SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer

General Description

The MAX19996A single, high-linearity downconversion mixer provides 8.7 dB conversion gain, +24.5 dBm IIP3, and 9.8 dB noise figure for 2000 MHz to 3900 MHz WCS, LTE, WiMAX ${ }^{\text {TM }}$, and MMDS wireless infrastructure applications. With an ultra-wide LO frequency range of 2100MHz to 4000MHz, the MAX19996A can be used in either low-side or high-side LO injection architectures for virtually all 2.5 GHz and 3.5 GHz applications. For a 2.5 GHz variant tuned specifically for low-side injection, refer to the MAX19996 data sheet.
In addition to offering excellent linearity and noise performance, the MAX19996A also yields a high level of component integration. This device includes a dou-ble-balanced passive mixer core, an IF amplifier, and an LO buffer. On-chip baluns are also integrated to allow for single-ended RF and LO inputs. The MAX19996A requires a nominal LO drive of OdBm, and supply current is typically 230 mA at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, or 150 mA at $\mathrm{VCC}=3.3 \mathrm{~V}$.
The MAX19996A is pin compatible with the MAX19996 2000 MHz to 3000 MHz mixer. The device is also pin similar with the MAX9984/MAX9986/MAX9986A 400 MHz to 1000 MHz mixers and the MAX9993/ MAX9994/MAX9996 1700MHz to 2200 MHz mixers, making this entire family of downconverters ideal for applications where a common PCB layout is used for multiple frequency bands.
The MAX19996A is available in a compact $5 \mathrm{~mm} \times 5 \mathrm{~mm}$, 20-pin thin QFN with an exposed pad. Electrical performance is guaranteed over the extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Applications

2.3GHz WCS Base Stations
2.5GHz WiMAX and LTE Base Stations
2.7GHz MMDS Base Stations
3.5GHz WiMAX and LTE Base Stations

Fixed Broadband Wireless Access
Wireless Local Loop
Private Mobile Radios
Military Systems

Features

- 2000MHz to 3900 MHz RF Frequency Range
- 2100 MHz to 4000 MHz LO Frequency Range
- 50 MHz to 500 MHz IF Frequency Range
- 8.7dB Conversion Gain
- 9.8dB Noise Figure
- +24.5dBm Typical Input IP3
- 11dBm Typical Input 1dB Compression Point
- 67dBc Typical 2LO-2RF Spurious Rejection at $P_{R F}=-10 \mathrm{dBm}$
- Integrated LO Buffer
- Integrated RF and LO Baluns for Single-Ended Inputs
- Low -3dBm to +3dBm LO Drive
- Pin Compatible with the MAX19996 2000MHz to 3000MHz Mixer
- Pin Similar with the MAX9993/MAX9994/MAX9996 Series of 1700 MHz to 2200 MHz Mixers and the MAX9984/MAX9986/MAX9986A Series of 400MHz to 1000MHz Mixers
- Single 5.0V or 3.3V Supply
- External Current-Setting Resistors Provide Option for Operating Device in Reduced-Power/ReducedPerformance Mode

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX19996AETP +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Thin QFN-EP*
MAX19996AETP +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Thin QFN-EP

+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP $=$ Exposed pad.
$T=$ Tape and reel.

Pin Configuration/Functional Diagram appears at end of data sheet.

SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer

ABSOLUTE MAXIMUM RATINGS

VCc to GND
-0.3 V to +5.5 V
IF+, IF-, LO to GND-0.3V to (VCC +0.3 V)
RF, LO Input Power ...+12dBm
RF, LO Current (RF and LO is DC shorted to GND
through a balun).. 50 mA
Continuous Power Dissipation (Note 1)5.0W
ӨJA (Notes 2, 3).. $38^{\circ} \mathrm{C} / \mathrm{W}$

ӨJC (Notes 1, 3)	
Operating Case Temperature	
Range (Note 4).	. $\mathrm{T} \mathrm{C}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature	.. $+150^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (solderin	$+300^{\circ} \mathrm{C}$

Note 1: Based on junction temperature $T_{J}=T_{C}+\left(\theta_{J C} \times V_{C C} \times I C C\right)$. This formula can be used when the temperature of the exposed pad is known while the device is soldered down to a PCB. See the Applications Information section for details. The junction temperature must not exceed $+150^{\circ} \mathrm{C}$.
Note 2: Junction temperature $T_{J}=T_{A}+\left(\theta_{J A} \times V_{C C} \times I C C\right)$. This formula can be used when the ambient temperature of the PCB is known. The junction temperature must not exceed $+150^{\circ} \mathrm{C}$.
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.
Note 4: TC is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS

(Typical Application Circuit, VcC $=4.75 \mathrm{~V}$ to 5.25 V , no input AC signals. $\mathrm{TC}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, all parameters are production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	VCC		4.75	5.0	5.25	V
Supply Current	ICC		230	245	mA	

3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS

(Typical Application Circuit, $\mathrm{V}_{C C}=3.0 \mathrm{~V}$ to 3.6V, no input AC signals. $\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{VCC}=3.3 \mathrm{~V}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, parameters are guaranteed by design and not production tested, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	V_{CC}		3.0	3.3	3.6	V
Supply Current	ICC	Total supply current, $\mathrm{V}_{C C}=3.3 \mathrm{~V}$		150		mA

SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer

RECOMMENDED AC OPERATING CONDITIONS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
RF Frequency Range	f_{RF}	Typical Application Circuit with C1 $=8.2 p \mathrm{~F}$, see Table 1 for details (Note 5)	2000		3000	MHz
		Typical Application Circuit with C1 $=1.5 \mathrm{pF}$, see Table 1 for details (Note 5)	3000		3900	
LO Frequency	flo	(Note 5)	2100		4000	MHz
IF Frequency	fiF	Using Mini-Circuits TC4-1W-17 4:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Note 5)	100		500	MHz
		Using Mini-Circuits TC4-1W-7A 4:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Note 5)	50		250	
LO Drive	PLO		-3	0	+3	dBm

5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF $=2300 \mathrm{MHz}$ TO 2900 MHz , HIGH-SIDE LO INJECTION

(Typical Application Circuit with tuning elements outlined in Table 1, VCC $=4.75 \mathrm{~V}$ to 5.25 V , RF and LO ports are driven from 50Ω sources, PLO $=-3 \mathrm{dBm}$ to $+3 \mathrm{dBm}, \mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{fRF}=2300 \mathrm{MHz}$ to $2900 \mathrm{MHz}, \mathrm{fIF}=300 \mathrm{MHz}, \mathrm{fLO}=2600 \mathrm{MHz}$ to 3200 MHz , fRF $<\mathrm{fLO}$, $\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are for $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=2600 \mathrm{MHz}, \mathrm{fLO}_{\mathrm{LO}}=2900 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=300 \mathrm{MHz}$. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Small-Signal Conversion Gain		$\mathrm{f}_{\mathrm{RF}}=2300 \mathrm{MHz}$ to $2900 \mathrm{MHz}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ (Note 7)	7.9	8.7	9.2	dB
Gain Variation vs. Frequency	$\Delta \mathrm{Gc}$	$\mathrm{ffF}^{\text {r }}$ 2305MHz to 2360 MHz		0.1		dB
		$\mathrm{f}_{\mathrm{RF}}=2500 \mathrm{MHz}$ to 2570 MHz		0.1		
		$\mathrm{fRF}^{\text {a }}$ 2570MHz to 2620 MHz		0.1		
		$\mathrm{f}_{\mathrm{RF}}=2500 \mathrm{MHz}$ to 2690 MHz		0.2		
		$\mathrm{ffF}_{\text {R }}=2700 \mathrm{MHz}$ to 2900 MHz		0.3		
Conversion Gain Temperature Coefficient	TCCG	T $\mathrm{C}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		-0.012		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Single Sideband Noise Figure	NFSSB	No blockers present		9.8	12	dB
		$\mathrm{f}_{\mathrm{RF}}=2600 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=300 \mathrm{MHz}, \mathrm{PLO}=0 \mathrm{dBm}$, $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T} \mathrm{C}=+25^{\circ} \mathrm{C}$, no blockers present		9.8	10.5	
Noise Figure Temperature Coefficient	TCNF	$f_{R F}=2300 \mathrm{MHz}$ to 2900 MHz , single sideband, no blockers present, $\mathrm{T} \mathrm{C}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		0.018		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Noise Figure Under Blocking	NF_{B}	+8 dBm blocker tone applied to RF port, $\mathrm{f}_{\mathrm{RF}}=2600 \mathrm{MHz}, \mathrm{fLO}=2900 \mathrm{MHz}$, $\mathrm{f}_{\mathrm{BLO}}$ (OCKER $=2400 \mathrm{MHz}, \mathrm{PLO}=0 \mathrm{dBm}$, $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ (Note 8)		18	22	dB

SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer

5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 2300MHz TO 2900MHz, HIGH-SIDE LO INJECTION (continued)

(Typical Application Circuit with tuning elements outlined in Table 1, $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V , RF and LO ports are driven from 50Ω sources, PLO $=-3 \mathrm{dBm}$ to $+3 \mathrm{dBm}, \mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{fRF}=2300 \mathrm{MHz}$ to $2900 \mathrm{MHz}, \mathrm{fIF}_{\mathrm{IF}}=300 \mathrm{MHz}, \mathrm{fLO}=2600 \mathrm{MHz}$ to 3200 MHz , $\mathrm{fRF}<\mathrm{fLO}$, $\mathrm{TC}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are for $\mathrm{T} \mathrm{C}=+25^{\circ} \mathrm{C}, \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=2600 \mathrm{MHz}, \mathrm{fLO}^{2}=2900 \mathrm{MHz}, \mathrm{f}_{\mathrm{f}}=300 \mathrm{MHz}$. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Input 1dB Compression Point	$1 \mathrm{P}_{1 \mathrm{~dB}}$	$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ (Note 9)		9.5	11		dBm
		$\mathrm{f}_{\mathrm{RF}}=2600 \mathrm{MHz} \mathrm{T} \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ (Notes 7, 9)		10	11		
Third-Order Input Intercept Point	IIP3	$\begin{aligned} & \mathrm{fRF}_{1}-\mathrm{fRF}_{\mathrm{R}}=1 \mathrm{MHz}, \text { PRF1 }=\text { PRF2 }=-5 \mathrm{dBm}, \\ & \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}(\text { Note } 7) \end{aligned}$		22.5	24.5		dBm
IIP3 Variation with TC		$\mathrm{f}_{\mathrm{RF}}=2300 \mathrm{MHz}$ to 2900 MHz , $\mathrm{fRF}_{\mathrm{R}}-\mathrm{f}_{\mathrm{RF} 2}=1 \mathrm{MHz}$, $P_{\text {RF1 }}=$ PRF2 $=-5 \mathrm{dBm}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			± 0.3		dB
2LO-2RF Spur Rejection	2×2	fSPUR $=$ fLO -150 MHz	$P_{\text {RF }}=-10 \mathrm{dBm}$	60	67		dBc
			PRF $=-5 \mathrm{dBm}$	55	62		
3LO-3RF Spur Rejection	3×3	fSPUR $=$ fLO -100 MHz	$P_{\text {RF }}=-10 \mathrm{dBm}$	75	85		dBc
			PRF $=-5 \mathrm{dBm}$	65	75		
RF Input Return Loss	RLRF	LO on and IF terminated into a matched impedance			17.5		dB
LO Input Return Loss	RLLo	RF and IF terminated into a matched impedance			19.5		dB
IF Output Impedance	$Z_{\text {IF }}$	Nominal differential impedance at the IC's IF outputs			200		Ω
IF Output Return Loss	RLIF	RF terminated into 50Ω, LO driven by 50Ω source, IF transformed to 50Ω using external components shown in the Typical Application Circuit, see the Typical Operating Characteristics for performance vs. inductor values	$\begin{aligned} & \mathrm{fIF}=450 \mathrm{MHz}, \\ & \mathrm{~L} 1=\mathrm{L} 2= \\ & 120 \mathrm{nH} \end{aligned}$		25		dB
			$\begin{aligned} & \mathrm{fIF}=350 \mathrm{MHz}, \\ & \mathrm{~L} 1=\mathrm{L} 2= \\ & 270 \mathrm{nH} \end{aligned}$		25		
			$\begin{aligned} & \mathrm{fIF}=300 \mathrm{MHz}, \\ & \mathrm{~L} 1=\mathrm{L} 2= \\ & 390 \mathrm{nH} \end{aligned}$		25		
RF-to-IF Isolation		PLO $=+3 \mathrm{dBm}$ (Note 7)		27	30		dB
LO Leakage at RF Port		PLO $=+3 \mathrm{dBm}$			-28.6	-22.8	dBm
2LO Leakage at RF Port		PLO $=+3 \mathrm{dBm}$			-29.7		dBm
LO Leakage at IF Port		PLO $=+3 \mathrm{dBm}$ (Note 7)			-28.4		dBm

SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer

3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 2300MHz TO 2900 MHz , HIGH-SIDE LO INJECTION

(Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50Ω sources. Typical values are for $\mathrm{TC}=+25^{\circ} \mathrm{C}, \mathrm{VCC}=3.3 \mathrm{~V}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{fRF}=2600 \mathrm{MHz}, \mathrm{fLO}=2900 \mathrm{MHz}, \mathrm{fIF}=300 \mathrm{MHz}$, unless otherwise noted.) (Note 6)

PARAMETER	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
Small-Signal Conversion Gain	Gc			8.3		dB
Gain Variation vs. Frequency	$\Delta \mathrm{Gc}$	$\mathrm{f}_{\mathrm{RF}}=2300 \mathrm{MHz}$ to 2900 MHz , any 100 MHz band		0.15		dB
Conversion Gain Temperature Coefficient	TCCG	TC $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		-0.012		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Single Sideband Noise Figure	NFSSB	No blockers present		9.6		dB
Noise Figure Temperature Coefficient	TCNF	Single sideband, no blockers present,$\mathrm{T}^{\mathrm{C}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$		0.018		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Input 1dB Compression Point	$1 P_{1 d B}$	(Note 9)		7.75		dBm
Third-Order Input Intercept Point	IIP3	$\begin{aligned} & \text { fRF1 }=2600 \mathrm{MHz}, \text { fRF2 }=2601 \mathrm{MHz}, \\ & \text { PRF1 } \text { PRF2 }=-5 \mathrm{dBm} \end{aligned}$		19.7		dBm
IIP3 Variation with TC		$\begin{aligned} & \text { fRF1 }=2600 \mathrm{MHz}, \mathrm{f}_{\text {RF2 }}=2601 \mathrm{MHz}, \\ & \mathrm{P}_{\mathrm{RF} 1}=\mathrm{P}_{\mathrm{RF} 2}=-5 \mathrm{dBm}, \\ & \text { TC }=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		± 0.5		dB
2LO-2RF Spur Rejection	2×2	fSPUR $=$ flo -150 MHz	$=-10 \mathrm{dBm}$	64		dBc
			= -5 dBm	59		
3LO-3RF Spur Rejection	3×3	$\mathrm{f}_{\text {SPUR }}=\mathrm{fLO}-100 \mathrm{MHz}$	$=-10 \mathrm{dBm}$	74		dBc
			$=-5 \mathrm{dBm}$	64		
RF Input Return Loss	RLRF	LO on and IF terminated into a matched impedance		17.5		dB
LO Input Return Loss	RLLO	RF and IF terminated into a matched impedance		19.5		dB
IF Output Impedance	ZIF	Nominal differential impedance at the IC's IF outputs		200		Ω
IF Output Return Loss	RLIF	RF terminated into 50Ω, LO driven by 50Ω source, IF transformed to 50Ω using external components shown in the Typical Application Circuit, see the Typical Operating Characteristics for performance vs. inductor values	$\begin{aligned} & \mathrm{fIF}=450 \mathrm{MHz}, \\ & \mathrm{~L} 1=\mathrm{L} 2= \\ & 120 \mathrm{nH} \end{aligned}$	25		dB
			$\begin{aligned} & \mathrm{fIF}=350 \mathrm{MHz}, \\ & \mathrm{~L} 1=\mathrm{L} 2= \\ & 270 \mathrm{nH} \end{aligned}$	25		
			$\begin{aligned} & \mathrm{fIF}=300 \mathrm{MHz}, \\ & \mathrm{~L} 1=\mathrm{L} 2= \\ & 390 \mathrm{nH} \end{aligned}$	25		
RF-to-IF Isolation		$\mathrm{fRF}^{\text {a }}=2300 \mathrm{MHz}$ to $2900 \mathrm{MHz}, \mathrm{PLO}=+3 \mathrm{dBm}$		38		dB
LO Leakage at RF Port		$\mathrm{fLO}=2600 \mathrm{MHz}$ to 3200 MHz , PLo $=+3 \mathrm{dBm}$		-30		dBm
2LO Leakage at RF Port		$\mathrm{fLO}=2600 \mathrm{MHz}$ to 3200 MHz , PLO $=+3 \mathrm{dBm}$		-31		dBm
LO Leakage at IF Port		$\mathrm{fLO}=2600 \mathrm{MHz}$ to 3200 MHz , $\mathrm{PLO}=+3 \mathrm{dBm}$		-34		dBm

SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer

5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 2300MHz TO 2900MHz, LOW-SIDE LO INJECTION

(Typical Application Circuit with tuning elements outlined in Table 1, $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V , RF and LO ports are driven from 50Ω sources. PLO $=-3 \mathrm{dBm}$ to $+3 \mathrm{dBm}, \mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{fRF}=2300 \mathrm{MHz}$ to $2900 \mathrm{MHz}, \mathrm{fIF}=300 \mathrm{MHz}, \mathrm{fLO}=2000 \mathrm{MHz}$ to 2600 MHz , $\mathrm{fRF}>\mathrm{fLO}$, $\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are for $\mathrm{T} \mathrm{C}=+25^{\circ} \mathrm{C}, \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=2600 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=2300 \mathrm{MHz}, \mathrm{f}_{\mathrm{f}}=300 \mathrm{MHz}$, all parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Small-Signal Conversion Gain	Gc	$\mathrm{f}_{\mathrm{RF}}=2300 \mathrm{MHz}$ to $2900 \mathrm{MHz}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ (Note 7)		8.2	8.9	9.5	dB
Gain Variation vs. Frequency	ΔG_{C}	$f_{R F}=2300 \mathrm{MHz}$ to 2900 MHz , any 100 MHz band			0.1		dB
Conversion Gain Temperature Coefficient	TCCG	T $\mathrm{C}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			-0.012		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
	NFSSB	No blockers present			9.5	12.5	
Single Sideband Noise Figure		$\begin{aligned} & \text { fRF }=2600 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=300 \mathrm{MHz}, \\ & \text { PLO }=0 \mathrm{dBm}, \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{TC}=+25^{\circ} \mathrm{C}, \\ & \text { no blockers present } \end{aligned}$			9.5	10.5	dB
Noise Figure Temperature Coefficient	TCNF	Single sideband, no blockers present,$\mathrm{T}^{\mathrm{C}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$			0.018		dB/ ${ }^{\circ} \mathrm{C}$
Input 1dB Compression Point	$1 P_{1 d B}$	$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ (Note 9)		9.5	10.7		dBm
Third-Order Input Intercept Point	IIP3	$\begin{aligned} & \text { fRF1 }- \text { fRF2 }=1 \mathrm{MHz}, \text { PRF1 }=\text { PRF2 }=-5 \mathrm{dBm}, \\ & \left.\mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C} \text { (Note } 7\right) \end{aligned}$		22	24.05		dBm
IIP3 Variation with TC		$\begin{aligned} & \text { fRF }=2300 \mathrm{MHz} \text { to } 2900 \mathrm{MHz}, \text { PRF1 }=\text { PRF2 }= \\ & -5 \mathrm{dBm}, \mathrm{~T}_{\mathrm{C}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$			± 0.5		dB
2RF-2LO Spur Rejection	2×2	$\mathrm{f}_{\text {SPUR }}=\mathrm{f}$ LO +150 MHz	$P_{\text {RF }}=-10 \mathrm{dBm}$	63	68		dBc
			$\mathrm{P}_{\mathrm{RF}}=-5 \mathrm{dBm}$	58	63		
3RF-3LO Spur Rejection	3×3	$\mathrm{f}_{\text {SPUR }}=\mathrm{f}$ LO +100 MHz	$P_{\text {RF }}=-10 \mathrm{dBm}$	79	84		dBc
			$\mathrm{P}_{\text {RF }}=-5 \mathrm{dBm}$	69	74		
RF Input Return Loss	RLRF	LO on and IF terminated into a matched impedance			19		dB
LO Input Return Loss	RLLO	RF and IF terminated into a matched impedance			18		dB
IF Output Impedance	ZIF	Nominal differential impedance at the IC's IF outputs			200		Ω
IF Output Return Loss	RLIF	RF terminated into 50Ω, LO driven by 50Ω source, IF transformed to 50Ω using external components shown in the Typical Application Circuit; see the Typical Operating Characteristics for performance vs. inductor values	$\begin{aligned} & \mathrm{f} \mathrm{fIF}=450 \mathrm{MHz}, \\ & \mathrm{~L} 1=\mathrm{L} 2= \\ & 120 \mathrm{nH} \end{aligned}$		25		dB
			$\begin{aligned} & \mathrm{f} \mathrm{fF}=350 \mathrm{MHz}, \\ & \mathrm{~L} 1=\mathrm{L} 2= \\ & 270 \mathrm{nH} \end{aligned}$		25		
			$\begin{aligned} & \mathrm{f} / \mathrm{F}=300 \mathrm{MHz}, \\ & \mathrm{~L} 1=\mathrm{L} 2= \\ & 390 \mathrm{nH} \end{aligned}$		25		
RF-to-IF Isolation		$\mathrm{ffF}^{\text {a }}$ 2600MHz, $\mathrm{PLO}=+3 \mathrm{dBm}$		29	36		dB
LO Leakage at RF Port		$\mathrm{fLO}=1800 \mathrm{MHz}$ to 2900 MHz , PLO $=+3 \mathrm{dBm}$			-28	-20	dBm
2LO Leakage at RF Port		$\mathrm{fLO}=1800 \mathrm{MHz}$ to 2900 MHz , PLO $=+3 \mathrm{dBm}$			-29	-19	dBm
LO Leakage at IF Port		$\mathrm{fLO}=1800 \mathrm{MHz}$ to 2900 MHz , PLO $=+3 \mathrm{dBm}$			-24		dBm

SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer

5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 3100MHz TO 3900MHz, LOW-SIDE LO INJECTION

(Typical Application Circuit with tuning elements outlined in Table 1, $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V , RF and LO ports are driven from 50Ω sources, PLO $=-3 \mathrm{dBm}$ to $+3 \mathrm{dBm}, \mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{fRF}=3100 \mathrm{MHz}$ to $3900 \mathrm{MHz}, \mathrm{fIF}_{\mathrm{IF}}=300 \mathrm{MHz}, \mathrm{fLO}=2800 \mathrm{MHz}$ to 3600 MHz , $\mathrm{fRF}>\mathrm{fLO}$, $\mathrm{T} \mathrm{C}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are for $\mathrm{T} \mathrm{C}=+25^{\circ} \mathrm{C}, \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=3500 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=3200 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=300 \mathrm{MHz}$. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Small-Signal Conversion Gain	Gc	$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ (Note 7)		7.5	8.0	8.5	dB
Gain Variation vs. Frequency	$\Delta \mathrm{G}_{\mathrm{C}}$	$\mathrm{f}_{\mathrm{RF}}=3450 \mathrm{MHz}$ to 3750 MHz , any 100 MHz band			0.15		dB
		$\mathrm{f}_{\mathrm{RF}}=3450 \mathrm{MHz}$ to 3750 MHz , any 200 MHz band			0.3		
Conversion Gain Temperature Coefficient	TCcg	T $\mathrm{C}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			-0.012		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Single Sideband Noise Figure	NFSSB	No blockers present			10.5	13.5	dB
		$\mathrm{f}_{\mathrm{RF}}=3500 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=300 \mathrm{MHz}, \mathrm{PLO}=0 \mathrm{dBm}$, $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T} \mathrm{C}=+25^{\circ} \mathrm{C}$, no blockers present			10.5	11.6	
Noise Figure Temperature Coefficient	TCNF	$\mathrm{f}_{\mathrm{RF}}=3100 \mathrm{MHz}$ to 3900 MHz , single sideband, no blockers present, $\mathrm{T} \mathrm{C}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		0.018			$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Noise Figure Under Blocking	$\mathrm{NF}_{\text {B }}$	+8 dBm blocker tone applied to RF port, $f_{R F}=3500 \mathrm{MHz}$, fLO $=3200 \mathrm{MHz}$, $f_{\text {BLOCKER }}=3750 \mathrm{MHz}, \mathrm{PLO}=0 \mathrm{dBm}$, $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ (Note 8)			18.7	21	dB
Input 1dB Compression Point	$1 P_{1 d B}$	$\mathrm{frFF}=3500 \mathrm{MHz}$ (Note 9)		10	12		dBm
Third-Order Input Intercept Point	IIP3	$\mathrm{f}_{\mathrm{RF} 1}-\mathrm{f}_{\mathrm{RF}} 2=1 \mathrm{MHz}$, PRF1 $=$ PRF2 $=-5 \mathrm{dBm}$ (Note 7)		23	25		dBm
IIP3 Variation with TC		$\begin{aligned} & \text { fRF }=3100 \mathrm{MHz} \text { to } 3900 \mathrm{MHz}, \\ & \mathrm{fIF}_{\mathrm{IF}}=300 \mathrm{MHz}, \mathrm{f}_{\mathrm{RF} 1}-\mathrm{ff}_{\mathrm{RF} 2}=1 \mathrm{MHz}, \\ & \text { PRF1 }^{2} \text { PRF2 }=-5 \mathrm{dBm}, \mathrm{TC}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$			± 0.3		dB
2RF-2LO Spur Rejection	2×2	f fPUR $=\mathrm{f}$ LO +150 MHz	$P_{\text {RF }}=-10 \mathrm{dBm}$	60	69		dBc
			$\mathrm{P}_{\text {RF }}=-5 \mathrm{dBm}$	55	64		
3RF-3LO Spur Rejection	3×3	$\mathrm{f}_{\text {SPUR }}=\mathrm{fLO}+100 \mathrm{MHz}$	$\mathrm{P}_{\text {RF }}=-10 \mathrm{dBm}$	78	86		dBc
			$\mathrm{P}_{\text {RF }}=-5 \mathrm{dBm}$	68	76		
RF Input Return Loss	RLRF	LO on and IF terminated into a matched impedance			20		dB
LO Input Return Loss	RLLO	RF and IF terminated into a matched impedance			16.5		dB
IF Output Impedance	ZIF	Nominal differential impedance at the IC's IF outputs			200		Ω

SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer

5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 3100MHz TO 3900MHz, LOW-SIDE LO INJECTION (continued)

(Typical Application Circuit with tuning elements outlined in Table 1, $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V , RF and LO ports are driven from 50Ω sources, PLO $=-3 \mathrm{dBm}$ to +3 dBm , $\mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{fRF}=3100 \mathrm{MHz}$ to $3900 \mathrm{MHz}, \mathrm{fIF}=300 \mathrm{MHz}$, fLO $=2800 \mathrm{MHz}$ to 3600 MHz , fRF $>\mathrm{fLO}$, $\mathrm{TC}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are for $\mathrm{T} \mathrm{C}=+25^{\circ} \mathrm{C}, \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=3500 \mathrm{MHz}, \mathrm{fLO}=3200 \mathrm{MHz}, \mathrm{f}_{\mathrm{fIF}}=300 \mathrm{MHz}$. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
IF Output Return Loss	RLIF	RF terminated into 50Ω, LO driven by 50Ω source, IF transformed to 50Ω using external components shown in the Typical Application Circuit, see the Typical Operating Characteristics for performance vs. inductor values	$\begin{aligned} & \mathrm{f} \mathrm{fF}=450 \mathrm{MHz}, \\ & \mathrm{~L} 1=\mathrm{L} 2= \\ & 120 \mathrm{nH} \end{aligned}$		25		dB
			$\begin{aligned} & \mathrm{f} \mathrm{f}=350 \mathrm{MHz}, \\ & \mathrm{~L} 1=\mathrm{L} 2= \\ & 270 \mathrm{nH} \end{aligned}$		25		
			$\begin{aligned} & \mathrm{fIF}=300 \mathrm{MHz}, \\ & \mathrm{~L} 1=\mathrm{L} 2= \\ & 390 \mathrm{nH} \end{aligned}$		25		
RF-to-IF Isolation		$\mathrm{fRF}^{\text {e }}$ 2600MHz PLO $=+3 \mathrm{dBm}$ (Note 7)		23	27		dB
LO Leakage at RF Port		$\mathrm{fLO}=2800 \mathrm{MHz}$ to $3600 \mathrm{MHz} \mathrm{PLO}=+3 \mathrm{dBm}$			-31	-20	dBm
2LO Leakage at RF Port		PLO $=+3 \mathrm{dBm}$			-27		dBm
LO Leakage at IF Port		PLO $=+3 \mathrm{dBm}$ (Note 7)			-29.5	-20	dBm

+5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS-fRF $=3100 \mathrm{MHz}$ TO 3900 MHz , HIGH-SIDE LO INJECTION

(Typical Application Circuit with tuning elements outlined in Table 1, $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V , RF and LO ports are driven from 50Ω sources, Typical values are for $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=3500 \mathrm{MHz}, \mathrm{fLO}_{\mathrm{LO}}=3800 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=300 \mathrm{MHz}$. Parameters are guaranteed by design and not production tested.) (Note 6)

PARAMETER	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
Small-Signal Conversion Gain	GC			7.6		dB
Gain Variation vs. Frequency	$\Delta \mathrm{Gc}$	$f_{R F}=3450 \mathrm{MHz}$ to 3750 MHz , any 100 MHz band		0.15		dB
		$f_{R F}=3450 \mathrm{MHz}$ to 3750 MHz , any 200 MHz band		0.3		
Conversion Gain Temperature Coefficient	TCCG	T $\mathrm{C}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		-0.012		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Single Sideband Noise Figure	NFSSB	No blockers present		10.9		dB
Noise Figure Temperature Coefficient	TCNF	Single sideband, no blockers present,$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$		0.018		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Input 1dB Compression Point	$1 \mathrm{P}_{1 \mathrm{~dB}}$	(Note 9)		12.4		dBm
Third-Order Input Intercept Point	IIP3	$\begin{aligned} & \mathrm{f}_{\mathrm{RF} 1}=3500 \mathrm{MHz}, \mathrm{f}_{\mathrm{RF} 2}=3501 \mathrm{MHz}, \\ & \mathrm{P}_{\mathrm{RF} 1}=\mathrm{P}_{\mathrm{RF} 2}=-5 \mathrm{dBm} \end{aligned}$		24.7		dBm
IIP3 Variation with TC		$\begin{aligned} & \text { fRF1 }=3500 \mathrm{MHz}, \mathrm{fRF}_{\mathrm{R}}=3501 \mathrm{MHz}, \\ & \mathrm{P}_{\mathrm{RF} 1}=\mathrm{P}_{\mathrm{RF} 2}=-5 \mathrm{dBm}, \mathrm{~T}_{\mathrm{C}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		± 0.5		dB
2LO-2RF Spur Rejection	2×2	$\mathrm{f}_{\text {SPUR }}=\mathrm{fLO}-150 \mathrm{MHz}$	$\mathrm{P}_{\text {RF }}=-10 \mathrm{dBm}$	69		dBc
			$\mathrm{P}_{\text {RF }}=-5 \mathrm{dBm}$	64		

SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer

+5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 3100MHz TO 3900MHz, HIGH-SIDE LO INJECTION (continued)

(Typical Application Circuit with tuning elements outlined in Table 1, $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V , RF and LO ports are driven from 50Ω sources, Typical values are for $\mathrm{TC}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{fRF}=3500 \mathrm{MHz}, \mathrm{fLO}=3800 \mathrm{MHz}, \mathrm{fIF}=300 \mathrm{MHz}$. Parameters are guaranteed by design and not production tested.) (Note 6)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
3LO-3RF Spur Rejection	3×3	$\mathrm{f}_{\text {SPUR }}=\mathrm{fLO}-100 \mathrm{MHz}$	$P_{\text {RF }}=-10 \mathrm{dBm}$		90		dBc
			PRF $=-5 \mathrm{dBm}$		80		
RF Input Return Loss	RLRF	LO on and IF terminated into a matched impedance			22		dB
LO Input Return Loss	RLLO	RF and IF terminated into a matched impedance			16.3		dB
IF Output Impedance	ZIF	Nominal differential impedance at the IC's IF outputs			200		Ω
IF Output Return Loss	RLIF	RF terminated into 50Ω, LO driven by 50Ω source, IF transformed to 50Ω using external components shown in the Typical Application Circuit, see the Typical Operating Characteristics for performance vs. inductor values	$\begin{aligned} & \mathrm{f}_{\mathrm{IF}}=450 \mathrm{MHz}, \\ & \mathrm{~L} 1=\mathrm{L} 2= \\ & 120 \mathrm{nH} \end{aligned}$		25		dB
			$\begin{aligned} & \mathrm{f} \mathrm{fF}=350 \mathrm{MHz}, \\ & \mathrm{~L} 1=\mathrm{L} 2= \\ & 270 \mathrm{nH} \end{aligned}$		25		
			$\begin{aligned} & \mathrm{fIF}=300 \mathrm{MHz}, \\ & \mathrm{~L} 1=\mathrm{L} 2= \\ & 390 \mathrm{nH} \end{aligned}$		25		
RF-to-IF Isolation		$\mathrm{f}_{\mathrm{RF}}=3100 \mathrm{MHz}$ to $3700 \mathrm{MHz}, \mathrm{PLO}=+3 \mathrm{dBm}$			26.6		dB
LO Leakage at RF Port		$\mathrm{fLO}=3400 \mathrm{MHz}$ to 4000 MHz , PLO $=+3 \mathrm{dBm}$			-38		dBm
2LO Leakage at RF Port		$\mathrm{fLO}=3400 \mathrm{MHz}$ to 4000 MHz , PLO $=+3 \mathrm{dBm}$			-13.5		dBm
LO Leakage at IF Port		$\mathrm{fLO}=3400 \mathrm{MHz}$ to 4000MHz, PLO $=+3 \mathrm{dBm}$			-27		dBm

Note 5: Not production tested. Operation outside this range is possible, but with degraded performance of some parameters. See the Typical Operating Characteristics.
Note 6: All limits reflect losses of external components, including a 0.8 dB loss at $\mathrm{f}_{\mathrm{IF}}=300 \mathrm{MHz}$ due to the $4: 1$ impedance transformer. Output measurements were taken at IF outputs of the Typical Application Circuit.
Note 7: 100\% production tested for functional performance.
Note 8: Measured with external LO source noise filtered so that the noise floor is $-174 \mathrm{dBm} / \mathrm{Hz}$. This specification reflects the effects of all SNR degradations in the mixer including the LO noise, as defined in Application Note 2021: Specifications and Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers.
Note 9: Maximum reliable continuous input power applied to the RF port of this device is +12 dBm from a 50Ω source.

SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer

Typical Operating Characteristics
(Typical Application Circuit with tuning elements outlined in Table 1, $\mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}, \mathrm{fRF}=\mathbf{2 0 0 0} \mathrm{MHz}$ to $\mathbf{3 0 0 0 M H z}$, LO is high-side injected for a 300 MHz IF, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{T} \mathrm{C}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Vcc $=\mathbf{5 . 0 V}, \mathrm{fRF}=\mathbf{2 0 0 0} \mathrm{MHz}$ to $\mathbf{3 0 0 0} \mathbf{M H z}$, LO is high-side injected for a 300 MHz IF, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

3LO-3RF RESPONSE vs. RF FREQUENCY

3LO-3RF RESPONSE vs. RF FREQUENCY

INPUT $P_{1 d B}$ vs. RF FREQUENCY

2LO-2RF RESPONSE vs. RF FREQUENCY

3LO-3RF RESPONSE vs. RF FREQUENCY

INPUT $P_{1 d B}$ vs. RF FREQUENCY

SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Vcc $=\mathbf{5 . 0 V}, \mathrm{fRF}=\mathbf{2 0 0 0} \mathbf{M H z}$ to $\mathbf{3 0 0 0} \mathbf{M H z}$, LO is high-side injected for a 300 MHz IF, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Vcc $=\mathbf{5 . 0 V}, \mathrm{fRF}=\mathbf{2 0 0 0} \mathbf{M H z}$ to $\mathbf{3 0 0 0} \mathbf{M H z}$, LO is high-side injected for a 300 MHz IF, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

2 LO LEAKAGE AT RF PORT
vs. LO FREQUENCY

IF PORT RETURN LOSS vs. IF FREQUENCY

LO LEAKAGE AT IF PORT vs. LO FREQUENCY

2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY

LO PORT RETURN LOSS
vs. LO FREQUENCY

RF-TO-IF ISOLATION vs. RF FREQUENCY

SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer

Typical Operating Characteristics
(Typical Application Circuit with tuning elements outlined in Table 1, $\mathrm{V}_{\mathrm{Cc}}=\mathbf{3 . 3 V}, \mathrm{f}_{\mathrm{RF}}=\mathbf{2 0 0 0} \mathbf{M H z}$ to $\mathbf{3 0 0 0 M H z}$, LO is high-side injected for a 300 MHz IF, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{T} \mathrm{C}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

NOISE FIGURE
vs. RF FREQUENCY

CONVERSION GAIN
vs. RF FREQUENCY

INPUT IP3
vs. RF FREQUENCY

NOISE FIGURE vs. RF FREQUENCY

SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Vcc $=\mathbf{3 . 3 V}, \mathrm{fRF}=\mathbf{2 0 0 0} \mathbf{M H z}$ to $\mathbf{3 0 0 0} \mathbf{M H z}$, LO is high-side injected for a 300 MHz IF, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, $\mathrm{VCC}=\mathbf{3 . 3 V}, \mathrm{fRF}=\mathbf{2 0 0 0} \mathbf{M H z}$ to $\mathbf{3 0 0 0} \mathbf{M H z}$, LO is high-side injected for a 300 MHz IF, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Vcc $=\mathbf{3 . 3 V}, \mathrm{fRF}=\mathbf{2 0 0 0} \mathbf{M H z}$ to $\mathbf{3 0 0 0} \mathbf{M H z}$, LO is high-side injected for a 300 MHz IF, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SUPPLY CURRENT vs. TEMPERATURE (Tc)

IF PORT RETURN LOSS vs. IF FREQUENCY

LO LEAKAGE AT IF PORT
vs. LO FREQUENCY

RF-TO-IF ISOLATION
vs. RF FREQUENCY

SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer

Typical Operating Characteristics
(Typical Application Circuit with tuning elements outlined in Table 1, $\mathrm{V}_{\mathbf{C c}}=5.0 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=\mathbf{2 0 0 0} \mathrm{MHz}$ to $\mathbf{3 0 0 0 M H z}$, LO is low-side injected for a 300 MHz IF, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{T} \mathrm{C}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

INPUT IP3
vs. RF FREQUENCY

NOISE FIGURE vs. RF FREQUENCY

INPUT IP3
vs. RF FREQUENCY

NOISE FIGURE
vs. RF FREQUENCY

CONVERSION GAIN
vs. RF FREQUENCY

INPUT IP3
vs. RF FREQUENCY

NOISE FIGURE vs. RF FREQUENCY

SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, $\mathrm{Vcc}=5.0 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=\mathbf{2 0 0 0} \mathrm{MHz}$ to $\mathbf{3 0 0 0 \mathrm { MHz }}$, LO is low-side injected for a 300 MHz IF, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

3RF-3LO RESPONSE
vs. RF FREQUENCY

INPUT $\mathrm{P}_{1 \mathrm{~dB}}$ vs. RF FREQUENCY

2RF-2LO RESPONSE

3RF-3LO RESPONSE vs. RF FREQUENCY

INPUT P1dB vs. RF FREQUENCY

SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, $\mathrm{V} \mathbf{C c}=5.0 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=\mathbf{2 0 0 0} \mathbf{M H z}$ to $\mathbf{3 0 0 0 M H z}$, LO is low-side injected for a 300 MHz IF, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, $\mathrm{Vcc}=5.0 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=\mathbf{2 0 0 0} \mathrm{MHz}$ to $\mathbf{3 0 0 0 \mathrm { MHz }}$, LO is low-side injected for a 300 MHz IF, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SUPPLY CURRENT
vs. TEMPERATURE (Tc)

IF PORT RETURN LOSS vs. IF FREQUENCY

LO LEAKAGE AT IF PORT
vs. LO FREQUENCY

2 LO LEAKAGE AT RF PORT
vs. LO FREQUENCY

RF-TO-IF ISOLATION
vs. RF FREQUENCY

SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer

Typical Operating Characteristics
(Typical Application Circuit with tuning elements outlined in Table 1, $\mathrm{V}_{\mathbf{C c}}=5.0 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=3000 \mathrm{MHz}$ to 3900 MHz , LO is low-side injected for a 300 MHz IF, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{T} \mathrm{C}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

INPUT IP3
vs. RF FREQUENCY

NOISE FIGURE vs. RF FREQUENCY

INPUT IP3
vs. RF FREQUENCY

NOISE FIGURE vs. RF FREQUENCY

CONVERSION GAIN vs. RF FREQUENCY

INPUT IP3
vs. RF FREQUENCY

NOISE FIGURE vs. RF FREQUENCY

SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC $=5.0 \mathrm{~V}$, $\mathrm{fRF}=\mathbf{3 0 0 0} \mathbf{M H z}$ to $\mathbf{3 9 0 0 \mathrm { MHz }}$, LO is low-side injected for a 300 MHz IF, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

INPUT P1dB vs. RF FREQUENCY

SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, $\mathrm{V} \mathbf{C c}=5.0 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=\mathbf{3 0 0 0} \mathrm{MHz}$ to 3900 MHz , LO is low-side injected for a 300 MHz IF, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

LO LEAKAGE AT RF PORT vs. 10 FREQUENCY

SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, $\mathrm{Vcc}=5.0 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=3000 \mathrm{MHz}$ to 3900 MHz , LO is low-side injected for a 300 MHz IF, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

IF PORT RETURN LOSS vs. IF FREQUENCY

LO LEAKAGE AT IF PORT
vs. LO FREQUENCY

2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY

LO PORT RETURN LOSS vs. LO FREQUENCY

RF-TO-IF ISOLATION
vs. RF FREQUENCY

SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer

Typical Operating Characteristics
(Typical Application Circuit with tuning elements outlined in Table 1, $\mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}, \mathrm{fRF}=3000 \mathrm{MHz}$ to 3700 MHz , LO is high-side injected for a 300 MHz IF, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{T} \mathrm{C}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

INPUT IP3
vs. RF FREQUENCY

INPUT IP3
vs. RF FREQUENCY

NOISE FIGURE
vs. RF FREQUENCY

CONVERSION GAIN vs. RF FREQUENCY

INPUT IP3 vs. RF FREQUENCY

NOISE FIGURE vs. RF FREQUENCY

SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, $\mathrm{Vcc}=\mathbf{5 . 0 V}, \mathrm{fRF}=\mathbf{3 0 0 0} \mathrm{MHz}$ to $\mathbf{3 7 0 0 \mathrm { MHz } \text { , } \mathrm { LO } \text { is high-side }}$ injected for a 300 MHz IF, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

3L0-3RF RESPONSE
vs. RF FREQUENCY

RF FREQUENCY (MHz)
INPUT P1dB
vs. RF FREQUENCY

INPUT P1dB
vs. RF FREQUENCY

2LO-2RF RESPONSE

3LO-3RF RESPONSE vs. RF FREQUENCY

INPUT P1dB
vs. RF FREQUENCY

SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)
 injected for a 300 MHz IF, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, $\mathrm{Vcc}=\mathbf{5 . 0 V}, \mathrm{fRF}=\mathbf{3 0 0 0} \mathrm{MHz}$ to $\mathbf{3 7 0 0 \mathrm { MHz } \text { , } \mathrm { LO } \text { is high-side }}$ injected for a 300 MHz IF, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

IF PORT RETURN LOSS vs. IF FREQUENCY

LO LEAKAGE AT IF PORT
vs. LO FREQUENCY

2LO LEAKAGE AT RF PORT vs. LO FREQUENCY

LO PORT RETURN LOSS vs. LO FREQUENCY

RF-TO-IF ISOLATION
vs. RF FREQUENCY

SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer

Pin Description

PIN	NAME	FUNCTION
1, 6, 8, 14	$V_{C C}$	Power Supply. Bypass to GND with $0.01 \mu \mathrm{~F}$ capacitors as close as possible to the pin.
2	RF	Single-Ended 50Ω RF Input. Internally matched and DC shorted to GND through a balun. Requires an input DC-blocking capacitor.
$\begin{gathered} 3,4,5,10 \\ 12,13,17 \end{gathered}$	GND	Ground. Internally connected to the exposed pad. Connect all ground pins and the exposed pad (EP) together.
7	LOBIAS	LO Amplifier Bias Control. Output bias resistor for the LO buffer. Connect a 604Ω 1\% (230mA bias condition) from LOBIAS to ground.
9, 15	N.C.	Not internally connected. Pins can be grounded.
11	LO	Local Oscillator Input. This input is internally matched to 50Ω. Requires an input DC-blocking capacitor.
16	LEXT	External Inductor Connection. Connect an inductor from this pin to ground to increase the RF-to-IF and LO-to-IF isolation (see the Typical Operating Characteristics for typical performance vs. inductor value).
18, 19	IF-, IF+	Mixer Differential IF Output. Connect pullup inductors from each of these pins to V_{CC} (see the Typical Application Circuit).
20	IFBIAS	IF Amplifier Bias Control. IF bias resistor connection for the IF amplifier. Connect a 698Ω 1\% (230 mA bias condition) from IFBIAS to GND.
-	EP	Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple via grounds are also required to achieve the noted RF performance.

Detailed Description

When used as a high-side LO injection mixer in the 2300 MHz to 2900 MHz RF band, the MAX19996A provides 8.7 dB of conversion gain and +24.5 dBm of IIP3 with a typical noise figure of 9.8 dB . The integrated baluns and matching circuitry allow for 50Ω singleended interfaces to the RF and the LO ports. The integrated LO buffer provides a high drive level to the mixer core, reducing the LO drive required at the MAX19996A's input to a -3dBm to $+3 d B m$ range. The IF port incorporates a differential output, which is ideal for providing enhanced 2LO-2RF performance.
Specifications are guaranteed over broad frequency ranges to allow for use in WCS, LTE, WiMAX, and MMDS base stations. The MAX19996A is specified to operate over an RF input range of 2000 MHz to 3900 MHz , an LO range of 2100 MHz to 4000 MHz , and an IF range of 50 MHz to 500 MHz . The external IF components set the lower frequency range (see the Typical Operating Characteristics for details). Operation beyond these ranges is possible (see the Typical Operating Characteristics for additional information).

RF Input and Balun

The MAX19996A RF input provides a 50Ω match when combined with a series DC-blocking capacitor. This DC-blocking capacitor is required as the input is internally DC shorted to ground through the on-chip balun. When using an 8.2 pF DC-blocking capacitor, the RF port input return loss is typically 14 dB over the RF frequency range of 2300 MHz to 2900 MHz . A return loss of 15 dB over the 3000 MHz to 3900 MHz range can be achieved by changing the DC-blocking capacitor to 1.5pF.

LO Inputs, Buffer, and Balun

 With a broadband LO drive circuit spanning 2100 MHz to 4000 MHz , the MAX19996A can be used in either low-side or high-side LO injection architectures for virtually all 2.5 GHz and 3.5 GHz applications. The LO input is internally matched to 50Ω, requiring only a 2 pF DC-blocking capacitor. A two-stage internal LO buffer allows for a -3 dBm to +3 dBm LO input power range. The on-chip low-loss balun, along with an LO buffer, drives the double-balanced mixer. All interfacing and matching components from the LO inputs to the IF outputs are integrated on-chip.
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer

Abstract

High-Linearity Mixer The core of the MAX19996A is a double-balanced, high-performance passive mixer. Exceptional linearity is provided by the large LO swing from the on-chip LO buffer. When combined with the integrated IF amplifiers, IIP3, 2LO-2RF rejection, and noise-figure performance are typically $+24.5 \mathrm{dBm}, 67 \mathrm{dBc}$, and 9.8 dB , respectively.

Differential IF Output Amplifier

 The MAX19996A has an IF frequency range of 50 MHz to 500 MHz , where the low-end frequency depends on the frequency response of the external IF components. The MAX19996A mixer is tuned for a 300MHz IF using 390nH external pullup bias inductors. Lower IF frequencies would require higher inductor values to maintain a good IF match. The differential, open-collector IF output ports require these inductors to be connected to Vcc.Note that these differential ports are ideal for providing enhanced 2LO-2RF and 2RF-2LO performance. Singleended IF applications require a $4: 1$ (impedance ratio) balun to transform the 200Ω differential IF impedance to a 50Ω single-ended system. Use the TC4-1W-17 4:1 transformer for IF frequencies above 200 MHz and the TC4-1W-7A 4:1 transformer for frequencies below 200 MHz . The user can use a differential IF amplifier or SAW filter on the mixer IF port, but a DC block is required on both IF+/IF- ports to keep external DC from entering the IF ports of the mixer.

Applications Information

Input and Output Matching

The RF input provides a 50Ω match when combined with a series DC-blocking capacitor. Use an 8.2 pF capacitor value for RF frequencies ranging from 2000 MHz to 3000 MHz . A 1.5 pF capacitor value should be used to match the RF port for the 3000 MHz to 3900MHz band. The LO input is internally matched to 50Ω; use a 2 pF DC-blocking capacitor to cover operations spanning the 2100 MHz to 4000 MHz LO range. The IF output impedance is 200Ω (differential). For evaluation, an external low-loss $4: 1$ (impedance ratio) balun transforms this impedance down to a 50Ω singleended output (see the Typical Application Circuit).

Reduced-Power Mode

The MAX19996A has two pins (LOBIAS, IFBIAS) that allow external resistors to set the internal bias currents. Nominal values for these resistors are given in Table 1.

Larger value resistors can be used to reduce power dissipation at the expense of some performance loss. If $\pm 1 \%$ resistors are not readily available, substitute with $\pm 5 \%$ resistors.
Significant reductions in power consumption can also be realized by operating the mixer with an optional supply voltage of 3.3 V . Doing so reduces the overall power consumption by up to 57%. See the 3.3 V Supply AC Electrical Characteristics-fRF $=2300 \mathrm{MHz}$ to 2900 MHz , High-Side LO Injection table and the relevant 3.3V curves in the Typical Operating Characteristics section to evaluate the power vs. performance tradeoffs.

LEXT Inductor

Short LEXT to ground using a 0Ω resistor. For applications requiring improved RF-to-IF and LO-to-IF isolation, L3 can be changed to optimize performance (see the Typical Operating Characteristics). However, the load impedance presented to the mixer must be so that any capacitances from IF- and IF+ to ground do not exceed several picofarads to ensure stable operating conditions. Since approximately 90 mA flows through LEXT, it is important to use a low-DCR wire-wound inductor.

Layout Considerations

A properly designed PCB is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. The load impedance presented to the mixer must be so that any capacitance from both IF- and IF+ to ground does not exceed several picofarads. For the best performance, route the ground pin traces directly to the exposed pad under the package. The PCB exposed pad MUST be connected to the ground plane of the PCB. It is suggested that multiple vias be used to connect this pad to the lower-level ground planes. This method provides a good RF/thermal-conduction path for the device. Solder the exposed pad on the bottom of the device package to the PCB. The MAX19996A evaluation kit can be used as a reference for board layout. Gerber files are available upon request at www.maxim-ic.com.

Power-Supply Bypassing

Proper voltage-supply bypassing is essential for highfrequency circuit stability. Bypass each Vcc pin with the capacitors shown in the Typical Application Circuit and Table 1.

SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer

Table 1. Component Values

DESIGNATION	QTY	DESCRIPTION	COMPONENT SUPPLIER
C1	1	8.2pF microwave capacitor (0402). Use for RF frequencies ranging from 2000 MHz to 3000 MHz .	Murata Electronics North America, Inc.
		1.5 pF microwave capacitor (0402). Use for RF frequencies ranging from 3000 MHz to 3900 MHz .	
C2, C6, C8, C11	4	$0.01 \mu \mathrm{~F}$ microwave capacitors (0402)	Murata Electronics North America, Inc.
C3, C9	0	Not installed, capacitors	-
C10	1	2pF microwave capacitor (0402)	Murata Electronics North America, Inc.
C13, C14	2	1000pF microwave capacitors (0402)	Murata Electronics North America, Inc.
C15	1	82pF microwave capacitor (0402)	Murata Electronics North America, Inc.
L1, L2	2	390nH wire-wound high-Q inductors* (0805) (see the Typical Operating Characteristics)	Coilcraft, Inc.
L3	1	4.7nH wire-wound high-Q inductor (0603)	Coilcraft, Inc.
R1	1	$698 \Omega \pm 1 \%$ resistor (0402). Use for $\mathbf{V} \mathbf{C C}=\mathbf{5 . 0 V}$ applications.	Digi-Key Corp.
		$1.1 \mathrm{k} \Omega \pm 1 \%$ resistor (0402). Use for $\mathbf{V} \mathbf{C C}=\mathbf{3 . 3 V}$ applications.	
R2	1	$604 \Omega \pm 1 \%$ resistor (0402). Use for $\mathbf{V} \mathbf{C C}=\mathbf{5 . 0 V}$ applications.	Digi-Key Corp.
		$845 \Omega \pm 1 \%$ resistor (0402). Use for VCC=3.3V applications.	
R3	1	0Ω resistor (1206)	Digi-Key Corp.
T1	1	4:1 IF balun TC4-1W-17*	Mini-Circuits
U1	1	MAX19996A IC (20 TQFN-EP)	Maxim Integrated Products, Inc.

*Use 470nH inductors and TC4-1W-7A 4:1 balun for IF frequencies below 200MHz.

Exposed Pad RF/Thermal Considerations

The exposed pad (EP) of the MAX19996A's 20-pin thin QFN-EP package provides a low thermal-resistance path to the die. It is important that the PCB on which the MAX19996A is mounted be designed to conduct heat from the EP. In addition, provide the EP with a lowinductance path to electrical ground. The EP MUST be soldered to a ground plane on the PCB, either directly or through an array of plated via holes.

SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer

Typical Application Circuit

SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer

\qquad Chip Information
PROCESS: SiGe BiCMOS

Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
20 Thin QFN-EP	T2055+3	$\underline{\mathbf{2 1 - 0 1 4 0}}$

SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer

			Revision History
REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$1 / 09$	Initial release	-
1	$5 / 09$	Updated Electrical Characteristics table limits	6

