
LITEON LITE-ON ELECTRONICS, INC.

Property of Lite-On Only

Features

- * High luminous intensity output.
- * Low power consumption.
- * High efficiency.
- * Versatile mounting on P.C. board or panel.
- * I.C. Compatible/low current requirements.
- * Popular T-13/4 diameter.

Package Dimensions

Part No.	Lens	Source Color		
LTL2P3KEK-RS	Water Clear	AlInGaP Red		

Notes:

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is \pm 0.25mm(.010") unless otherwise noted.
- 3. Protruded resin under flange is 1.0mm(.04") max.
- 4. Lead spacing is measured where the leads emerge from the package.
- 5. Specifications are subject to change without notice.

LITEON ELECTRONICS, INC.

Property of Lite-On Only

Absolute Maximum Ratings at TA=25℃

Parameter	Maximum Rating	Unit		
Power Dissipation	75	mW		
Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse Width)	90	mA		
Continuous Forward Current	30	mA		
Derating Linear From 50°C	0.4	mA/°C		
Reverse Voltage	5	V		
Operating Temperature Range	-40°C to + 100°C			
Storage Temperature Range	-55°C to + 100°C			
Lead Soldering Temperature [1.6mm(.063") From Body]	260°C for 5 Seconds			

Part No.: LTL2P3KEK-RS Page: of

LITEON LITE-ON ELECTRONICS, INC.

Property of Lite-On Only

Electrical / Optical Characteristics at TA=25°C

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Condition	
Luminous Intensity	Iv	560		2000	mcd	I _F = 20mA Note 1,2	
Viewing Angle	2 θ 1/2		22		deg	Note 3 (Fig.5)	
Peak Emission Wavelength	λР		632		nm	Measurement @Peak (Fig.1)	
Dominant Wavelength	λd		624		nm	Note 5	
Spectral Line Half-Width	Δλ		20		nm		
Forward Voltage	VF		2.05	2.4	V	$I_F = 20 \text{mA}$	
Reverse Current	I_R			100	μ A	$V_R = 5V$	
Capacitance	С		40		pF	$V_F = 0$, $f = 1MHz$	

NOTE: 1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve.

- 2. Luminous intensity rank:
 - "R" class represents Iv min = 560 mcd and max = 1120 mcd.
 - "S" class represents Iv min = 1000 mcd and max = 2000 mcd.
- 3. $\theta_{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
- 4. Iv classification code is marked on each packing bag.
- 5. The dominant wavelength, λ d is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

Part No.: LTL2P3KEK-RS	Page:	3	of	4	
Ture 110. LEEDISHER RO	1 450.	_	O.		

Property of Lite-On Only

Typical Electrical / Optical Characteristics Curves

(25°C Ambient Temperature Unless Otherwise Noted)

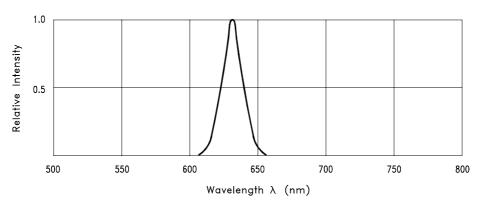
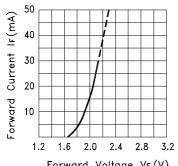



Fig.1 Relative Intensity vs. Wavelength

Forward Voltage VF(V) Fig.2 Forward Current vs. Forward Voltage

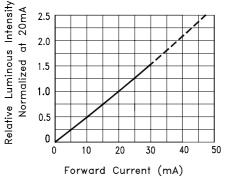
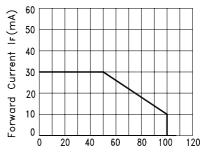



Fig.4 Relative Luminous Intensity vs. Forward Current

Ambient Temperature TA(°C) Fig.3 Forward Current Derating Curve

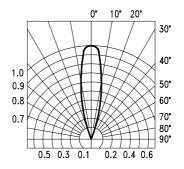


Fig.5 Spatial Distribution

Part No.: LTL2P3KEK-RS Page: of 4