N-channel TrenchMOS logic level FET

Rev. 01 — 10 September 2008

Preliminary data sheet

1. Product profile

1.1 General description

Logic level N-channel enhancement mode Field-Effect Transistor (FET) in a plastic package using TrenchMOS technology. This product is designed and qualified for use in industrial and communications applications.

1.2 Features and benefits

High efficiency due to low switching and conduction losses

1.3 Applications

- Class-D amplifiers
- DC-to-DC converters

1.4 Quick reference data

 Table 1.
 Quick reference

- Suitable for logic level gate drive sources
- Motor control
- Server power supplies

Table I.	QUICK TETETETICE						
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 150 °C		-	-	30	V
I _D	drain current	$T_{mb} = 25 \text{ °C}; V_{GS} = 10 \text{ V};$ see <u>Figure 1</u> ;	[1]	-	-	100	А
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>		-	-	88	W
Dynamic	characteristics						
Q _{GD}	gate-drain charge	$\label{eq:VGS} \begin{array}{l} V_{GS} = 4.5 \text{ V}; \text{ I}_{D} = 10 \text{ A}; \\ V_{DS} = 12 \text{ V}; \text{ see } \underline{\text{Figure } 14}; \\ \text{see } \underline{\text{Figure } 15} \end{array}$		-	6.5	-	nC
Static ch	aracteristics						
R_{DSon}	drain-source on-state resistance	V _{GS} = 10 V; I _D = 15 A; T _j = 25 °C; see <u>Figure 12</u>		-	1.75	2.4	mΩ

[1] Continuous current is limited by package.

N-channel TrenchMOS logic level FET

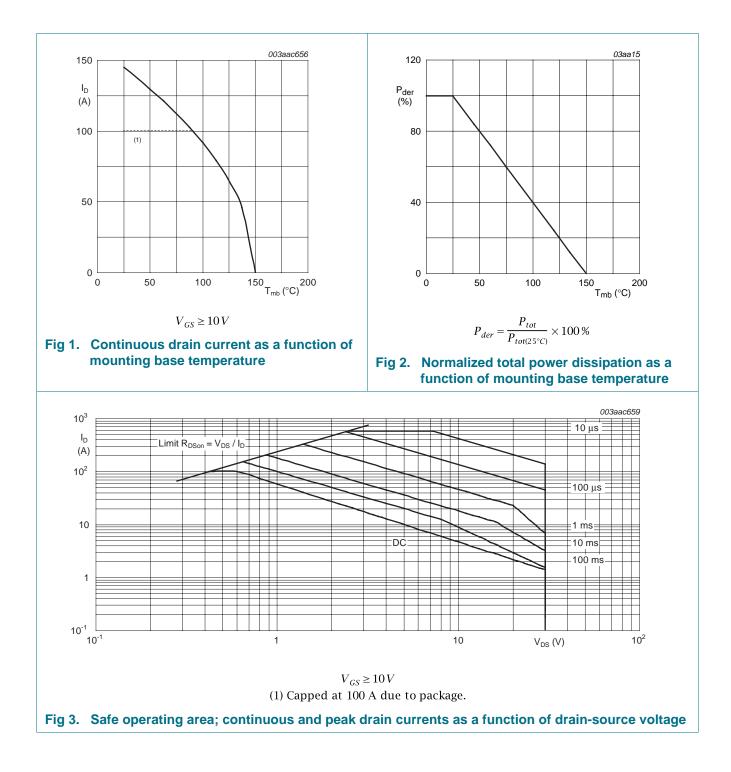
2. Pinning information

Table 2.	Pinning	information		
Pin	Symbol	Description	Simplified outline	Graphic symbol
1	S	source	_	_
2	S	source	mb	
3	S	source		
4	G	gate	Q	
mb	D	mounting base; connected to drain	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ 1 \end{array} \\ \begin{array}{c} \end{array} \\ 2 \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	mbb076 S
			SOT669 (LFPAK)	

3. Ordering information

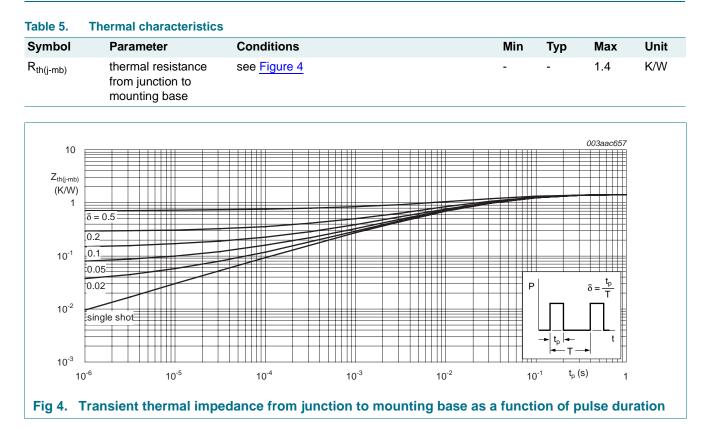
Table 3. Orderin	ng information		
Type number	Package		
	Name	Description	Version
PSMN2R5-30YL	LFPAK	Plastic single-ended surface-mounted package (LFPAK); 4 leads	SOT669

4. Limiting values


Table 4.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 150 °C		-	30	V
V _{DGR}	drain-gate voltage	$T_j \ge 25 \text{ °C}; T_j \le 150 \text{ °C}; R_{GS} = 20 \text{ k}\Omega$		-	30	V
V _{GS}	gate-source voltage			-20	20	V
I _D	drain current	V _{GS} = 10 V; T _{mb} = 100 °C; see <u>Figure</u> <u>1;</u>	[1]	-	91	А
		V_{GS} = 10 V; T_{mb} = 25 °C; see <u>Figure 1</u> ;	[1]	-	100	А
I _{DM}	peak drain current	t _p ≤ 10 μs; pulsed; T _{mb} = 25 °C; see <u>Figure 3</u>		-	580	А
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>		-	88	W
T _{stg}	storage temperature			-55	150	°C
Tj	junction temperature			-55	150	°C
Source-dra	in diode					
I _S	source current	T _{mb} = 25 °C;	[1]	-	100	А
I _{SM}	peak source current	$t_p \le 10 \ \mu s$; pulsed; $T_{mb} = 25 \ ^{\circ}C$		-	580	А
Avalanche	ruggedness					
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	V_{GS} = 10 V; $T_{j(init)}$ = 25 °C; I_D = 100 A; $V_{sup} \le 30$ V; R_{GS} = 50 Ω ; unclamped		-	103	mJ


[1] Continuous current is limited by package.

PSMN2R5-30YL

N-channel TrenchMOS logic level FET

5. Thermal characteristics

N-channel TrenchMOS logic level FET

6. Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
-	racteristics			21		
V _{(BR)DSS}	drain-source	I _D = 250 μA; V _{GS} = 0 V; T _i = 25 °C	30	-	-	V
(BR)000	breakdown voltage	$I_D = 250 \ \mu\text{A}; \ V_{GS} = 0 \ V; \ T_i = -55 \ ^{\circ}\text{C}$	27	-	-	V
	gate-source threshold voltage	$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = 25 \text{ °C}; \text{ see}$ Figure 10; see Figure 11	1.3	1.7	2.15	V
		$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = 150 \text{ °C}; \text{ see}$ Figure 10	0.65	-	-	V
		$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = -55 \text{ °C}; \text{ see}$ Figure 10	-	-	2.45	V
I _{DSS}	drain leakage current	V _{DS} = 30 V; V _{GS} = 0 V; T _j = 25 °C	-	-	1	μA
		V _{DS} = 30 V; V _{GS} = 0 V; T _j = 150 °C	-	-	100	μA
I _{GSS}	gate leakage current	V _{GS} = 16 V; V _{DS} = 0 V; T _j = 25 °C	-	-	100	nA
		V _{GS} = -16 V; V _{DS} = 0 V; T _j = 25 °C	-	-	100	nA
R _{DSon}	drain-source on-state resistance	V_{GS} = 4.5 V; I _D = 15 A; T _j = 25 °C; see Figure 12	-	2.46	3.9	mΩ
		V_{GS} = 10 V; I _D = 15 A; T _j = 150 °C; see Figure 13	-	-	4.2	mΩ
		V_{GS} = 10 V; I _D = 15 A; T _j = 25 °C; see Figure 12	-	1.75	2.4	mΩ
R _G	gate resistance	f = 1 MHz	-	0.67	-	Ω
Dynamic	characteristics					
Q _{G(tot)} total gate charge		I_D = 10 A; V_{DS} = 12 V; V_{GS} = 4.5 V; see <u>Figure 14</u> ; see <u>Figure 15</u>	-	27	-	nC
		$I_D = 0 \text{ A}; \text{ V}_{DS} = 0 \text{ V}; \text{ V}_{GS} = 10 \text{ V}$	-	52	-	nC
		$I_D = 10 \text{ A}$; $V_{DS} = 12 \text{ V}$; $V_{GS} = 10 \text{ V}$; see Figure 14; see Figure 15	-	57	-	nC
Q _{GS}	gate-source charge	I_D = 10 A; V_{DS} = 12 V; V_{GS} = 4.5 V; see	-	8.5	-	nC
Q _{GD}	gate-drain charge	Figure 14; see Figure 15	-	6.5	-	nC
Q _{GS(th)}	pre-threshold gate-source charge		-	5.7	-	nC
Q _{GS(th-pl)}	post-threshold gate-source charge		-	2.8	-	nC
V _{GS(pl)}	gate-source plateau voltage	V _{DS} = 12 V; see <u>Figure 14</u> ; see <u>Figure 15</u>	-	2.35	-	V
C _{iss}	input capacitance	V_{DS} = 12 V; V_{GS} = 0 V; f = 1 MHz;	-	3468	-	pF
C _{oss}	output capacitance	T _j = 25 °C; see <u>Figure 16</u>	-	710	-	pF
C _{rss}	reverse transfer capacitance		-	314	-	pF
d(on)	turn-on delay time	V_{DS} = 12 V; R_L = 0.5 $\Omega;~V_{GS}$ = 4.5 V;	-	39	-	ns
r	rise time	$R_{G(ext)} = 4.7 \Omega$	-	62	-	ns
t _{d(off)}	turn-off delay time		-	61	-	ns
t _f	fall time		-	25	-	ns

© NXP B.V. 2008. All rights reserved.

Symbol

PSMN2R5-30YL

Max

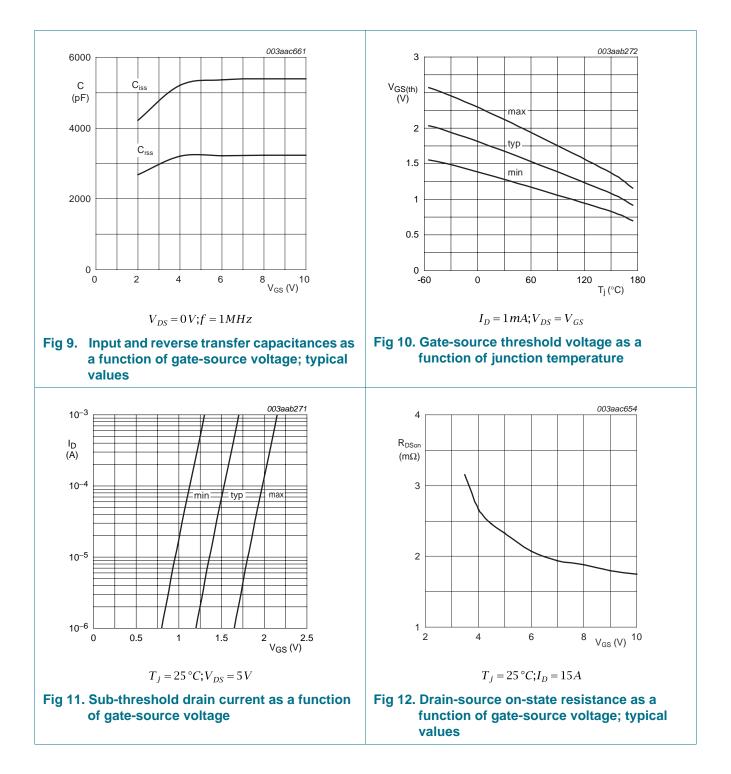
Unit

N-channel TrenchMOS logic level FET

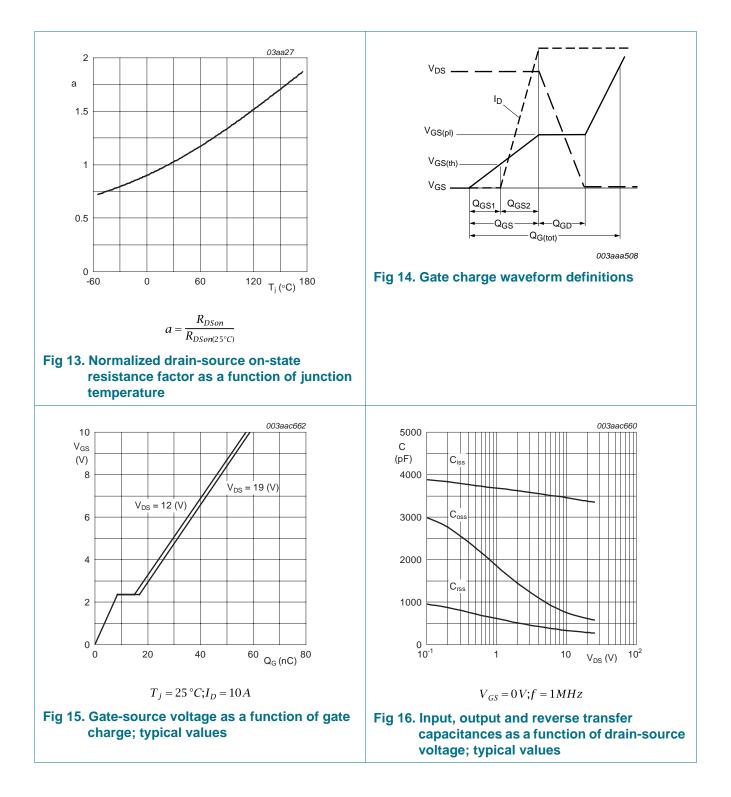
Тур

Min

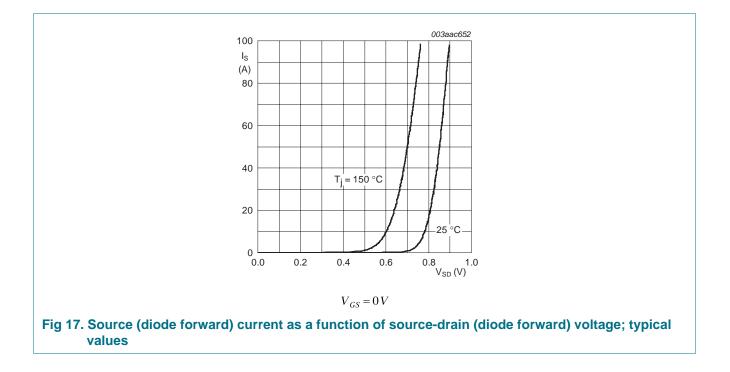
urce-drain	diode						
0	source-drain voltage	I _S = 25 A; V _{GS} = 0 V; T <u>Figure 17</u>		-	0.88	1.2	V
	reverse recovery time	$I_{\rm S} = 20 \text{ A}; dI_{\rm S}/dt = -100$	$0 \text{ A/s}; \text{ V}_{\text{GS}} = 0 \text{ V};$	-	39	-	ns
	recovered charge	V _{DS} = 20 V		-	38	-	nC
		003aac651				003aac653	
80			I _D 160 (A) 10				
I _D (A)			140 4.5		V _{GS} (V)	= 3.2	
60		#	120				
			100			3	
40	T _i = 150 °C		80			2.8	
		25 °C	60		+		
20		23 0	40			2.6	
			20				
						2.4	
0	1 2	3 _{VGS} (V) 4	0 2	4	6	8 10 V _{DS} (V))
fune	$V_{DS} = 10V$ nsfer characteristics ction of gate-source		Fig 6. Output c function	$T_j = 25 ^{\circ}C; t_p$ haracterist of drain-so	ics: drai	in curre	
	nsfer characteristics ction of gate-source		Fig 6. Output c	haracterist	ics: drai	in curre	
fune	nsfer characteristics ction of gate-source		Fig 6. Output c function	haracterist	ics: drai	in curre	
fund valu 140 gfs	nsfer characteristics ction of gate-source	voltage; typical	Fig 6. Output c function values	haracterist	ics: drai	in curre Itage; ty	
fund valu	nsfer characteristics ction of gate-source	voltage; typical	Fig 6. Output c function values	haracterist	ics: drai	in curre Itage; ty	
fund valu	nsfer characteristics ction of gate-source	voltage; typical	Fig 6. Output c function values	haracterist of drain-so	ics: drai	in curre Itage; ty	
fund valu	nsfer characteristics ction of gate-source	voltage; typical	Fig 6. Output c function values	haracterist	ics: drai	in curre Itage; ty	
function 140 grs (S) 120	nsfer characteristics ction of gate-source	voltage; typical	Fig 6. Output c function values	haracterist of drain-so	ics: drai	in curre Itage; ty	
function 140 grs (S) 120	nsfer characteristics ction of gate-source	voltage; typical	Fig 6. Output c function values	haracterist of drain-so	ics: drai	in curre Itage; ty	
function 140 grs (S) 120 100	nsfer characteristics ction of gate-source	voltage; typical	Fig 6. Output c function values	haracterist of drain-so	ics: drai	003aac658	
function 140 grs (S) 120 100	nsfer characteristics ction of gate-source	voltage; typical	Fig 6. Output c function values	haracterist of drain-so	ics: drai	003aac658	
func valu 140 grs (S) 120 100 80	nsfer characteristics ction of gate-source	voltage; typical	Fig 6. Output c function values	haracterist of drain-so	ics: drai	003aac658	
func valu 140 grs (S) 120 100 80	nsfer characteristics ction of gate-source	003aac655	Fig 6. Output c function values	haracterist of drain-so	= 3.2	003aac658	rpical
fund valu 140 grs (S) 120 100 80 60 40	nsfer characteristics ction of gate-source les	003aac655	Fig 6. Output c function values	haracterist of drain-so V _{GS} (V)	= 3.2	003aac658	rpical
func valu 140 9rs (S) 120 100 80 60 40 0	nsfer characteristics ction of gate-source les 20 $40T_j = 25 °C; V_{DS} = 1$	Voltage; typical	Fig 6. Output c function values	haracterist of drain-so $V_{GS}(V)$ $V_{GS}(V)$ $T_j = 25 °C; t_p$	= 3.2	003aac658	pical
fund valu	nsfer characteristics ction of gate-source les	voltage; typical	Fig 6. Output c function values	haracterist of drain-so V _{GS} (V)	ics: drai purce vo = 3.2 =	003aac658	0 0 5 a


Table 6. Characteristics ...continued

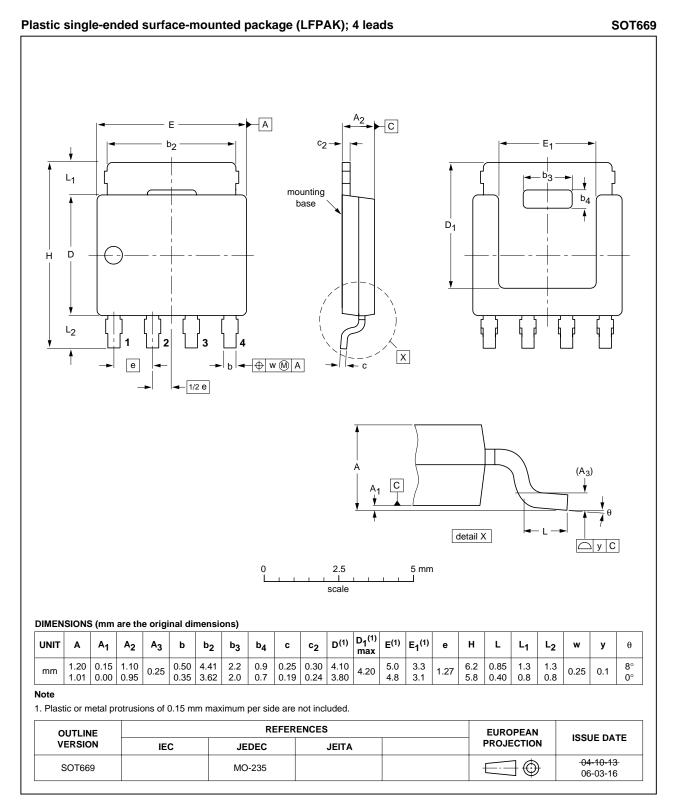
Parameter


Conditions

PSMN2R5-30YL_1 Preliminary data sheet


PSMN2R5-30YL

PSMN2R5-30YL



PSMN2R5-30YL

N-channel TrenchMOS logic level FET

7. Package outline

Fig 18. Package outline SOT669 (LFPAK)

N-channel TrenchMOS logic level FET

8. Revision history

Table 7. Revision hist	Revision history					
Document ID	Release date	Data sheet status	Change notice	Supersedes		
PSMN2R5-30YL_1	20080910	Preliminary data sheet	-	-		

N-channel TrenchMOS logic level FET

9. Legal information

9.1 Data sheet status

Document status [1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

9.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

9.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

TrenchMOS — is a trademark of NXP B.V.

10. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

PSMN2R5-30YL_1 Preliminary data sheet

N-channel TrenchMOS logic level FET

11. Contents

1	Product profile1
1.1	General description1
1.2	Features and benefits1
1.3	Applications1
1.4	Quick reference data1
2	Pinning information2
3	Ordering information2
4	Limiting values2
5	Thermal characteristics4
6	Characteristics5
7	Package outline10
8	Revision history11
9	Legal information12
9.1	Data sheet status
9.2	Definitions12
9.3	Disclaimers
9.4	Trademarks12
10	Contact information12

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2008.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: Rev. 01 — 10 September 2008 Document identifier: PSMN2R5-30YL_1

