

MAXIN
4-/6-/8-Channel, 16-Bit, Simultaneous-Sampling ADCs

General Description
The MAX11047/MAX11048/MAX11049 16-bit ADCs offer 4, 6, or 8 independent input channels. Featuring independent track and hold (T/H) and SAR circuitry, these parts provide simultaneous sampling at 250ksps for each channel.
The MAX11047/MAX11048/MAX11049 accept a 0 to +5 V input. All inputs are overrange protected with internal $\pm 20 \mathrm{~mA}$ input clamps providing overrange protection with a simple external resistor. Other features include a $4 \mathrm{MHz} \mathrm{T/H}$ input bandwidth, internal clock, and internal or external reference. A 20 MHz , 16-bit, bidirectional, parallel interface provides the conversion results and accepts digital configuration inputs.
The MAX11047/MAX11048/MAX11049 operate with a 4.75 V to 5.25 V analog supply and a separate flexible 2.7 V to 5.25 V digital supply for interfacing with the host without a level shifter. The MAX11047/MAX11048/MAX11049 are available in a 56-pin TQFN package and operate over the extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.
Automatic Test Equipment
Power-Factor Monitoring and Correction
Power-Grid Protection
Multiphase Motor Control
Vibration and Waveform Analysis

Functional Diagram

- 4-/6-/8-Channel 16-Bit ADC
- Single Analog and Digital Supply
- High-Impedance Inputs Up to 1G Ω
- On-Chip T/H Circuit for Each Channel
- Fast 3μ s Conversion Time
- High Throughput: 250ksps for All 8 Channels
- 16-Bit, High-Speed, Parallel Interface
- Internal Clocked Conversions
- 10ns Aperture Delay
- 100ps Channel-to-Channel T/H Matching
- Low Drift, Accurate 4.096V Internal Reference Providing an Input Range of 0 to 5 V
- External Reference Range of 3.0 V to 4.25 V , Allowing Full-Scale Input Ranges of +3.7 V to $+5.2 \mathrm{~V}$
- 56-Pin TQFN Package ($8 \mathrm{~mm} \times 8 \mathrm{~mm}$)
- Evaluation Kit Available

Ordering Information

PART	PIN-PACKAGE	CHANNELS
MAX11047ETN +	56 TQFN-EP*	4
MAX11048ETN+	56 TQFN-EP*	6
MAX11049ETN +	56 TQFN-EP*	8

Note: All devices are specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range.
+Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad.

Pin Configuration

4-/6-/8-Channel, 16-Bit, Simultaneous-Sampling ADCs

ABSOLUTE MAXIMUM RATINGS

AVDD to AGND
DVDD to AGND and DGND \qquad . 0.3 V to +6 V to AGND
DGND to AGND \qquad -0.3 V to +0.3 V
AGNDS to AGND. \qquad 0.3 V to +0.3 V
$\mathrm{CHO}-\mathrm{CH} 7$ to AGND \qquad -2.5 V to +7.5 V
REFIO, RDC to AGND -0.3V to the lower of (AVDD $+0.3 V$) and +6 V
$\overline{\mathrm{EOC}}, \overline{\mathrm{WR}}, \overline{\mathrm{RD}}, \overline{\mathrm{CS}}, \mathrm{CONVST}$ to AGND-0.3V to the lower of
$(D V D D+0.3 V)$ and $+6 V$

DB0-DB15 to AGND-0.3V to the lower of (DVDD +0.3 V) and +6V Maximum Current into Any Pin Except AVDD, DVDD, AGND, DGND.
$\pm 50 \mathrm{~mA}$ Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
$56-$ Pin TQFN (derated $36 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 2222 mW Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Junction Temperature .. $+150^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

($\mathrm{AVDD}=4.75 \mathrm{~V}$ to 5.25 V , $\mathrm{DVDD}=+2.7 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{~V}_{\text {AGNDS }}=\mathrm{V}_{\text {AGND }}=\mathrm{V}_{\mathrm{DGND}}=0 \mathrm{~V}, \mathrm{~V}_{\text {REFIO }}=$ internal reference, $\mathrm{C}_{\text {RDC }}=4 \times 33 \mu \mathrm{~F}$, CREFIO $=0.1 \mu \mathrm{~F}$, CAVDD $^{2}=4 \times 0.1 \mu \mathrm{~F}\left\|10 \mu \mathrm{~F}, \mathrm{C}_{\text {DVDD }}=3 \times 0.1 \mu \mathrm{~F}\right\| 10 \mu \mathrm{~F}$; all digital inputs at DVDD or DGND, unless otherwise noted. $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
STATIC PERFORMANCE (Note 1)						

Resolution	N		16			Bits
Integral Nonlinearity	INL	(Note 2)	-2	± 0.6	+2	LSB
Integral Nonlinearity	INL	(Note 3)		± 0.8		LSB
Differential Nonlinearity	DNL	(Note 2)	>-1	± 0.6	<+1.3	LSB
Differential Nonlinearity	DNL	(Note 3)		± 0.7		LSB
No Missing Codes			16			Bits
Offset Error				± 0.002	± 0.01	\%FSR
Offset Temperature Coefficient				± 2.4		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Channel Offset Matching					± 0.01	\%FSR
Gain Error					± 0.03	\%FSR
Positive Full-Scale Error					± 0.02	\%FSR
Positive Full-Scale Error Matching					± 0.02	\%FSR
Channel Gain-Error Matching		Between all channels			± 0.03	\%FSR
Gain Temperature Coefficient				± 0.8		ppm/ ${ }^{\circ} \mathrm{C}$

DYNAMIC PERFORMANCE (Note 4)

Signal-to-Noise Ratio	SNR	$\mathrm{fin}=10 \mathrm{kHz}$, full-scale input	91	92.3		dB
Signal-to-Noise and Distortion Ratio	SINAD	$\mathrm{fin}=10 \mathrm{kHz}$, full-scale input	90.5	92		dB
Spurious-Free Dynamic Range	SFDR	$\mathrm{fin}^{\mathrm{N}}=10 \mathrm{kHz}$, full-scale input	95	106		dB
Total Harmonic Distortion	THD	$\mathrm{fin}=10 \mathrm{kHz}$, full-scale input		-105	-95	dB
Channel-to-Channel Crosstalk		$\mathrm{f} / \mathrm{N}=60 \mathrm{~Hz}$, full scale and ground on adjacent channel (Note 5)		-126	-100	dB

ANALOG INPUTS (CH0-CH7)

Input Voltage Range		(Note 6)	0	$1.22 \times$ $V_{\text {REFIO }}$	V
Input Leakage Current			-1	+1	$\mu \mathrm{~A}$

4-/6-/8-Channel, 16-Bit, Simultaneous-Sampling ADCs

ELECTRICAL CHARACTERISTICS (continued)

($\mathrm{AVDD}=4.75 \mathrm{~V}$ to 5.25 V , $\mathrm{DVDD}=+2.7 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{~V}_{\text {AGNDS }}=\mathrm{V}_{\text {AGND }}=\mathrm{V}_{\mathrm{DGND}}=0 \mathrm{~V}, \mathrm{~V}_{\text {REFIO }}=$ internal reference, $\mathrm{C}_{\text {RDC }}=4 \times 33 \mu \mathrm{~F}$, CREFIO $=0.1 \mu \mathrm{~F}, \mathrm{CAVDD}^{2}=4 \times 0.1 \mu \mathrm{~F}\left\|10 \mu \mathrm{~F}, \mathrm{CDVDD}^{2}=3 \times 0.1 \mu \mathrm{~F}\right\| 10 \mu \mathrm{~F}$; all digital inputs at DVDD or DGND, unless otherwise noted $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Capacitance				15		pF
Input-Clamp Protection Current		Each input simultaneously	-20		+20	mA
TRACK AND HOLD						
Throughput Rate		Per channel, 8 channels in 4 4 s			250	ksps
Acquisition Time	tACQ		1			$\mu \mathrm{s}$
Full-Power Bandwidth		-3dB point		4		MHz
		-0.1dB point		> 0.2		
Aperture Delay				10		ns
Aperture-Delay Matching				100		ps
Aperture Jitter				50		pSRMS
INTERNAL REFERENCE						
REFIO Voltage	VREF		4.073	4.096	4.119	V
REFIO Temperature Coefficient				± 5		ppm $/{ }^{\circ} \mathrm{C}$
EXTERNAL REFERENCE						
Input Current			-10		+10	$\mu \mathrm{A}$
REF Voltage Input Range	VREF		3.00		4.25	V
REF Input Capacitance				15		pF
DIGITAL INPUTS (DB0-DB15, $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathbf{C S}}, \mathrm{CONVST})$						
Input-Voltage High	V_{IH}	$V_{\text {DVDD }}=2.7 \mathrm{~V}$ to 5.25 V	2			V
Input-Voltage Low	VIL	$V_{\text {DVDD }}=2.7 \mathrm{~V}$ to 5.25 V			0.8	V
Input Capacitance	CIN			10		pF
Input Current	IIN	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}_{\text {DVDD }}$			± 10	$\mu \mathrm{A}$
DIGITAL OUTPUTS (DB0-DB15, EOC)						
Output-Voltage High	VOH	ISOURCE $=1.2 \mathrm{~mA}$	$\begin{gathered} \text { VDVDD - } \\ 0.4 \end{gathered}$			V
Output-Voltage Low	VOL	ISINK $=1 \mathrm{~mA}$			0.4	V
Three-State Leakage Current		DB0-DB15, $\mathrm{V}_{\text {RD }} \geq \mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\overline{\mathrm{CS}}} \geq \mathrm{V}_{\text {IH }}$			10	$\mu \mathrm{A}$
Three-State Output Capacitance		DB0-DB15, $\mathrm{V}_{\text {RD }} \geq \mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\overline{\mathrm{CS}}} \geq \mathrm{V}_{\text {IH }}$		15		pF
POWER SUPPLIES (MAX11047)						
Analog Supply Voltage	AVDD		4.75		5.25	V
Digital Supply Voltage	DVDD		2.70		5.25	V
Analog Supply Current	IAVDD				32	mA
Digital Supply Current	IDVDD	$V_{\text {DVDD }}=3.3 \mathrm{~V}$ (Note 7)			5.7	mA
Shutdown Current		For DVDD			10	$\mu \mathrm{A}$
Shutdown Current		For AVDD			12	$\mu \mathrm{A}$
Power-Supply Rejection Ratio	PSRR	$\mathrm{V}_{\text {AVDD }}=4.9 \mathrm{~V}$ to 5.1 V (Note 8)		± 0.5		LSB

4-/6-/8-Channel, 16-Bit, Simultaneous-Sampling ADCs

ELECTRICAL CHARACTERISTICS (continued)

($\mathrm{AVDD}=4.75 \mathrm{~V}$ to 5.25 V , $\mathrm{DVDD}=+2.7 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{~V}$ AGNDS $=\mathrm{V}_{\text {AGND }}=\mathrm{V}_{\text {DGND }}=0 \mathrm{~V}, \mathrm{~V}_{\text {REFIO }}=$ internal reference, $\mathrm{C}_{\text {RDC }}=4 \times 33 \mu \mathrm{~F}$, CREFIO $=0.1 \mu \mathrm{~F}, \mathrm{CAVDD}^{2}=4 \times 0.1 \mu \mathrm{~F} \| 10 \mu \mathrm{~F}$, CDVDD $=3 \times 0.1 \mu \mathrm{~F} \| 10 \mu \mathrm{~F}$; all digital inputs at DVDD or DGND, unless otherwise noted. $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLIES (MAX11048)						
Analog Supply Voltage	AVDD		4.75		5.25	V
Digital Supply Voltage	DVDD		2.70		5.25	V
Analog Supply Current	IAVDD				36	mA
Digital Supply Current	IDVDD	$V_{\text {DVDD }}=3.3 \mathrm{~V}$ (Note 7)			6.5	mA
Shutdown Current		For DVDD			10	$\mu \mathrm{A}$
Shutdown Current		For AVDD			12	$\mu \mathrm{A}$
Power-Supply Rejection Ratio	PSRR	$\mathrm{V}_{\text {AVDD }}=4.9 \mathrm{~V}$ to 5.1 V (Note 8)		± 0.5		LSB
POWER SUPPLIES (MAX11049)						
Analog Supply Voltage	AVDD		4.75		5.25	V
Digital Supply Voltage	DVDD		2.70		5.25	V
Analog Supply Current	IAVDD				40	mA
Digital Supply Current	IDVDD	$\mathrm{V}_{\text {DVDD }}=3.3 \mathrm{~V}$ (Note 7)			7.3	mA
Shutdown Current		For DVDD			10	$\mu \mathrm{A}$
Shutdown Current		For AVDD			12	$\mu \mathrm{A}$
Power-Supply Rejection Ratio	PSRR	$\mathrm{V}_{\text {AVDD }}=4.9 \mathrm{~V}$ to 5.1 V (Note 8)		± 0.5		LSB

TIMING CHARACTERISTICS (Note 7)

CONVST Rise to EOC Fall	tCON	Conversion time (Note 9)		3	$\mu \mathrm{s}$
Acquisition Time	$\mathrm{t}_{\text {ACQ }}$		1		$\mu \mathrm{s}$
$\overline{\mathrm{CS}}$ Rise to CONVST Rise	tQ	Sample quiet time (Note 9)	500		ns
CONVST Rise to EOC Rise	to		65	140	ns
$\overline{\text { EOC Fall to CONVST Fall }}$	t_{1}	CONVST mode B0 = 0 only (Note 10)	0		ns
CONVST Low Time	t2	CONVST mode B0 = 1 only	20		ns
$\overline{\mathrm{CS}}$ Fall to $\overline{\mathrm{WR}}$ Fall	t_{3}		0		ns
$\overline{\text { WR Low Time }}$	t4		20		ns
$\overline{\mathrm{CS}}$ Rise to $\overline{\mathrm{WR}}$ Rise	t5		0		ns
Input Data Setup Time	t6		10		ns
Input Data Hold Time	${ }_{7}$		0		ns
$\overline{\overline{C S}}$ Fall to $\overline{\mathrm{RD}}$ Fall	t8		0		ns
$\overline{\mathrm{RD}}$ Low Time	t9		30		ns
$\overline{\mathrm{RD}}$ Rise to $\overline{\mathrm{CS}}$ Rise	t_{10}		0		ns
$\overline{\mathrm{RD}}$ High Time	t_{11}		10		ns
$\overline{\mathrm{RD}}$ Fall to Data Valid	t_{12}			35	ns
$\overline{\mathrm{RD}}$ Rise to Data Hold Time	t_{13}	(Note 10)	5		ns

4-/6-/8-Channel, 16-Bit, Simultaneous-Sampling ADCs

ELECTRICAL CHARACTERISTICS (continued)

($\mathrm{AVDD}=4.75 \mathrm{~V}$ to 5.25 V , $\mathrm{DVDD}=+2.7 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{~V}_{\text {AGNDS }}=\mathrm{V}_{\text {AGND }}=\mathrm{V}_{\text {DGND }}=0 \mathrm{~V}, \mathrm{~V}_{\text {REFIO }}=$ internal reference, $\mathrm{C}_{\text {RDC }}=4 \times 33 \mu \mathrm{~F}$, CREFIO $=0.1 \mu F, C_{A V D D ~}=4 \times 0.1 \mu F \| 10 \mu F$, CDVDD $=3 \times 0.1 \mu F \| 10 \mu F ;$ all digital inputs at DVDD or DGND, unless otherwise noted. $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)
Note 1: See the Definitions section at the end of the data sheet.
Note 2: Guaranteed at $5 \mathrm{~V} \leq \mathrm{V}_{\text {AVDD }} \leq 5.25 \mathrm{~V}$ for $+25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$. See the Input Range and Protection section and Typical Operating Characteristics.
Note 3: $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$.
Note 4: Dynamic performance is guaranteed at AVDD $=5.0 \mathrm{~V}$ to 5.25 V . See the Input Range and Protection section and the Typical Operating Characteristics.
Note 5: Tested with alternating channels modulated at full scale and ground.
Note 6: See the Input Range and Protection section.
Note 7: CLOAD= 30pF on DB0-DB15 and EOC. Inputs (CH0-CH7) alternate between full scale and zero scale. fconv = 250ksps. All data is read out.
Note 8: Defined as the change in positive full scale caused by a $\pm 2 \%$ variation in the nominal supply voltage.
Note 9: It is recommended that $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, and $\overline{\mathrm{CS}}$ are kept high for the quiet time (tQ) and conversion time (tcON).
Note 10: Guaranteed by design.

Typical Operating Characteristics

$\left(A V D D=5 \mathrm{~V}, \mathrm{DVDD}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, fSAMPLE $=250 \mathrm{ksps}$, internal reference, unless otherwise noted.)

4-/6-/8-Channel, 16-Bit,
 Simultaneous-Sampling ADCs

ANALOG AND DIGITAL SHUTDOWN CURRENT vs. TEMPERATURE

INTERNAL REFERENCE VOLTAGE
vs. TEMPERATURE

Typical Operating Characteristics (continued)
$\left(A V D D=5 \mathrm{~V}, \operatorname{DVDD}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, fSAMPLE $=250 \mathrm{ksps}$, internal reference, unless otherwise noted.)

ANALOG AND DIGITAL SHUTDOWN
CURRENT vs. SUPPLY VOLTAGE

OFFSET ERROR AND OFFSET ERROR MATCHING vs. SUPPLY VOLTAGE

DIGITAL SUPPLY CURRENT
vs. TEMPERATURE

INTERNAL REFERENCE VOLTAGES vs. SUPPLY VOLTAGE

OFFSET ERROR AND OFFSET ERROR MATCHING vs. TEMPERATURE

4-/6-/8-Channel, 16-Bit, Simultaneous-Sampling ADCs

Typical Operating Characteristics (continued)
$\left(A V D D=5 \mathrm{~V}, \mathrm{DVDD}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, fSAMPLE $=250 \mathrm{ksps}$, internal reference, unless otherwise noted.)

SNR AND SINAD
vs. ANALOG SUPPLY VOLTAGE

4-/6-/8-Channel, 16-Bit,
 Simultaneous-Sampling ADCs

Typical Operating Characteristics (continued)
$\left(\mathrm{AVDD}=5 \mathrm{~V}, \mathrm{DVDD}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, fSAMPLE $=250 \mathrm{ksps}$, internal reference, unless otherwise noted.)

CROSSTALK vs. FREQUENCY

CONVERSION TIME
vs. ANALOG SUPPLY VOLTAGE

THD vs. INPUT FREQUENCY

OUTPUT NOISE HISTOGRAM WITH INPUT CONNECTED TO 2.5V

4-/6-/8-Channel, 16-Bit, Simultaneous-Sampling ADCs

Pin Description

PIN	NAME	FUNCTION
1	DB13	16-Bit Parallel Data Bus Digital Output Bit 13
2	DB12	16-Bit Parallel Data Bus Digital Output Bit 12
3	DB11	16-Bit Parallel Data Bus Digital Output Bit 11
4	DB10	16-Bit Parallel Data Bus Digital Output Bit 10
5	DB9	16-Bit Parallel Data Bus Digital Output Bit 9
6	DB8	16-Bit Parallel Data Bus Digital Output Bit 8
7, 21,50	DGND	Digital Ground
8, 20, 51	DVDD	Digital Supply. Bypass to DGND with a $0.1 \mu \mathrm{~F}$ capacitor at each DVDD input.
9	DB7	16-Bit Parallel Data Bus Digital Output Bit 7
10	DB6	16-Bit Parallel Data Bus Digital Output Bit 6
11	DB5	16-Bit Parallel Data Bus Digital Output Bit 5
12	DB4	16-Bit Parallel Data Bus Digital Output Bit 4
13	DB3	16-Bit Parallel Data Bus Digital I/O Bit 3
14	DB2	16-Bit Parallel Data Bus Digital I/O Bit 2
15	DB1	16-Bit Parallel Data Bus Digital I/O Bit 1
16	DB0	16-Bit Parallel Data Bus Digital I/O Bit 0
17	EOC	Active-Low, End-of-Conversion Output. $\overline{\mathrm{EOC}}$ goes low when a conversion is completed. $\overline{\mathrm{EOC}}$ goes high when a conversion is initiated.
18	CONVST	Convert Start Input. The rising edge of CONVST ends sample and starts a conversion on the captured sample. The ADC is in acquisition mode when CONVST is low and CONVST mode is zero.
19	SHDN	Active-High Shutdown Input. Drive the SHDN high to place the device into a low-current state. In shutdown mode, the contents of the configuration register are not lost.
$\begin{gathered} 22,28, \\ 35,43,49 \end{gathered}$	RDC	Reference Buffer Decoupling. Bypass to AGND with at least a $22 \mu \mathrm{~F}$ capacitor each at pins 22, 28, 43, and 49. Connect all RDC outputs together and bypass with $80 \mu \mathrm{~F}$ total capacitance. See the Layout, Grounding, and Bypassing section.
$\begin{aligned} & 23,27,33, \\ & 38,44,48 \end{aligned}$	AGNDS	Signal Ground. Connect all AGND and AGNDS inputs together.
$\begin{aligned} & 24,30, \\ & 41,47 \end{aligned}$	AVDD	Analog Supply Input. Bypass AVDD to AGND with a $0.1 \mu \mathrm{~F}$ capacitor at each AVDD input.
$\begin{aligned} & 25,31, \\ & 40,46 \end{aligned}$	AGND	Analog Ground. Connect all AGND inputs together.
26	CHO	Channel 0 Analog Input for the MAX11049
29	CH 1	Channel 1 Analog Input for the MAX11049. Channel 0 for the MAX11048.
32	CH2	Channel 2 Analog Input for MAX11049. Channel 1 for the MAX11048, Channel 0 for the MAX11047.
34	CH3	Channel 3 Analog Input for MAX11049. Channel 2 for the MAX11048, Channel 1 for the MAX11047.
36	REFIO	External Reference Input/Internal Reference Output. Place a $0.1 \mu \mathrm{~F}$ capacitor from REFIO to AGND.
37	CH 4	Channel 4 Analog Input for the MAX11049. Channel 3 for the MAX11048, Channel 2 for the MAX11047.
39	CH5	Channel 5 Analog Input for the MAX11049. Channel 4 for the MAX11048, Channel 3 for the MAX11047.

Pin Description (continued)

PIN	NAME	
42	$\mathrm{CH6}$	Channel 6 Analog Input for MAX11049. Channel 5 for MAX11048.
45	CH 7	Channel 7 Analog Input for MAX11049
52	$\overline{\mathrm{WR}}$	Active-Low Write Input. Drive $\overline{\mathrm{WR}}$ low to write to the ADC. Configuration registers are loaded on the rising edge of $\overline{\mathrm{WR} .}$
53	$\overline{\mathrm{CS}}$	Active-Low Chip-Select Input. Drive $\overline{\mathrm{CS}}$ low when reading from or writing to the ADC.
54	$\overline{\mathrm{RD}}$	Active-Low Read Input. Drive $\overline{\mathrm{RD}}$ low to read from the ADC. Each rising edge of $\overline{\mathrm{RD}}$ advances the channel output on the data bus.
55	DB15	16-Bit Parallel Data Bus Digital Out Bit 15
56	$\mathrm{DB14}$	16-Bit Parallel Data Bus Digital Out Bit 14 -
EP	Exposed Pad. Internally connected to AGND. Connect to a large ground plane to maximize thermal performance. Not intended as an electrical connection point.	

Detailed Description

The MAX11047/MAX11048/MAX11049 are fast, lowpower ADCs that combine 4, 6, or 8 independent ADC channels in a single IC. Each channel includes simultaneously sampling independent T/H circuitry that preserves relative phase information between inputs making the MAX11047/MAX11048/MAX11049 ideal for motor control and power monitoring. The MAX11047/ MAX11048/MAX11049 are available with a 0 to 5V input range that features $\pm 20 \mathrm{~mA}$ overrange, fault-tolerant inputs. The MAX11047/MAX11048/MAX11049 operate with a single 4.75 V to 5.25 V supply. A separate 2.7 V to 5.25 V supply for digital circuitry makes the devices compatible with low-voltage processors.
The MAX11047/MAX11048/MAX11049 perform conversions for all channels in parallel by activating independent ADCs. Results are available through a high-speed, 20 MHz , parallel data bus after a conversion time of $3 \mu s$ following the end of a sample. The data bus is bidirectional and allows for easy programming of the configuration register. The MAX11047/MAX11048/MAX11049 feature a reference buffer, which is driven by an internal bandgap reference circuit (VREFIO $=4.096 \mathrm{~V}$). Drive REFIO with an external reference or bypass with a $0.1 \mu \mathrm{~F}$ capacitor to ground when using the internal reference.

Analog Inputs

Track and Hold (T/H)

To preserve phase information across all channels, each input includes a dedicated T/H circuitry. The input tracking circuitry provides a 4 MHz small-signal bandwidth, enabling the device to digitize high-speed transient events and measure periodic signals with bandwidths exceeding the ADC's sampling rate by
using undersampling techniques. Use anti-alias filtering to avoid high-frequency signals being aliased into the frequency band of interest.

Input Range and Protection

The full-scale analog input voltage is a product of the reference voltage. For MAX11047/MAX11048/ MAX11049, the input is unipolar in the range of:

$$
0 \text { to }+V_{\text {REFIO }} \times \frac{5.0}{4.096}
$$

In external reference mode, drive $\mathrm{V}_{\text {REFIO }}$ with a 3.0 V to 4.25 V source, resulting in a full-scale input range of 3.662 V to 5.188 V , respectively.

All analog inputs are fault-protected up to $\pm 20 \mathrm{~mA}$. The MAX11047/MAX11048/MAX11049 include an input clamping circuit that activates when the input voltage at the analog input is above (VAVDD +300 mV) or below -300 mV . The clamp circuit remains high impedance while the input signal is within the range of OV to + VAVDD and draws little to no current. However, when the input signal exceeds the range of OV to +VAVDD , the clamps begin to turn on. Consequently, to obtain the highest accuracy, ensure that the input voltage does not exceed the range of OV to +VAVDD.
To make use of the input clamps, connect a resistor (RS) between the analog input and the voltage source to limit the voltage at the analog input so that the fault current into the MAX11047/MAX11048/MAX11049 does not exceed $\pm 20 \mathrm{~mA}$. Note that the voltage at the analog input pin limits to approximately 7 V during a fault condition so the following equation can be used to calculate the value of RS:

4-/6-/8-Channel, 16-Bit, Simultaneous-Sampling ADCs

$$
R_{S}=\frac{V_{\text {FAULT_MAX }}-7 V}{20 \mathrm{~mA}}
$$

where $\mathrm{V}_{\text {FAULT_MAX }}$ is the maximum voltage that the source produces during a fault condition.
Figures 2 and 3 illustrate the clamp circuit voltage-current characteristics for a source impedance RS = 1280Ω. While the input voltage is within the range of -300 mV to $+($ VAVDD $+300 \mathrm{mV})$, no current flows in the input clamps. Once the input voltage goes beyond this voltage range, the clamps turn on and limit the voltage at the input pin.

Applications Information

Digital Interface
The bidirectional, parallel, digital interface, DB0-DB3, sets the 4-bit configuration register. This interface configures the following control signals: chip select $(\overline{\mathrm{CS}})$, read $(\overline{\mathrm{RD}})$, write ($\overline{\mathrm{WR}})$, end of conversion ($\overline{\mathrm{EOC}}$), and convert start (CONVST). Figures 6 and 7 and the Timing Characteristics in the Electrical Characteristics table show the operation of the interface. DB0-DB3, together with the output-only DB4-DB15, also output the 16-bit conversion result. All bits are high impedance when $\overline{\mathrm{RD}}=1$ or $\overline{\mathrm{CS}}=1$.

Figure 1. Required Setup for Clamp Circuit

Figure 2. Input Clamp Characteristics

Figure 3. Input Clamp Characteristics (Zoom In)

4-/6-/8-Channel, 16-Bit, Simultaneous-Sampling ADCs

DB3 (Int/Ext Reference)
DB3 selects the internal or external reference. The POR default $=0$.
0 = internal reference, REFIO internally driven through a $10 k \Omega$ resistor, bypass with $0.1 \mu \mathrm{~F}$ capacitor to AGND.
1 = external reference, drive REFIO with a high quality reference.

DB2 (Output Data Format)

DB2 selects the output data format. The POR default $=0$.
0 = offset binary.
1 = two's complement.
DB1 (Reserved)
Set to 0 for normal operation.
0 = normal operation.
1 = reserved; do not use.

DBO (CONVST Mode)

DB0 selects the acquisition mode. The POR default $=0$.
$0=$ CONVST controls the acquisition and conversion. Drive CONVST low to start acquisition. The rising edge of CONVST begins the conversion.
$1=$ acquisition mode starts as soon as previous conversion is complete. The rising edge of CONVST begins the conversion.

Programming the Configuration Register

To program the configuration register, bring the $\overline{\mathrm{CS}}$ and $\overline{W R}$ low and apply the required configuration data on DB3-DB0 of the bus and then raise $\overline{W R}$ once to save changes.

Starting a Conversion

CONVST initiates conversions. The MAX11047/ MAX11048/MAX11049 provide two acquisition modes set through the configuration register. Allow a quiet time (tQ) of 500 ns prior to the start of conversion to avoid any noise interference during readout or write operations from corrupting a sample.
In default mode ($\mathrm{DBO}=0$), drive CONVST low to place the MAX11047/MAX11048/MAX11049 into acquisition mode. All the input switches are closed and the internal T/H circuits track the respective input voltage. Keep the CONVST signal low for at least 1μ ($\mathrm{t} A C Q$) to enable proper settling of the sampled voltages. On the rising edge of CONVST, the switches are opened and the MAX11047/MAX11048/MAX11049 begin the conversion on all the samples in parallel. $\overline{\mathrm{EOC}}$ remains high until the conversion is completed.

Table 1. Configuration Register

DB3	DB2	DB1	DB0
Int/Ext Reference	Output Data Format	Reserved	CONVST Mode

In the second mode (DB0 = 1), the MAX11047/ MAX11048/MAX11049 enter acquisition mode as soon as the previous conversion is completed. CONVST rising edge initiates the next sample and conversion sequence. Drive CONVST low for at least 20ns to be valid.
Provide adequate time for acquisition and the requisite quiet time in both modes to achieve accurate sampling and maximum performance of the MAX11047/ MAX11048/MAX11049.

Reading Conversion Results

The $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ are active-low, digital inputs that control the readout through the 16-bit, parallel, 20 MHz data bus (D0-D15). After $\overline{\mathrm{EOC}}$ transitions low, read the conversion data by driving $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ low. Each low period of $\overline{R D}$ presents the next channel's result. When $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ are high, the data bus is high impedance. $\overline{\mathrm{CS}}$ may be driven high between individual channel readouts or left low during the entire 8-channel readout.

Reference
 Internal Reference

The MAX11047/MAX11048/MAX11049 feature a precision, low-drift, internal bandgap reference. Bypass REFIO with a $0.1 \mu \mathrm{~F}$ capacitor to AGND to reduce noise. The REFIO output voltage may be used as a reference for other circuits. The output impedance of REFIO is $10 \mathrm{k} \Omega$. Drive only high-impedance circuits or buffer externally when using REFIO to drive external circuitry.

External Reference

Set the configuration register to disable the internal reference and drive REFIO with a high-quality external reference. To avoid signal degradation, ensure that the integrated reference noise applied to REFIO is less than $10 \mu \mathrm{~V}$ in the bandwidth of up to 50 kHz .

Reference Buffer

The MAX11047/MAX11048/MAX11049 have a built- in reference buffer to provide a low-impedance reference source to the SAR converters. This buffer is used in both internal and external reference modes. The internal reference buffer output feeds five RDC outputs. Connect all RDC outputs together. The reference buffer is externally compensated and requires at least $10 \mu \mathrm{~F}$ on the RDC node for stability. For best performance, provide a total of at least $80 \mu \mathrm{~F}$ on the RDC outputs.

4-/6-/8-Channel, 16-Bit, Simultaneous-Sampling ADCs

Transfer Functions

Figures 8 and 9 show the transfer functions for all the formats and devices. Code transitions occur halfway between successive-integer LSB values.

Layout, Grounding, and Bypassing
For best performance, use PCBs with ground planes. Ensure that digital and analog signal lines are separated from each other. Do not run analog and digital lines parallel to one another (especially clock lines), and avoid running digital lines underneath the ADC package. A single solid GND plane configuration with digital signals routed from one direction and analog signals from the other provides the best performance. Connect DGND, AGND, and AGNDS pins on the MAX11047/MAX11048/MAX11049 to this ground plane. Keep the ground return to the power supply for this ground low impedance and as short as possible for noise-free operation.
To achieve the highest performance, connect all the RDC outputs to a local RDC plane on the PCB. Bypass the RDC outputs with a total of at least $80 \mu \mathrm{~F}$ of capacitance. For example, if two capacitors are used, place two $47 \mu \mathrm{~F}, 10 \mathrm{~V}$ X5R capacitors in 1210 case size as close as possible to pins 22 and 49. Alternatively, if four capacitors are used, place four $22 \mu \mathrm{~F}, 10 \mathrm{~V}$ X5R capacitors in 1210 case size as close as possible to pins 22 , 28, 43, and 49. Ensure that each capacitor is connected directly into the GND plane with an independent via.

Figure 4. Programming Configuration-Register Timing Requirements

In cases where Y5U or Z5U ceramics are used, select higher voltage rating capacitors to compensate for the high-voltage coefficient of these ceramic capacitors, thus ensuring that at least $80 \mu \mathrm{~F}$ of capacitance is on the RDC plane when the plane is driven to 4.096 V by the internal reference buffer. For example, at 4.096V, a $22 \mu \mathrm{~F}$ X5R ceramic capacitor with a 10 V rating diminishes to only $20 \mu \mathrm{~F}$, whereas the same capacitor in Y5U ceramic at 4.096 V decreases to about $13 \mu \mathrm{~F}$. However, a $22 \mu \mathrm{~F}$ Y5U ceramic capacitor with a 25 V rating capacitor is approximately $20 \mu \mathrm{~F}$ at 4.096 V .
Bypass AVDD and DVDD to the ground plane with $0.1 \mu \mathrm{~F}$ ceramic chip capacitors on each pin as close as possible to the device to minimize parasitic inductance. Add at least one bulk $10 \mu \mathrm{~F}$ decoupling capacitor to AVDD and DVDD per PCB. Interconnect all of the AVDD inputs and DVDD inputs using two solid power planes. For best performance, bring the AVDD power plane in on the analog interface side of the MAX11047/ MAX11048/MAX11049 and the DVDD power plane from the digital interface side of the device.
For sampling periods near minimum (1 $1 \mu \mathrm{~s}$) use a 1 nF COG ceramic chip capacitor between each of the channel inputs to the ground plane as close as possible to the MAX11047/MAX11048/MAX11049. This capacitor reduces the inductance seen by the sampling circuitry and reduces the voltage transient seen by the input source circuit.

Figure 5. Readout Timing Requirements

4-/6-/8-Channel, 16-Bit,
Simultaneous-Sampling ADCs

Figure 6. Conversion Timing Diagram ($D B 0=0$)

Figure 7. Conversion Timing Diagram (DB0 = 1)

4-/6-/8-Channel, 16-Bit, Simultaneous-Sampling ADCs

Figure 8. Two's Complement Transfer Function

Typical Application Circuits

Power-Grid Protection
Figure 10 shows a typical power-grid protection application.

DSP Motor Control

Figure 11 shows a typical DSP motor control application.

Definitions

Integral Nonlinearity (INL)

INL is the deviation of the values on an actual transfer function from a straight line. For these devices, this straight line is a line drawn between the end points of the transfer function, once offset and gain errors have been nullified.

Differential Nonlinearity (DNL)

DNL is the difference between an actual step width and the ideal value of 1 LSB . For these devices, the DNL of each digital output code is measured and the worstcase value is reported in the Electrical Characteristics table. A DNL error specification of greater than -1 LSB guarantees no missing codes and a monotonic transfer function for an SAR ADC. For example, -0.9 LSB guarantees no missing code while -1.1 LSB results in missing code.

Figure 9. Offset-Binary Transfer Function

Offset Error
For the MAX11047/MAX11048/MAX11049, the offset error is defined at code transition 0×0000 to 0×0001 in offset binary encoding and 0×8000 to 0×8001 for two's complement encoding. The offset code transitions should occur with an analog input voltage of exactly 0.5 $\times(5 / 4.096) \times V_{R E F} / 65,536$ above GND. The offset error is defined as the deviation between the actual analog input voltage required to produce the offset code transition and the ideal analog input of $0.5 \times(5 / 4.096) \times$ VREF/65,536 above GND, expressed in LSBs.

Gain Error

Gain error is defined as the difference between the change in analog input voltage required to produce a top code transition minus a bottom code transition, subtracted from the ideal change in analog input voltage on $(5 / 4.096) \times$ Vref $\times(65,534 / 65,536)$. For the MAX11047/MAX11048/MAX11049, top code transition is 0×7 FFE to 0×7 FFF in two's complement mode and 0xFFFE to 0xFFFF in offset binary mode. The bottom code transition is 0×8000 and 0×8001 in two's complement mode and 0×0000 and 0×0001 in offset binary mode. For the MAX11047/MAX11048/MAX11049, the analog input voltage to produce these code transitions is measured and the gain error is computed by subtracting $(5 / 4.096) \times V_{\text {REF }} \times(65,534 / 65,536)$ from this measurement.

4-/6-/8-Channel, 16-Bit,
Simultaneous-Sampling ADCs
MAX11047/MAX11048/MAX11049

Figure 10. Power-Grid Protection

4-/6-/8-Channel, 16-Bit, Simultaneous-Sampling ADCs

Figure 11. DSP Motor Control

4-/6-/8-Channel, 16-Bit, Simultaneous-Sampling ADCs

Signal-to-Noise Ratio (SNR)

For a waveform perfectly reconstructed from digital samples, SNR is the ratio of the full-scale analog input (RMS value) to the RMS quantization error (residual error). The ideal, theoretical minimum analog-to-digital noise is caused by quantization noise error only and results directly from the ADC's resolution (N bits):

$$
\text { SNR }=(6.02 \times N+1.76) \mathrm{dB}
$$

where $N=16$ bits. In reality, there are other noise sources besides quantization noise: thermal noise, reference noise, clock jitter, etc. SNR is computed by taking the ratio of the RMS signal to the RMS noise, which includes all spectral components not including the fundamental, the first five harmonics, and the DC offset.

Signal-to-Noise Plus Distortion (SINAD) SINAD is the ratio of the fundamental input frequency's RMS amplitude to the RMS equivalent of all the other ADC output signals:

$$
\operatorname{SINAD}(\mathrm{dB})=10 \times \log \left[\frac{\text { Signal }_{\mathrm{RMS}}}{\left(\text { Noise }+ \text { Distortion }_{\mathrm{RMS}}\right.}\right]
$$

Effective Number of Bits (ENOB) The ENOB indicates the global accuracy of an ADC at a specific input frequency and sampling rate. An ideal ADC's error consists of quantization noise only. With an input range equal to the full-scale range of the ADC, calculate the ENOB as follows:

$$
\mathrm{ENOB}=\frac{\text { SINAD }-1.76}{6.02}
$$

Total Harmonic Distortion (THD)

THD is the ratio of the RMS of the first five harmonics of the input signal to the fundamental itself. This is expressed as:

$$
\mathrm{THD}=20 \times \log \left[\frac{\sqrt{\mathrm{V}_{2}^{2}+\mathrm{V}_{3}^{2}+\mathrm{V}_{4}^{2}+\mathrm{V}_{5}^{2}}}{\mathrm{~V}_{1}}\right]
$$

where V_{1} is the fundamental amplitude and V_{2} through V_{5} are the 2nd-through 5th-order harmonics.

Spurious-Free Dynamic Range (SFDR)
SFDR is the ratio of the RMS amplitude of the fundamental (maximum signal component) to the RMS value of the next-largest frequency component.

Aperture Delay

Aperture delay (tAD) is the time delay from the sampling clock edge to the instant when an actual sample is taken.

Aperture Jitter

Aperture Jitter (taJ) is the sample-to-sample variation in aperture delay.

Channel-to-Channel Isolation

 Channel-to-channel isolation indicates how well each analog input is isolated from the other channels. Channel-to-channel isolation is measured by applying DC to channels 1 to 7 , while a -0.4 dBFS sine wave at 60 Hz is applied to channel 0 . A 10 ksps FFT is taken for channel 0 and channel 1. Channel-to-channel isolation is expressed in dB as the power ratio of the two 60 Hz magnitudes.
Small-Signal Bandwidth

A small -20dBFS analog input signal is applied to an ADC in a manner that ensures that the signal's slew rate does not limit the ADC's performance. The input frequency is then swept up to the point where the amplitude of the digitized conversion result has decreased 3dB.

Full-Power Bandwidth
A large -0.5 dBFS analog input signal is applied to an ADC, and the input frequency is swept up to the point where the amplitude of the digitized conversion result has decreased by 3dB. This point is defined as fullpower input bandwidth frequency.

Chip Information

PROCESS: BiCMOS

Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
56 TQFN-EP	T5688+2	$\underline{\mathbf{2 1 - 0 1 3 5}}$

[^0]
[^0]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

