

Power Supply IC Series for TFT LCD Panels

High-precision Gamma Correction IC with built-in DAC

BD8143MUV

No.09035EBT08

RoHS

Description

This gamma correction voltage generation IC feature built-in DACs and provide a 1chip solution with setting control via serial communications, a high-precision 10-bitDAC, and Buffer Amp (12ch).

Features

- 1) 1chip design means fewer components
- 2) Built-in 10bit DAC
- 3) DAC output Buffer AMP (12ch)
- 4) Amp input select (CTL)
- 5) 3-line serial interface control
- 6) Thermal shut down
- 7) Power ON Reset Circuit
- 8) VQFN032V5050 Package

Applications

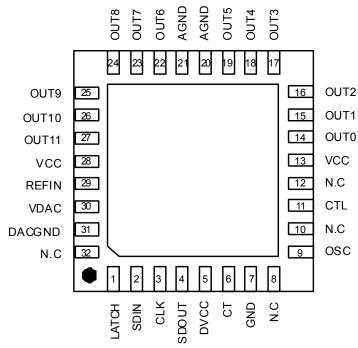
These ICs can be used with TFT LCD Panels used by Large-Screen and High-Definition LCD TVs.

●Absolute maximum ratings (Ta=25°C)

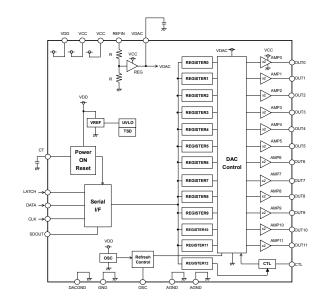
Parameter	Symbol	Limit	Unit
Power Supply Voltage 1	DVCC	7	V
Power Supply Voltage 2	VCC	20	V
REFIN Voltage	REF	20	V
Amplifier Drive Current	lo	30 * ¹	mA
Junction Temperature	Tjmax	150	°C
Power Dissipation	Pd	2440 * ²	mW
Operating Temperature Range	Topr	-40~+105	°C
Storage Temperature Range	Tstg	-55~+150	°C

*1 Pd, should not be exceeded.

*2 Reduced by 19.52mW/°C over 25°C, when mounted on a glass epoxy board. (4-layer 74.2 × 74.2 × 1.6mm).


●Operating Condition (Ta=-40°C~105°C)

Parameter	Symbol	Lir	nit	Unit
Farameter	Symbol	MIN	MAX	Unit
Power Supply Voltage 1	DVCC	2.3	5.5	V
Power Supply Voltage 2	VCC	8	18	V
REFIN Voltage	REF	8	18	V
AMP0 Drive Current	I _{OA}	-40	-	mA
AMP1~10 Drive Current	I _{OB}	-20	20	mA
AMP11 Drive Current	l _{oc}	-	40	mA
Serial CLK Frequency	fCLK	-	5	MHz
OSC Frequency	Fosc	-	200	kHz


• Electrical Characteristics (Unless otherwise specified, Ta=25°C,DVCC=3.3V,VCC=15V)

		se specifieu,	Limit	00-5.54,400	,	0	
Parameter	Symbol	MIN	TYP	MAX	Unit	Conditions	
(REFIN)						T	
Sink Current	Iref		90	200	μA	REF=10V	
(Y CORRECTION AMP)	1			22			
Source Drive Current (AMP0)	looA			-60	mA	DAC=7V,OUT0=13V	
Source Drive Current (AMP1~10)	looB			-30	mA	DAC=3.5V,OUT1~10=0V	
Source Drive Current (AMP11)	looC	10		-10	mA	DAC=0.5V,OUT11=0V	
Sink Drive Current (AMP0) Sink Drive Current (AMP1~10)	loiA loiB	10 30			mA m A	DAC=7V,OUT0=15V	
Sink Drive Current (AMP1~10)	loiC	60			mA mA	DAC=3.5V,OUT1~10=15V DAC=0.5V,OUT11=2V	
Load regulation (OUT0)	⊿V-A	00	10		mV	Io=0mA~-35mA, OUTx=6V	
Load regulation (OUT1~10)	∠lv-A ∠lV-B		10		mV	Io=-15mA~15mA, OUTx=6V	
Load regulation (OUT11)	⊿v-b ⊿v-c		10		mV	Io=0mA~35mA, OUTx=6V	
Slew Rate	SR		3		V/µs		
OUT Voltage High (OUT0)	VOH-A	VCC-0.4	VCC-0.15	_	V V	lo=-35mA	
OUT Voltage High (OUT1~10)	VOH-B	100 0.1	VCC-0.75	_	V	lo=-15mA	
OUT Voltage High (OUT11)	VOH-C		VCC-0.75	_	V	lo=-15mA	
OUT Voltage Low (OUT0)	VOL-A	_	0.75		V	lo=15mA	
OUT Voltage Low (OUT1~10)	VOL-B	_	0.75		V	lo=15mA	
OUT Voltage Low (OUT11)	VOL-C	-	0.1	0.2	V	lo=35mA	
(DAC)							
Resolution Coding	Res		10		Bit		
Non-Linear Error (INL)	LE	-2	-	2	LSB	Error with ideal straight Range 00A~3F5	
Differential Error (DNL)	DLE	-2	-	2	LSB	Error with ideal amount of Increase in 1LSB Range 00A~3F5	
OSC Frequency	fosc	-	100	-	kHz	Internal oscillator mode	
(CONTROL SIGNAL)	lati		10 5			V -2 2V	
Sink Current Threshold Voltage	Ictl	DVCC×0.2	16.5	DVCC×0.8	μΑ 	V _{IN} =3.3V	
[CONTROL]	V_{TH}	DVCC × 0.2		DVCC × 0.8	v		
OUT0 Voltage	Vpre0	-	REFIN X 12/13	-	V	CTL="LOW"	
OUT1 Voltage	Vpre1	-	REFIN X 11/13	-	V	CTL="LOW"	
OUT2 Voltage	Vpre2	-	REFIN X 10/13	-	V	CTL="LOW"	
OUT3 Voltage	Vpre3	-	REFIN X 9/13	-	V	CTL="LOW"	
OUT4 Voltage	Vpre4	-	REFIN X 813	-	V	CTL="LOW"	
OUT5 Voltage	Vpre5	-	REFIN X 7/13 REFIN	-	V	CTL="LOW"	
OUT6 Voltage	Vpre6	-	X 6/13 REFIN	-	V	CTL="LOW"	
OUT7 Voltage	Vpre7	-	X 5/13 REFIN	-	V	CTL="LOW"	
OUT8 Voltage	Vpre8	-	X 4/13 REFIN	-	V	CTL="LOW"	
OUT9 Voltage	Vpre9	-	X 3/13 REFIN	-	V	CTL="LOW"	
OUT10 Voltage	Vpre10	-	X 2/13 REFIN	-	V	CTL="LOW"	
OUT11 Voltage	Vpre11	-	X 1/13	-	V	CTL="LOW"	
(WHOLE DEVICE)		ı					
VDAC Detection Voltage	Vdet	2.6	3.2	3.6	V		
Circuit Current OThis product is not designed for protection	ICC		5		mA	CTL="LOW"	

Pin No

Block Diagram

Fig.1 Pin No. & Block Diagram

●Pin NO. & Function Table

				r	
PIN No.	Pin Name	Function	PIN No.	Pin Name	Function
1	LATCH	LATCH signal input	17	OUT3	Gamma 3 output
2	SDIN	DATA signal input	18	OUT4	Gamma 4 output
3	CLK	CLK signal input	19	OUT5	Gamma 5 output
4	SDOUT	DATA signal output	20	AGND	Ground for Buffer AMP
5	DVCC	Digital Power Supply	21	AGND	Ground for Buffer AMP
6	СТ	Capacitor connection for Power on Reset	22	OUT6	Gamma 6 output
7	GND	Ground	23	OUT7	Gamma 7 output
8	N.C	-	24	OUT8	Gamma 8 output
9	OSC	DAC Synchronized clock inout	25	OUT9	Gamma 9 output
10	N.C	-	26	OUT10	Gamma 10 output
11	CTL	Output control signal input	27	OUT11	Gamma 11 output
12	N.C	-	28	VCC	Power Supply for Buffer AMP
13	VCC	Power Supply for Buffer AMP	29	REFIN	DAC reference input
14	OUT0	Gamma 0 output	30	VDAC	DAC Voltage output
15	OUT1	Gamma 1 output	31	DACGND	Ground for DAC
16	OUT2	Gamma 2 output	32	N.C	-

Block Operation

• REG

REG amplifiers the voltage applied to REFIN by 0.5x and output it to the VDAC pin. Connect a 1μ F phase compensation capacitor to the VDAC pin.

DAC Control

DAC Control convents the 10-bit digital signal read to the register to a voltage.

• Amp

Amp amplifiers the voltage output from DAC Control by 2x. Input includes sample & hold function, refreshed by OSC.

• OSC

The OSC generates the frequency that determines the Amp's refresh time. External input can be selected using serial input.

Power On Reset

When the digital power supply DVCC is activated, each IC generates a reset signal to initialize the serial interface, registers. Adding a 1,000 pF capacitor to the CT pin ensures that reset operation can be performed reliably, without regard to the speed with which the power supply starts up.

• VREF

This block generates the internal reference voltage.

TSD(Thermal Shut Down)

The TSD circuit turns output off when the chip temperature reaches or exceeds approximately 175°C(TYP) in order to prevent thermal destruction or thermal runaway. When the chip returns to a specified temperature, the circuit resets. The TSD circuit is designed only to protect the IC itself. Application thermal design should ensure operation of the IC below the thermal shutdown junction temperature of approximately 150°C(TYP).

• CTL

CTL signal can select Amp input. If CTL="L", each output voltage is fixed at REFIN voltage divided 13th equality. IF CTL="H", each Amp input connect DAC output, and each output comply with each register.

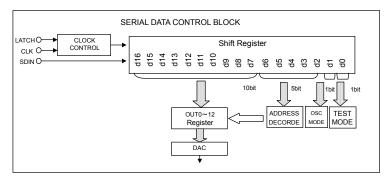
Register

A serial signal (consisting of 10-bit gamma correction voltage values) input using the serial interface is held for each register address. Data is initialized by the reset signal generated during a power-on reset.

Serial I/F

The serial interface uses a 3-line serial data format (LATCH, CLK, SDIN). It is used to set gamma correction voltages, specify register addresses, and select OSC I/O.

Serial Communication


The serial data control block is composed of Shift-Register, DAC Register and DAC circuit.

The DAC register memorizes data from the serial interface (LATCH, CLK and SDIN).

The DAC circuit makes control voltage from the register output and it outputs to the each block. The DAC register value turns back the preset value when Power Supply starts up.

Then, beginning 1bit of SDIN is always 0, because it is for test. Next 1bit switches OSC mode.

If input 0, OSC mode is internal mode (the frequency is 100kHz). If input 1, it is external one that require external clock.

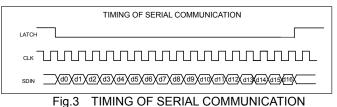


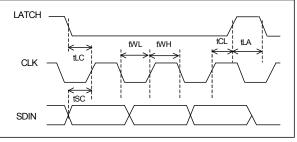
Fig.2 SERIAL BLOCK

(1)TIMING OF SERIAL COMMUNICATION

The 17 bits Serial data from SDIN terminal is loaded to Shift-Register at the rise edge of CLK, and these data is loaded to DAC Register at the rise edge of LATCH.

If serial data period is less than 17 bits while LATCH state is LOW, the serial data is not memorized. If serial data period is more than 17 bits while LATCH state is LOW, last 17 bits are effective.

(2)SERIAL DATA


The composition of SERIAL DATA INPUT(SDIN)

First →															\rightarrow	_ast
d0	d1	d2	d3	d4	d5	d6	d7	d8	d9	d10	d11	d12	d13	d14	d15	d16
0	Х		Resis	ster Ad	dress						DA	TA				

REGISTER NAME	ADDRESS					FUNCTION	PRESET VALUE			
	d2	d3	d4	d5	d6	FUNCTION		d7~d16		
Register 0	0	0	0	0	0	OUT0 Voltage of control	00	0000	0000	
Register 1	0	0	0	0	1	OUT1 Voltage of control	00	0000	0000	
Register 2	0	0	0	1	0	OUT2 Voltage of control	00	0000	0000	
Register 3	0	0	0	1	1	OUT3 Voltage of control	00	0000	0000	
Register 4	0	0	1	0	0	OUT4 Voltage of control	00	0000	0000	
Register 5	0	0	1	0	1	OUT5 Voltage of control	00	0000	0000	
Register 6	0	0	1	1	0	OUT6 Voltage of control	00	0000	0000	
Register 7	0	0	1	1	1	OUT7 Voltage of control	00	0000	0000	
Register 8	0	1	0	0	0	OUT8 Voltage of control	00	0000	0000	
Register 9	0	1	0	0	1	OUT9 Voltage of control	00	0000	0000	
Register 10	0	1	0	1	0	OUT10 Voltage of control	00	0000	0000	
Register 11	0	1	0	1	1	OUT11 Voltage of control	00	0000	0000	
Register 12(*)	0	1	1	0	0	-	00	0000	0000	

(*)IF Register 12 is loaded at DATA=1010100000(2A0h), each output comply with each register regardless of CTL signal.

Serial Communication Timing Chart

Timing Standard Value

Parameter	Symbol		LIMIT		Unit
Farameter	Symbol	Min.	Тур.	Max.	Unit
LATCH Set up time	tLC	0.1	_	_	us
SDIN Set up time	tSC	0.1	—	—	us
CLK "H" time	tWH	0.1	_	_	us
CLK "L" time	tWL	0.1	—	—	us
LATCH hold time	tCL	0.1	—	—	us
LATCH "H" time	tLA	0.6	_	_	us

•Setting γ -Correction

Formula (1) shows the relationship between γ output voltage (OUT0~OUT11) and DAC digital value.

Output Voltage(OUT0~OUT11)=({(DAC digital value +1)/1024}×(REFIN/2) - 10mV)×2.0025 · · · (1)

Power Supply Sequence

Digital power supply DVCC must be supplied earlier than VCC for the prevent of wrong behavior. The serial data must be input after cancellation of "Power on Reset". When turn off power supply, VCC must be done earlier than DVCC.

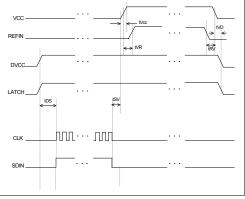


Fig.5 Power Supply Sequence

Power Supply Sequence Standard Value

Parameter	Symbol		LIMIT		Unit	Condition
Farameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Timing of serial data input	tDS	100	-	-	μs	Cct=1000pF
Timing of VCC ON	tSV	-	10	-	μs	
Timing of REFIN ON	tVR	0	10	-	μs	
Timing of REFIN OFF	tRV	0	10	-	μs	
Timing of VCC OFF	tVD	0	10	-	μs	
VCC rise time	tVCC	1	-	-	ms	

Data writing time for register

Data writing time for register depend on frequency of CLK. Below formula shows data writing time for all registers. (Because data writing time for a register is needed at 17bit data + LATCH "H" time.)

Refresh time of Amp input

Each Amp input have sample & hold function refreshed by OSC frequency (fosc). Below formula shows refresh cycle.

When internal OSC mode, fosc=100kHz (Typ).

•Function of selecting Amp input

This IC can select Amp input by CTL signal. If CTL="L", Amp input is connected to resistance division of REFIN voltage. IF CTL="H", connected to DAC output. When VCC(REFIN) supplies with CTL="L", it is possible to start up without opposite Voltage of each output. Then, if the CTL signal changes "H" after 1ms and over since VCC(REFIN) supplied and data send finished, start up sequence should be below Fig.

(*Amp input is connected to DAC output not only by CTL="H", but also DATA=1010100000(2A0h) sended to Register 12. Also in this case, please send DATA=1010100000(2A0h) to Register 12 after 1ms and over since VCC(REFIN) supplied And output data send finished, at this time CTL="L".)

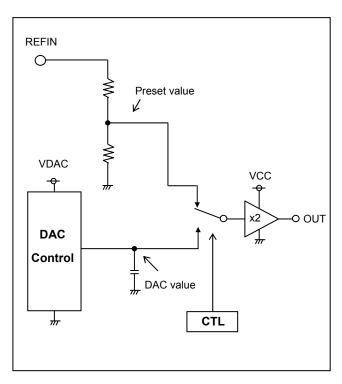


Fig.6 Selecting Amp input block diagram

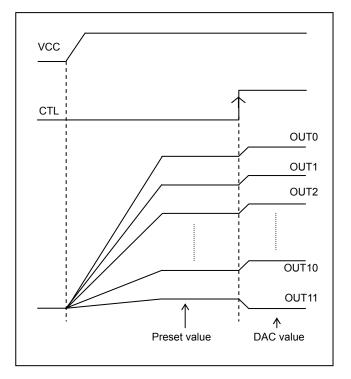


Fig.7 Start up sequence

Input Output Circuit (BD8143MUV) 1.LATCH 4.SDOUT 6.CT 2.SDIN 3.CLK - DVCC Q DVCC DVCC GND GND GND 14.OUT0 16.OUT2 15.OUT1 17.OUT3 19.OUT5 18.OUT4 9.OSC 11. CTL 22.OUT6 24.OUT8 23.OUT7 25.OUT9 27.OUT11 26.OUT10 -vcc DVCC DVCC -0 Г Γ Г GND ≨ ₩ GND AGND ₩ 29.REFIN 30.VDAC ₽-vcc Q vcc AGND AGND ୷

Fig.8

Notes for use

1) Absolute maximum ratings

Use of the IC in excess of absolute maximum ratings such as the applied voltage or operating temperature range may result in IC damage. Assumptions should not be made regarding the state of the IC (short mode or open mode) when such damage is suffered. A physical safety measure such as a fuse should be implemented when use of the IC in a special mode where the absolute maximum ratings may be exceeded is anticipated.

2) GND potential

Ensure a minimum GND pin potential in all operating conditions.

3) Setting of heat

Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions. 4) Pin short and mistake fitting

Use caution when orienting and positioning the IC for mounting on printed circuit boards. Improper mounting may result in damage to the IC. Shorts between output pins or between output pins and the power supply and GND pins caused by the presence of a foreign object may result in damage to the IC.

5) Actions in strong magnetic field

Use caution when using the IC in the presence of a strong magnetic field as doing so may cause the IC to malfunction.

6) Testing on application boards

When testing the IC on an application board, connecting a capacitor to a pin with low impedance subjects the IC to stress. Always discharge capacitors after each process or step. Ground the IC during assembly steps as an antistatic measure, and use similar caution when transporting or storing the IC. Always turn the IC's power supply off before connecting it to or removing it from a jig or fixture during the inspection process.

7) Ground wiring patterns

When using both small signal and large current GND patterns, it is recommended to isolate the two ground patterns, placing a single ground point at the application's reference point so that the pattern wiring resistance and voltage variations caused by large currents do not cause variations in the small signal ground voltage. Be careful not to change the GND wiring patterns of any external components.

8) Regarding input pin of the IC

This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P/N junctions are formed at the intersection of these P layers with the N layers of other elements to create a variety of parasitic elements. For example, when the resistors and transistors are connected to the pins as shown in below Fig.9, a parasitic diode or a transistor operates by inverting the pin voltage and GND voltage. The formation of parasitic elements as a result of the relationships of the potentials of different pins is an inevitable result of the IC's architecture. The operation of parasitic elements can cause interference with circuit operation as well as IC malfunction and damage. For these reasons, it is necessary to use caution so that the IC is not used in a way that will trigger the operation of parasitic elements such as by the application of voltages lower than the GND (P substrate) voltage to input and output pins.

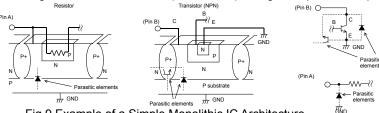


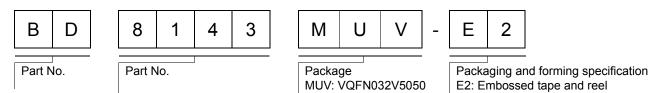
Fig.9 Example of a Simple Monolithic IC Architecture

9) Overcurrent protection circuits

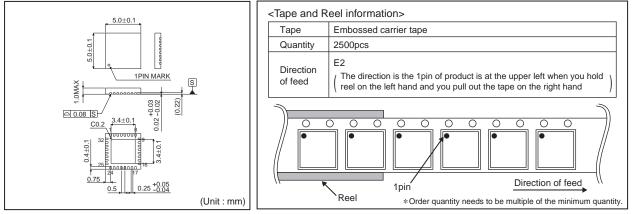
An overcurrent protection circuit designed according to the output current is incorporated for the prevention of IC damage that may result in the event of load shorting. This protection circuit is effective in preventing damage due to sudden and unexpected accidents. However, the IC should not be used in applications characterized by the continuous operation or transitioning of the protection circuits. At the time of thermal designing, keep in mind that the current capacity has negative characteristics to temperatures.

10)Thermal shutdown circuit (TSD)

This IC incorporates a built-in TSD circuit for the protection from thermal destruction. The IC should be used within the specified power dissipation range. However, in the event that the IC continues to be operated in excess of its power dissipation limits, the attendant rise in the chip's junction temperature Tj will trigger the TSD circuit to turn off all output power elements. The circuit automatically resets once the junction temperature Tj drops. Operation of the TSD circuit presumes that the IC's absolute maximum ratings have been exceeded. Application designs should never make use of the TSD circuit.


11) Testing on application boards

At the time of inspection of the installation boards, when the capacitor is connected to the pin with low impedance, be sure to discharge electricity per process because it may load stresses to the IC. Always turn the IC's power supply off before connecting it to or removing it from a jig or fixture during the inspection process. Ground the IC during assembly steps as an antistatic measure, and use similar caution when transporting or storing the IC.


12)Push Current

This IC may rush current momentary by power supply order or delay, use caution about power supply coupling capacitor, width or routing of VCC ,GND patterns

Ordering part number

VQFN032V5050

	Notes
	ng or reproduction of this document, in part or in whole, is permitted without the fROHM Co.,Ltd.
The conte	nt specified herein is subject to change for improvement without notice.
"Products	nt specified herein is for the purpose of introducing ROHM's products (hereinafte "). If you wish to use any such Product, please be sure to refer to the specifications be obtained from ROHM upon request.
illustrate t	of application circuits, circuit constants and any other information contained herein he standard usage and operations of the Products. The peripheral conditions mus nto account when designing circuits for mass production.
However,	e was taken in ensuring the accuracy of the information specified in this document should you incur any damage arising from any inaccuracy or misprint of such n, ROHM shall bear no responsibility for such damage.
examples implicitly, other part	ical information specified herein is intended only to show the typical functions of and of application circuits for the Products. ROHM does not grant you, explicitly o any license to use or exercise intellectual property or other rights held by ROHM and ies. ROHM shall bear no responsibility whatsoever for any dispute arising from the h technical information.
equipmen	icts specified in this document are intended to be used with general-use electronic t or devices (such as audio visual equipment, office-automation equipment, commu evices, electronic appliances and amusement devices).
The Produ	cts specified in this document are not designed to be radiation tolerant.
	HM always makes efforts to enhance the quality and reliability of its Products, a nay fail or malfunction for a variety of reasons.
against th failure of a shall bear	sure to implement in your equipment using the Products safety measures to guard e possibility of physical injury, fire or any other damage caused in the event of the any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM no responsibility whatsoever for your use of any Product outside of the prescribed not in accordance with the instruction manual.
system wi may result instrument fuel-contro any of the	acts are not designed or manufactured to be used with any equipment, device on hich requires an extremely high level of reliability the failure or malfunction of which t in a direct threat to human life or create a risk of human injury (such as a medica t, transportation equipment, aerospace machinery, nuclear-reactor controller oller or other safety device). ROHM shall bear no responsibility in any way for use o Products for the above special purposes. If a Product is intended to be used for an ial purpose, please contact a ROHM sales representative before purchasing.
be control	nd to export or ship overseas any Product or technology specified herein that may led under the Foreign Exchange and the Foreign Trade Law, you will be required to cense or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/