $N_s = 100$

THEN:

$$K_{V} = R_{T} / N_{S}$$

= 100 / 100

= 1 volt/amp

ESTIMATE ERROR DUE TO LOSSES

From the Table the Secondary DCR is: $R_s = 1.40$ Ohms Maximum

From the Table the approximate Loss Factor is: $K_1 = 3.33 \times 10^{-9}$

Note: The loss factor (K_L) is valid approximation from 10 KHz to 200 KHz

Secondary Copper Losses are:

$$P_{\text{loss}_S} = (I_{PK} / N_S)^2 \times R_S$$

= $(30/100)^2 \times 1.40$

= 0.126 Watt

Core losses are:

$$P_{loss_{c}} = K_{l}^{2} x f^{1.621} x B_{OP}^{2.569}$$

=
$$(3.33x10^{-9})^2 x (100x10^3)^{1.621} x 822^{2.569}$$

= 0.0435 Watt

Output Power is:

$$P_{\text{out}_{S}} = (I_{PK} / N_{S})^{2} \times R_{T}$$

= $(30/100)^{2} \times 100$
= 9.00 Watt

THEN:

%_Error =
$$[(P_{loss} + P_{loss}) / P_{out}] \times 100$$

= $[(.126 + .0435) / 9] \times 100$
= 1.88 %

Specifications subject to change without notice

pmci 4/97