

M52759SP

Uniformity for CRT Display Monitor

REJ03F0197-0201 Rev.2.01 Mar 31, 2008

Description

M52759SP is semiconductor integrated circuit for uniformity of CRT display monitor.

It generates horizontal and vertical parabola waves and is able to revise contrast of CRT display monitor if it is used with Video Pre.Amp. M52742SP that has uniformity circuit.

Features

- · It can control phase of horizontal wave.
- It can changes the parabola wave unbalance.
- It contains the horizontal saw wave generator and Auto Gain Control circuit, so that it is able to keep the amplitude constant if frequency change.
- It can changes the parabola wave unbalance.

• Frequency Band Width: horizontal 24 to 120 kHz

Vertical 50 to 185 Hz

 $\begin{array}{ccc} \bullet & Input: horizontal & & 5 \ V_{P\text{--}P} \ Pulse \\ & & Vertical & & 3.2 \ V_{P\text{--}P} \ V \ Saw \end{array}$

Application

CRT display monitor

Recommended Operating Condition

Supply voltage range: 11.5 V to 12.5 V

Rated supply voltage: 12

Block Diagram

Pin Arrangement

Absolute Maximum Ratings

 $(Ta = 25^{\circ}C, Surge capacity = 200 pF)$

			Ratings		
Item	Symbol	Min.	Тур.	Max.	Unit
Supply voltage	V _{CC}	_	_	13.0	V
Power dissipation	Pd	_	_	1237.6	mW
Operating temperature	Topr	-20	_	+85	°C
Storage temperature	Tstg	-40	_	+150	°C
Recommended operating voltage	Vopr	_	12.0	_	V
Recommended operating voltage range	Vopr'	11.5	_	12.5	V
Surge	Vsurge	±200	_	_	V

Electrical Characteristics

(Ta = 25°C, V_{CC} = 12 V, unless otherwise noted)

			Limits			(1a = 25 C, v _{CC} = 12 v, unicss	,
Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions	Pin No.
Circuit current 1	I _{CCH}	15.1	21.5	27.9	mA	(10) Measure	10
Circuit current 2	Iccv	5.2	7.4	9.6	mA	(20) Measure	20
Reference voltage output	V_{REF}	6.75	6.95	7.15	V	(14) Measure	14
Reference voltage	D _{REF}	_	49	_	ppm/	(14) Measure	14
temperature drift					deg		
Horizontal Block							
H-pulse low input range	V _{IL}	0.0	—	2.0	V	(6) 2.4 V in	7
						(7) Measure	
						(15) 3.0 V in	
						(17) fH = 96 kHz H-pulse in	
						(19) 6.1 V in	
H-pulse high input range	V _{IH}	3.0	_	Vcc	V	(6) 2.4 V in	7
				-2.0		(7) Measure	
						(15) 3.0 V in	
						(17) fH = 96 kHz H-pulse in	
II made a leveling and assessed		5.0	0.0	0.4		(19) 6.1 V in	47
H-pulse low input current	I _{IL}	-5.0	-0.6	-0.1	μΑ	(17) 0 V in, measure	17
H-pulse high input current	I _{IH}	-1.0	0.0	1.0	μА	(17) 5 V in, measure	17
H parabola width	T _W	0.6	0.8	1.0	μS	(6) 2.4 V in	7
						(7) Measure	
						(15) 3.0 V in	
						(17) fH = 96 kHz H-pulse in (19) 6.1 V in	
H parabola delay 1	T _{D1}	0.1	0.3	0.5	μS	(6) 2.4 V in	7
,				•		(7) Measure	
						(15) 0 V in	
						(17) fH = 96 kHz H-pulse in	
						(19) 6.1 V in	
H parabola delay 2	T _{D2}	0.4	0.6	0.8	μS	(6) 2.4 V in	7
						(7) Measure	
		4				(15) 1.3 V in	
						(17) fH = 96 kHz H-pulse in	
						(19) 6.1 V in	
H parabola delay 3	T _{D3}	2.9	3.1	3.3	μS	(6) 2.4 V in	7
						(7) Measure	
						(15) 4.0 V in	
						(17) fH = 96 kHz H-pulse in	
Delevitaria de 177	<u> </u>		0.00		,	(19) 6.1 V in	-
Delay temperature drift	D _D	_	0.08	-	ns/	(6) 2.4 V in	7
					deg	(7) Measure	
						(15) 3.0 V in	
						(17) fH = 96 kHz H-pulse in (19) 6.1 V in	
Pin 15 input current	les	-5.0	-0.3	-0.1	μΑ	(17) 2.5 V in, measure	15
i iii 13 iiiput cuitetit	I ₁₅	-3.0	-0.3	-0.1	μΑ	(17) 2.5 v III, IIIEasule	10

			Limits				
Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions	Pin No.
H para. unbalance control 1	U _{HP1}	-2.6	-2.2	-1.8	V	(6) 1.8 V in (7) Measure (15) 0 V in (17) fH = 96 kHz H-pulse in (19) 5.7 V in	7
H para. unbalance control 2	U _{HP2}	0.1	0.5	0.9	V	(6) 2.4 V in (7) Measure (15) 0 V in (17) fH = 96 kHz H-pulse in (19) 6.1 V in	7
H para. unbalance control 3	U _{HP3}	1.7	2.1	2.5	V	(6) 1.8 V in (7) Measure (15) 0 V in (17) fH = 96 kHz H-pulse in (19) 6.4 V in	7
H para. unbalance V_{CC} . character 1	V _{UHP1}	-0.2	0.0	0.2	>	(6) 2.4 V in (7) Measure (15) 0 V in (10) (20) 11.5 V in (17) fH = 96 kHz H-pulse in (19) 6.1 V in	7
H para. unbalance V _{CC} . character 2	V _{UHP2}	-0.2	0.0	0.2	V	(6) 2.4 V in (7) Measure (15) 0 V in (10) (20) 12.5 V in (17) fH = 96 kHz H-pulse in (19) 6.1 V in	7
H para. unbalance temperature drift	D _{UHP}	4	-2.2		mV/ deg	(6) 2.4 V in (7) Measure (15) 0 V in (17) fH = 96 kHz H-pulse in (19) 6.1 V in	7
H para. gain control 1	G _{HP1}	0.2	0.4	0.6	V _{P-P}	(6) 1.0 V in (7) Measure (15) 3.0 V in (17) fH = 96 kHz H-pulse in (19) 6.1 V in	7
H para. gain control 2	G _{HP2}	2.9	3.3	3.7	V _{P-P}	(6) 2.5 V in (7) Measure (15) 3.0 V in (17) fH = 96 kHz H-pulse in (19) 6.1 V in	7
H para. gain control 3	G _{НР3}	5.3	6.0	6.7	V _{P-P}	(6) 4.0 V in (7) Measure (15) 3.0 V in (17) fH = 96 kHz H-pulse in (19) 6.1 V in	7

			Limits				
Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions	Pin No.
H para. freq. characteristics 1	F _{HP1}	-0.2	0.0	0.2	V	(6) 4.0 V in (7) Measure (15) 3.0 V in (17) fH = 24 kHz H-pulse in (19) 6.1 V in	7
H para. freq. characteristics 2	F _{HP2}	-0.2	0.0	0.2	V	(6) 4.0 V in (7) Measure (15) 3.0 V in (17) fH = 120 kHz H-pulse in (19) 6.1 V in	7
H para. V _{CC} characteristics 1	V _{VHP1}	-0.2	0.0	0.2	V	(6) 4.0 V in (7) Measure (15) 3.0 V in (10) (20) 11.5 V in (17) fH = 96 kHz H-pulse in (19) 6.1 V in	7
H para. V _{CC} characteristics 2	V _{VHP2}	-0.2	0.0	0.2	V	(6) 4.0 V in (7) Measure (15) 3.0 V in (10) (20) 12.5 V in (17) fH = 96 kHz H-pulse in (19) 6.1 V in	7
H para. size temperature drift	D _{HP}	_	-1.3	O	mV/ deg	(6) 4.0 V in (7) Measure (15) 3.0 V in (17) fH = 96 kHz H-pulse in (19) 6.1 V in	7
Pin 6 input current	I ₆	-5.0	-0.3	-0.1	μΑ	(6) 2.4 V in, measure	6
Pin 19 input current	I ₁₉	0.1	0.3	5.0	μА	(19) 6.1 V in, measure	19
Vertical Block				(3)			
V parabola accuracy 1	A _{VP1}	4.5	5.0	5.5	V	(2) 3.5 V in(3) 3.5 V in(4) Measure(5) 2.3 V in	4
V parabola accuracy 2	A _{VP2}	2.5	3.0	3.5	V	(2) 1.9 V in (3) 3.5 V in (4) Measure (5) 2.3 V in	4
V parabola accuracy 3	A _{VP3}	20	25	30	%	(2) 2.7 V in (3) 3.5 V in (4) Measure (5) 2.3 V in	4
V parabola accuracy 4	A _{VP4}	20	25	30	%	(2) 4.3 V in (3) 3.5 V in (4) Measure (5) 2.3 V in	4
V parabola accuracy 5	A _{VP5}	90	100	110	%	(2) 5.1 V in (3) 3.5V in (4) Measure (5) 2.3 V in	4

			Limits				
Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions	Pin No.
V para. unbalance control 1	U _{VP1}	-2.8	-2.5	-2.2	V	(2) f _V = 70 Hz, 3.2 V _{P-P} saw wave in (3) 2.8 V in (4) Measure (5) 1.6 V in	4
V para. unbalance control 2	U _{VP2}	-0.3	0	0.3	V	(2) f _V = 70 Hz, 3.2 V _{P-P} saw wave in (3) 3.5 V in (4) Measure (5) 2.3 V in	4
V para. unbalance control 3	U _{VP3}	2.2	2.5	2.8	V	(2) f _V = 70 Hz, 3.2 V _{P-P} saw wave in (3) 4.2 V in (4) Measure (5) 1.6 V in	4
V unbalance. V _{CC} . characteristics 1	V _{UVP1}	-0.1	0.0	0.1	V	(2) f _V = 70 Hz, 3.2 V _{P-P} saw wave in (3) 3.5 V in (4) Measure (5) 2.3 V in (10) (20) 11.5 V in	4
V unbalance. V _{CC} . characteristics 2	V _{UVP2}	-0.1	0.0	0.1	V	(2) $f_V = 70 \text{ Hz}$, 3.2 V_{P-P} saw wave in (3) 3.5 V in (4) Measure (5) 2.3 V in (10) (20) 12.5 V in	4
V unbalance. temperature drift	D _{UVP}	_	0.5	O	mV/ deg	(2) f _V = 70 Hz, 3.2 V _{P-P} saw wave in (3) 3.5 V in (4) Measure (5) 2.3 V in	4
V parabola amplitude 1	G _{VP1}	0	0	0.3	V _{P-P}	(2) $f_V = 70 \text{ Hz}$, 3.2 V_{P-P} saw wave in (3) 3.5 V in (4) Measure (5) 1.0 V in	4
V parabola amplitude 2	G _{VP2}	2.1	2.4	2.7	V _{P-P}	(2) f _V = 70 Hz, 3.2 V _{P-P} saw wave in (3) 3.5 V in (4) Measure (5) 2.0 V in	4
V parabola amplitude 3	G _{VP3}	4.2	4.7	5.2	V _{P-P}	(2) $f_V = 70 \text{ Hz}$, 3.2 V_{P-P} saw wave in (3) 3.5 V in (4) Measure (5) 3.0 V in	4
V para. freq. characteristics 1	F _{VP1}	-0.1	0.0	0.1	V	(2) f _V = 50 Hz, 3.2 V _{P-P} saw wave in (3) 3.5 V in (4) Measure (5) 3.0 V in	4
V para. freq. characteristics 2	F _{VP2}	-0.1	0.0	0.1	V	(2) f _V = 185 Hz, 3.2 V _{P-P} saw wave in (3) 3.5 V in (4) Measure (5) 3.0 V in	4

No.	Item			Limits				
characteristics 1 (3) 3.5 V in (4) Measure (5) 3.0 V in (10) (20) 11.5 V in		Symbol	Min.	Тур.	Max.	Unit	Test Conditions	Pin No.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V para. V _{CC} .	V_{VP1}	-0.1	0.0	0.1	V	(2) $f_V = 70 \text{ Hz}$, 3.2 V_{P-P} saw wave in	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	characteristics 1							
V para. V _{CC} . characteristics 2 V _{VP2} -0.1 0.0 0.1 V (2) f _V = 70 Hz, 3.2 V _{P-P} saw wave in (3) 3.5 V in (4) Measure (5) 3.0 V in (10) (20) 12.5 V in V para. temperature drift D _{VP} 2.2 mV/ deg (3) 3.5 V in (4) Measure (5) 3.0 V in (4) Measure (5) 3.0 V in (4) Measure (5) 3.0 V in (4) Measure (5) 3.0 V in (4) Measure (5) 3.0 V in (4) Measure (5) 3.0 V in (5) 3.0 V in (6) Measure (7) Measure (8) Measure (9) Measure (10) Mea								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		V_{VP2}	-0.1	0.0	0.1	V		4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	characteristics 2							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
V para. temperature drift D_{VP} $ -2.2$ $ mV/$ deg (2) f_{V} = 70 Hz, 3.2 V_{P-P} saw wave in deg (3) 3.5 V in (4) Measure (5) 3.0 V in (5) 3.0 V in (4) Pin 2 input current I_{2} -5.0 -0.3 -0.1 μ A (2) 3.5 V in, measure (5) 3.0 V in, measure (5) 3.1 put current I_{3} -5.0 -0.3 -0.1 μ A (3) 3.5 V in, measure (5) 2.3 V in, measure (5) 3.3 V in, measure (5) 3.3 V in, measure (5) 3.4 V in, measure (5) 3.5 V in, measure (5) 3.7 V in, measure (5) 3.7 V in, measure (5) 3.8 V in, measure (5) 3.9 V in, measure (5) 4.7 V in (5) 2.3 V in, measure (5) 3.9 V in								
drift							(10) (20) 12.5 V in	
Pin 2 input current I_2 -5.0 -0.3 -0.1 μA $(2) 3.5 V in, measure 2 Pin 3 input current I_3 -5.0 -0.3 -0.1 \mu A (3) 3.5 V in, measure 3 Pin 5 input current I_5 -5.0 -0.3 -0.1 \mu A (5) 2.3 V in, measure 5$	V para. temperature	D _{VP}	_	-2.2	_	mV/		4
Pin 2 input current I_2 -5.0 -0.3 -0.1 μA (2) 3.5 V in, measure 2 Pin 3 input current I_3 -5.0 -0.3 -0.1 μA (3) 3.5 V in, measure 3 Pin 5 input current I_5 -5.0 -0.3 -0.1 μA (5) 2.3 V in, measure 5	drift					deg		
Pin 2 input current I_2 -5.0 -0.3 -0.1 μA (2) 3.5 V in, measure 2 Pin 3 input current I_3 -5.0 -0.3 -0.1 μA (3) 3.5 V in, measure 3 Pin 5 input current I_5 -5.0 -0.3 -0.1 μA (5) 2.3 V in, measure 5								
Pin 3 input current I_3							(5) 3.0 V in	
Pin 5 input current I_5 -5.0 -0.3 -0.1 μA (5) 2.3 V in, measure 5	Pin 2 input current	l ₂	-5.0	-0.3	-0.1	μΑ	(2) 3.5 V in, measure	
	•	l ₃	-5.0	-0.3	-0.1	μΑ		
	Pin 5 input current	l ₅	-5.0	-0.3	-0.1	μΑ	(5) 2.3 V in, measure	5
							7	
				0		N	900	
A O Y . NY				0	0	N	900	
70,1,				0		el el	962	
20 4 1		40°				el el	96,	
20 4 1		40				el el	96,	
40,1		40					96,	
20 4 1		40					96,	
20 4 1		40					96,	
20 4 1		40					96,	
40 4 1		40					800	
40 4 1		40					800	

Switch and Voltage Condition

								Sv	vitc	h															Vo	lta	ge (V))		
Symbol	S١	N2	SW	/3	SW	/5	SW	/6			SW	/15	SW	/17	SV	/19	SV	V20	V	cc	V		V		V5		V6	V15	V17	
I _{CCH}	,	а	а		а	ı	а		b		8	1	k)	í	а	í	а	12	.0	3.	5	3.	5	2.5	5	2.4	3.0	0	6.1
I _{CCV}									а								I	0			_									
V_{REF}																	6	а			_									
D _{REF}													1	<u> </u>															♥	
V_{IL}													a																—	
V _{IH}													1	,															▼	
I _{IL}			П						П				k																0	
I _{IH}			П		П		П		П				1	,							П						Т		5.0	
T_W									П				6	3														▼	-	
T _{D1}			П		П		П		П												П						Т	0		
T _{D2}					П		П		П				П					П			П							1.3		
T _{D3}			T		T		T	T	Т				П					П			\Box						\top	4.0		
D _D			T		T		╗		T		=	7		,				П			╗				П		\top	3.0	₩	
I ₁₅					T		T		7		k)	k)				П			╗						*	_	0	1
U _{HP1}			寸	\top	寸	\dashv	寸	\neg	┪		a	1	a	<u> </u>						\Box	\neg			П	寸		1.8	0	1 —	5.7
U _{HP2}	T		7	\top	寸	\dashv	寸	\dashv	7								T		\neg	П	一			П	十	_	2.4			6.1
U _{HP3}	\top	П	7	\top	7	\dashv	7	\dashv	┪				П					П	\dashv		\dashv				十		1.8			6.4
V _{UHP1}	\top		一	\dashv	┪	\dashv	7	\dashv	7				П		П			П	11	.5		1		7	\dashv		2.4			6.1
V _{UHP2}	\top	П	7	\dashv	┪	\dashv	7	\dashv	7				Н			Г		П	12					Н	\dashv		Ť		+	<u> </u>
D _{UHP}	1		一	\dashv	7	\dashv	7	\dashv	┪				Н				T	П	12		7						╅	+	$\dagger \dagger$	
G _{HP1}	+		\dashv	\dashv	7	\dashv	7	\dashv	7	\exists			H			Н	t		T	3		\Box					1.0	3.0	+	
G _{HP2}			7	1	┪		┪		┪				Н			Н									→	\dashv	2.5	0.0		
G _{HP3}			┪	\dashv	┪	\dashv	┪	\dashv	┪		-		Н	Н		Н	d				7	7				\dashv	4.0			
F _{HP1}			┪	\dashv	┪	\dashv	┪	+	7				Н				7					7				_	1.0			
F _{HP2}	+		┪	\dashv	┪	\dashv	┪	\dashv	┪		-		Н	Н					\dashv					Н	_	\dashv	\dashv			
V _{VHP1}			┪	\dashv	┪	_	┪	1	┪				Н	_		7			11	5		_		Н	_	\dashv	-			
V _{VHP2}	+		┪	\dashv	┪	\dashv	┪	+	+				1						12		\dashv			Н	_	\dashv				
D _{HP}			┪	\dashv	┪	\dashv	┪	,	┪							Н			12		\dashv			Н	-	\dashv	\rightarrow		╁	
I ₆			\dashv	\dashv	┪	\dashv	v	_	\dashv										- 1		\dashv			Н	-	_			0	++
I ₁₉		Н	\dashv	\dashv	┪	\dashv	a	_	┪	1		X		Ĺ				Н	\dashv	\vdash	\dashv		-	Н	+	\dashv	2.4		Ηŭ	
A _{VP1}			\dashv	\dashv	┪	\dashv	Ĭ	+		\perp		-	Н	4	_	3 3		Н	\dashv	\vdash	┪	,		Н	2.3	,	Ť			6.1
A _{VP2}	+		\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	4						,		\vdash	Н	\dashv	\vdash	1.	<u>a</u>	-	Н	2.3	7	+			0.1
A _{VP3}			+	-	┪	-	-	è	-	Ŷ						Н		Н	\dashv		2.			Н	-	\dashv	+		+	
A _{VP4}	+	Н	\dashv	\dashv	\dashv		4		•	-						⊢	┢	Н	\dashv	\vdash			-	Н	\dashv	\dashv	+		+	+
A _{VP4}	+,		\dashv		H	4	7			\dashv	-		V	-	\vdash	\vdash	\vdash	Н	\dashv	\vdash	4. 5.			H	+	+	+	$\vdash \vdash$	+	+
U _{VP1}	+	b	_		7	7			-	4	\vdash					\vdash	<u> </u>	\vdash	-	$\vdash \vdash$	J.	_	2.	Ω	1.6		+		+	+
U_{VP2}	+		\dashv	\exists			\dashv		1	7			Н	\vdash	\vdash	\vdash	\vdash	\vdash	\dashv	\vdash	_			5	2.3		+		+	+
	+		\dashv			-		-4					Н		\vdash	H	-	\vdash	-	\vdash	\dashv		3. 4.				+		+	+
U _{VP3}	+	\vdash	\dashv	+	_	\dashv	3	4	¥	7	Н	\vdash	$\vdash\vdash$	\vdash	\vdash	\vdash	\vdash	\vdash	1		\dashv	\vdash			1.6		+		+	+
V _{UVP1}	+		-	\dashv	-	\dashv	_	-	\dashv		\vdash		Н	\vdash	\vdash	\vdash	_	Н	11	.5	\dashv		3.	5	2.3	5	+		+	+
V _{UVP2}	+		-	+	4	\dashv	4	1	\dashv	_	Щ		Н	L		\vdash	\vdash	\vdash	12		\dashv			Н	╁	\dashv	$+\!\!\!-$	$\vdash \vdash$	+	+
D _{UVP}	+		4	\dashv	4	\dashv	4	\dashv	4		Щ		Н	<u> </u>		<u> </u>	<u> </u>	Н	12	.0	\dashv		_	Н	<u> </u>		+		+	+
G _{VP1}	+		4	\perp	4	\dashv	_	_	4		Ш		Ш	<u> </u>		_	_		_	\square	_			Щ	1.0)	\bot		+	+
G _{VP2}	\perp	Ш	4	\dashv	4	\dashv	4	\dashv	4	_	Ш		Ш	_		<u> </u>	_	Ш	_	\square	4			Ц	2.0				$oldsymbol{oldsymbol{\perp}}$	+
G _{VP3}	1		4	\dashv	_	\dashv	_	_	4		Ш		Ш	_		_	_	Ш		\square	_			Щ	3.0)			$oldsymbol{oldsymbol{\perp}}$	\bot
F _{VP1}	1	Ш		\perp		\dashv	_	_	4		Щ		Ш			_	_	Ш		Ш				Щ	_				$oxed{oxed}$	$\bot \bot$
F _{VP2}	1		_	_	_	_	_	_	4				Ш			_	_			7	_			Щ	_				othing	$\bot \bot$
V _{VP1}	\perp	Ш		\perp		\perp		\perp			Ш		Ш	_	Ш	_	\perp	Ш	11					Ш						$\perp \perp$
V _{VP2}							_		_				Ш						12		[Ш					ot	$\perp \perp$
D_VP													Ш						12	.0		7			▼		\bot		ot	
l ₂		С	_ ▼			\Box			\bot				Ш								3.	5			2.3					
l ₃		а	b		■ 🔻				\Box							Ľ	L								•					
I ₅	1		а	T	b		1	, T	1	'	1	7	1	,	1	7	1	7	7	7	7	7	1	7		- 1	•	▼	▼	▼

Input Signal

Electrical Characteristics Test Method

I_{CCH} Circuit Current1

Measure the input current to pin 10.

I_{CCV} Circuit Current2

Measure the input current to pin 20.

V_{REF} Reference Voltage Output

Measure the output voltage at pin 14.

D_{REF} Reference Voltage Temperature Drift

Measure temperature drift of pin 14. (-20°C to 85°C)

VIL H-pulse Low Input Range

Input horizontal pulse which low level is 2 V in pin 17 and confirm output horizontal signal at pin 7.

VIH H-pulse High Input Range

Input horizontal pulse which high level is 3 V in pin 17 and confirm output horizontal signal at pin 7.

Tw H Parabola Width

Measure the time width of retrace period at pin 7.

T_{D1}, T_{D2}, T_{D3} H Parabola Delay

Measure the delay time from rise time of input signal to start of retrace period of output signal when the voltage of pin 15 is 0 V, 1.3 V, and 4 V.

D_D Delay Temperature Drift

Measure the temperature drift of the delay time. (-20°C to 85°C)

I₁₅ Pin 15 Input Current

Measure the input current to pin 15 when the voltage of pin 15 is 2.5 V.

U_{HP1}, U_{HP2}, U_{HP3} H para. Unbalance Control

 U_{HPS} is defined as the voltage of parabola start point. U_{HPE} is defined as the voltage of parabola end point. U_{HP1} , U_{HP2} , U_{HP3} is defined as follows

$$U_{HP1}$$
, U_{HP2} , $U_{HP3} = U_{HPS} - U_{HPE}$

Measure the unbalance of parabola waveform at pin 4 when the voltage of pin 19 is 5.7 V, 6.1 V, and 6.4 V. Pin 6 is controlled so that the amplitude of parabola is $3 V_{P-P}$ constant.

V_{UHP1} H para. Unbalance V_{CC}. Characteristics1

When the supply voltage of pin 10, 20 is 11.5 V, the unbalance of parabola waveform at pin 7 is defined as $U_{HP11.5 \text{ V}}$.

$$V_{UHP1} = U_{HP2} - U_{HP11.5 \text{ V}}$$

V_{UHP2} H para. Unbalance V_{CC} . Characteristics2

When the supply voltage of pin 10, 20 is 12.5 V, the unbalance of parabola waveform at pin 7 is defined as U_{HP12.5 V}.

$$V_{UHP2} = U_{HP2} - U_{HP12.5 V}$$

DUHP H para. Unbalance Temperature Drift

Measure temperature drift of U_{HP2}. (-20°C to 85°C)

GHP1 H Para. Gain Control1

Measure the amplitude of parabola waveform at pin 7 and it is defined as HP_{-6,1.0 V}.

G_{HP2} H Para. Gain Control2

The amplitude of parabola waveform at pin 7 is defined as HP_{-6, 2.5 V}.

G_{HP3} H Para. Gain Control3

The amplitude of parabola waveform at pin 7 is defined as HP_{-6, 4.0 V}.

F_{HP1} H Para. Freq. Characteristics1

When the frequency of input signal in pin 17 is 96 kHz, the amplitude of parabola waveform at pin 7 is defined as HP_{96} kHz. When the frequency of input signal is 24 kHz, the amplitude of parabola waveform is defined as $HP_{24 \text{ kHz}}$.

$$F_{HP1} = HP_{96 \text{ kHz}} - HP_{24 \text{ kHz}}$$

F_{HP2} H Para. Freq. Characteristics2

When the frequency of input signal in pin 17 is 140 kHz, the amplitude of parabola waveform at pin 7 is defined as $HP_{120 \text{ kHz}}$.

$$F_{HP2} = HP_{96 \text{ kHz}} - HP_{140 \text{ kHz}}$$

V_{VHP1} H Para. V_{CC}. Characteristics1

When the supply voltage of pin 10, 20 is 12.0 V, the amplitude of parabola waveform at pin 7 is defined as $HP_{12.0 \text{ V}}$. When the supply voltage is 11.5 V, the amplitude of parabola waveform is defined as $HP_{11.5 \text{ V}}$.

$$V_{VHP1} = HP_{12.0 \text{ V}} - HP_{11.5 \text{ V}}$$

V_{VHP2} H Para. V_{CC}. Characteristics2

When the supply voltage of pin 10, 20 is 12.5 V, the amplitude of parabola waveform at pin 7 is defined as HP_{12.5 V}.

$$V_{VHP2} = HP_{12.0 \ V} - HP_{12.5 \ V}$$

DHP H Para. Size Temperature Drift

Measure the temperature drift of HP_{96 kHz}. (-20°C to 85°C)

I₆ Pin 6 Input Current

Measure the input current to pin 6 when voltage of pin 6 is 2.4 V.

I₁₉ Pin 19 Input Current

Measure the input current to pin 19 when voltage of pin 19 is 6.1 V.

A_{VP1} V Parabola Accuracy1

Measure the output voltage at pin 4 and it is defined as VP_{-2, 3.5 V}.

A_{VP2} V Parabola Accuracy2

The output voltage at pin 4 is defined as VP_{-2.1.9 V}.

$$A_{VP2} = VP_{-2.1.9 V} - VP_{-2.3.5 V}$$

A_{VP3} V Parabola Accuracy3

The output voltage at pin 4 is defined as VP_{-2, 2.7 V}

$$A_{VP3} = \frac{VP_{-2, 2.7 \text{ V}} - VP_{-2, 3.5 \text{ V}}}{VP_{-2, 1.9 \text{ V}} - VP_{-2, 3.5 \text{ V}}} \times 100 \text{ (%)}$$

A_{VP4} V Parabola Accuracy4

The output voltage at pin 4 is defined as VP_{-2, 4.3 V}.

$$A_{VP4} = \frac{VP_{-2, 4.3 \text{ V}} - VP_{-2, 3.5 \text{ V}}}{VP_{-2, 1.9 \text{ V}} - VP_{-2, 3.5 \text{ V}}} \times 100 \text{ (\%)}$$

A_{VP5} V Parabola Accuracy5

The output voltage at pin 4 is defined as VP_{-2, 5.1 V}.

$$A_{VP5} = \frac{VP_{-2, 5.1 \text{ V}} - VP_{-2, 3.5 \text{ V}}}{VP_{-2, 19 \text{ V}} - VP_{-2, 3.5 \text{ V}}} \times 100 \text{ (\%)}$$

U_{VP1}, U_{VP2}, U_{VP3} V Para. Unbalance Control

 U_{VPS} is defined as the voltage of parabola start point. U_{VPE} is defined as the voltage of parabola end point. U_{VP1} , U_{VP2} , U_{VP3} is defined as follows

$$U_{VP1}$$
, U_{VP2} , $U_{VP3} = U_{VPS} - U_{VPE}$

Measure the unbalance of parabola waveform at pin 4 when the voltage of pin 3 is 2.8 V, 3.5 V, and 4.2 V. Pin 5 is controlled so that the amplitude of parabola is 3 V_{P-P} constant.

V_{UVP1} V Unbalance V_{CC}. Characteristics1

When the supply voltage of pin 10, 20 is 11.5 V, the unbalance of parabola waveform at pin 4 is defined as U_{VP11.5 V}.

$$V_{UHP1} = U_{VP2} - U_{VP11.5 V}$$

V_{UVP2} V Unbalance V_{CC}. Characteristics2

When the supply voltage of pin 10, 20 is 12.5 V, the unbalance of parabola waveform at pin 4 is defined as $U_{VP 12.5 \text{ V}}$.

$$V_{UVP2} = U_{VP2} - U_{VP12.5 V}$$

DUVP V Unbalance Temperature Drift

Measure temperature drift of U_{VP2} (-20°C to 85°C)

G_{VP1}, G_{VP2}, G_{VP3} V Parabola Amplitude

Measure the amplitude of parabola waveform at pin 4 when the voltage of pin 5 is 1 V, 2 V, and 3 V.

F_{VP1} V Para. Freq. Characteristics1

When the frequency of input signal in pin 2 is 70 Hz, the amplitude of parabola waveform at pin 4 is defined as $VP_{70 \, Hz}$. When the frequency of input signal is 50 Hz, the amplitude of parabola waveform is defined as $VP_{50 \, Hz}$.

$$F_{VP1} = VP_{70 Hz} - VP_{50 Hz}$$

F_{VP2} V Para. Freq. Characteristics2

When the frequency of input signal in pin 2 is 185 Hz, the amplitude of parabola waveform at pin 4 is defined as VP_{185} Hz.

$$F_{VP2} = VP_{70 Hz} - VP_{185 Hz}$$

V_{VP1} V Para. V_{CC}. Characteristics1

When the voltage of pin 10, 20 is 12.0 V, the amplitude of parabola waveform is defined as $VP_{12.0 \text{ V}}$. When the voltage is 11.5 V, the amplitude of parabola waveform is defined as $VP_{11.5 \text{ V}}$.

$$V_{VP1} = VP_{12.0 V} - VP_{11.5 V}$$

V_{VP2} V Para. V_{CC}. Characteristics2

When the voltage of pin 10, 20 is 12.5 V, the amplitude of parabola waveform is defined as VP_{12.5 V}.

$$V_{VP2} = VP_{12.0 \ V} - VP_{12.5 \ V}$$

D_{VP} V Para. Temperature Drift

Measure temperature drift of VP_{70 Hz}. (-20°C to 85°C)

I₂ Pin 2 Input Current

Measure the input current to pin 2 when the voltage of pin 2 is 3.5 V.

I₃ Pin 3 Input Current

Measure the input current to pin 3 when the voltage of pin 3 is 3.5 V.

I₅ Pin 5 Input Current

Measure the input current to pin 5 when the voltage of pin 5 is 2.4 V.

Test Circuit

Typical Characteristics

Horizontal Block

Vertical Block

Timing Chart

Horizontal Block

Vertical Block

Application Example

Pin Description

Pin No.	Name	DC Voltage (V)	Peripheral Circuit	Function
1	V-GND	_	_	GND of vertical block
2	Vsawi	3.5 V	V-V _{CC} 2 1 k W V-GND	Vertical sawtooth wave input pin.
3	Vbias	2.8 to 4.2 V	V-V _{CC} 3 1 k V-GND	Vertical parabola unbalance control bias voltage input pin. Input voltage range is 2.8 to 4.2 V
4	Vout	5 V (Bottom)	V-V _{CC} 200 200 V-GND	Vertical parabola wave output pin. Bottom voltage = 5 V (fixed) Amplitude is possible to control by pin 5
5	V _{GV}	1.0 to 3.0 V	V-V _{CC} 50 μA	Vertical parabola wave gain control voltage input pin. Input voltage range is 1.0 to 3.0 V.
6	V _{GH}	1.0 to 4.0 V	H-V _{CC} 50 μA H-GND	Horizontal parabola wave gain control voltage input pin. Input voltage range is 1.0 to 4.0 V.

Pin Description (cont.)

Pin No.	Name	DC Voltage (V)	Peripheral Circuit	Function
7	Hout	2.4 to 9.2 V	H-V _{CC} 200 1 mA	Horizontal parabola wave output pin. Amplitude is possible to control by pin 6
8	Cret	7.1 V (Top) 4.9 V (Bottom)	H-V _{CC} 0.25 mA 0.25 mA 1.5 k 60 μA 37 μA	Connection pin of horizontal retrace capacitor. Recommended capacitance is 100 pF.
9	Ctrc	7.1 V (Top) 4.9 V (Bottom)	H-V _{CC} 9 2 k \$ 2 k 510 70 μA	Connection pin of horizontal trace capacitor. Recommended capacitance is 100 pF.
10	H-V _{CC}	12.0 V		V _{CC} of horizontal block.
11	CAGCr	2.5 V	H-V _{CC} 11 1.5 k	Connection pin of horizontal sawtooth wave AGC retrace capacitor. Recommended capacitance is 0.01 µF.

Pin Description (cont.)

Pin No.	Name	DC Voltage (V)	Peripheral Circuit	Function
12	C _{AGC}	4.0 V	H-V _{CC} (12) 7.5 k H-GND	Connection pin of horizontal AGC capacitor. Recommended capacitance is 1 µF.
13	Vrefr	1.28 V	H-V _{CC} 4 k H-GND	Connection pin of reference current source resister. Recommended resistance is 6.8 $k\Omega$.
14	Vrefo	7.0 V	H-V _{CC} 10 p 10 p 0.2 mA	Reference voltage output for horizontal pulse delay circuit. Should be connect more than 10 $k\Omega$ external resister.
15	V _{PH}	0 to 0.5 V 1.3 to 4.0 V	H-V _{CC} 50 μA H-GND	Delay adjustment voltage input pin of horizontal pulse. Input voltage range is 1.3 to 4.0 V. At 0 to 0.5 V, delay is minimized. (0.5 to 1.3 V is unusable range.)
16	Chpd	0 V (Bottom)	H-V _{CC}	Connection pin of horizontal pulse delay timing capacitor. Recommended capacitance is 100 pF.

Pin Description (cont.)

Pin No.	Name	DC Voltage (V)	Peripheral Circuit	Function
17	HPin	_	H-V _{CC}	Horizontal pulse input pin.
			50 μΑ	Low input level is less than 2.0 V,
			\overline{lack}	and high is 3.0 to 10 V.
			17 1 k	(at V _{CC} = 12 V)
			★	
			H-GND \$50 k	
18	H-GND	_		GND of horizontal block
19	Hbias	5.7 to 6.4 V	H-V _{CC}	Horizontal parabola unbalance
				control bias voltage input pin. Input
			<u> </u>	voltage range is 5.7 to 6.4 V.
			1 k 1 p	
			(9 - W - 1 p	
			★	
			H-GND .	
20	V-V _{CC}	12.0 V	THE CASE	V _{CC} of vertical block
20	A-ACC	12.0 V	_	Vec of vertical block
		40		

Package Dimensions

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of oral for Renesas or any third party with respect to the information in this document in this document or the purpose of the respect of the information in this document in the product data, diagrams, charts, programs, algorithms, and application critical examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to the date this document, including the suitability of such information in the deciment, the deciment of t

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510