

Typical Applications

The HMC746LC3C is ideal for:

- RF ATE Applications
- Broadband Test & Measurement
- Serial Data Transmission up to 13 Gbps
- Digital Logic Systems up to 13 GHz
- NRZ-to-RZ Conversion

Functional Diagram

Features

Supports High Data Rates: up to 13 Gbps Differential & Singe-Ended Operation Fast Rise and Fall Times: 22 / 21 ps Low Power Consumption: 230 mW typ.

Programmable Differential

Output Voltage Swing: 600 - 1100 mV

Propagation Delay: 95 ps Single Supply: +3.3V

16 Lead Ceramic 3x3mm SMT Package: 9mm²

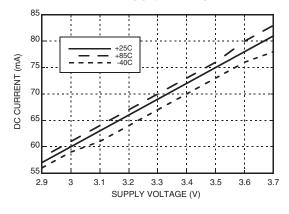
General Description

The HMC746LC3C is an AND/NAND/OR/NOR function designed to support data transmission rates of up to 13 Gbps, and clock frequencies as high as 13 GHz. The HMC746LC3C may be easily configured to provide any of the following logic functions: AND, NAND, OR and NOR. The HMC746LC3C also features an output level control pin, VR, which allows for loss compensation or for signal level optimization.

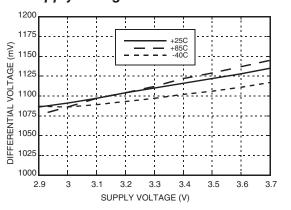
All input and output signals to the HMC746LC3C are terminated with 50 Ohms to Vcc on-chip, and may be either AC or DC coupled. Inputs and outputs can be connected directly to a 50 Ohm to Vcc terminated system, while DC blocking capacitors may be used if the terminating system is 50 Ohms to ground. The HMC746LC3C operates from a single +3.3V DC supply, and is available in a ceramic RoHS compliant 3x3 mm SMT package.

Electrical Specifications, $T_A = +25$ °C, Vcc = +3.3V

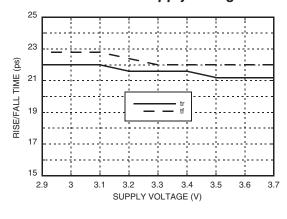
Parameter	Conditions	Min.	Тур.	Max	Units
Power Supply Voltage		3.0	3.3	3.6	V
Power Supply Current			70		mA
Maximum Data Rate			13		Gbps
Maximum Clock Rate			13		GHz
Input High Voltage		2.8		3.8	V
Input Low Voltage		2.1		3.3	V
Input Return Loss	Frequency <13 GHz		10		dB
Output Amplitude	Single-Ended, peak-to-peak		550		mVpp
	Differential, peak-to-peak		1100		mVpp
Output High Voltage			3.25		V

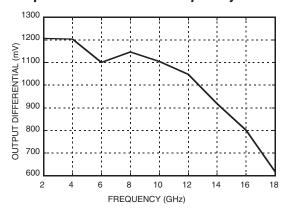


Electrical Specifications, (continued)


Parameter	Conditions	Min.	Тур.	Max	Units
Output Low Voltage			2		V
Output Rise / Fall Time	Differential, 20% - 80%		22 / 21		ps
Output Return Loss	Frequency <13 GHz		10		dB
Small Signal Gain			27		dB
Random Jitter Jr	rms			0.2	ps rms
Deterministic Jitter, Jd	peak-to-peak, 2 ¹⁵ -1 PRBS input [1]		2		ps, pp
Propagation Delay, td			95		ps

^[1] Deterministic jitter calculated by simultaneously measuring the jitter of a 300 mV, 13 GHz, 215-1 PRBS input, and a single-ended output


DC Current vs. Supply Voltage [1] [2]

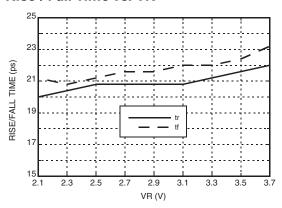

Output Differential vs. Supply Voltage [1] [2]

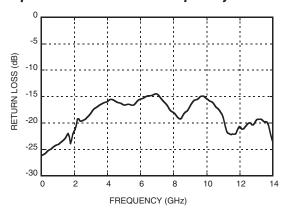
Rise / Fall Time vs. Supply Voltage [2]

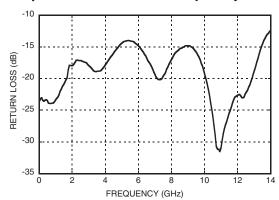
Output Differential vs. Frequency [1]


[1] VR = +3.3V

[2] Frequency = 13 GHz

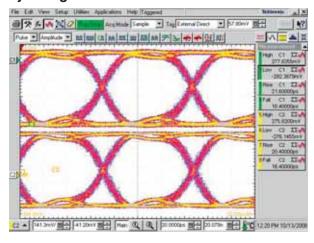



Output Differential vs. VR [2]

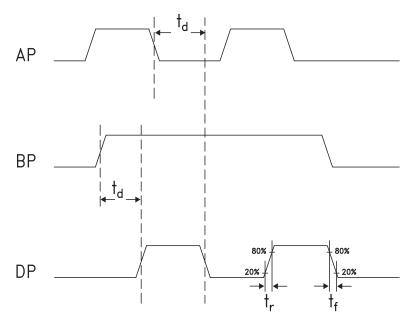

Rise / Fall Time vs. VR [2]

Input Return Loss vs. Frequency

Output Return Loss vs. Frequency


[1] VR = +3.3V

[2] Frequency = 13 GHz


Eye Diagram

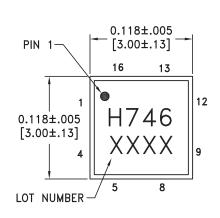
[1] Test Conditions: Pattern generated with an Agilent N4903A Serial BERT. Eye Diagram presented on a Tektronix CSA 8000. Device input = 13 Gbps PN code.

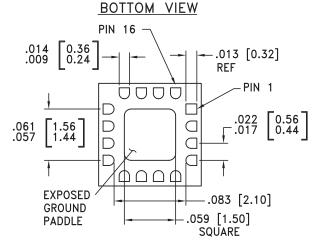
Device is AC coupled to scope.

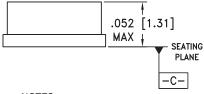
Timing Diagram

Truth Table

Input	Outputs	
A	В	D
L	L	L
L	Н	L
Н	L	L
Н	Н	Н
Notes: A = AP - AN B = BP - BN D = DP - DN	H - Positive voltage level L - Negative voltage level	



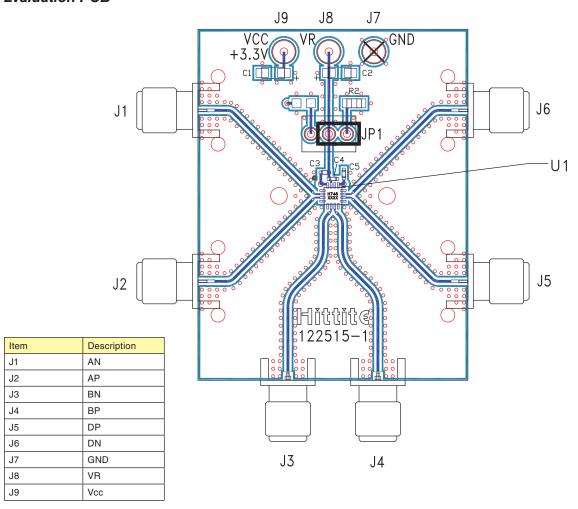

Absolute Maximum Ratings


Power Supply Voltage (Vcc)	-0.5V to +3.7V	
Input Signals	Vcc - 2V to Vcc + 0.5V	
Output Signals	+1V to +3.7V	
Storage Temperature	-65°C to +150°C	
Operating Temperature	-40°C to +85°C	

Outline Drawing

NOTES:

- 1. PACKAGE BODY MATERIAL: ALUMINA
- 2. LEAD AND GROUND PADDLE PLATING:
- 30-80 MICROINCHES GOLD OVER 50 MICROINCHES MINIMUM NICKEL
- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm DATUM -C- $\,$
- 6. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.
- 7. PADDLE MUST BE SOLDERED TO GND.


Pin Descriptions

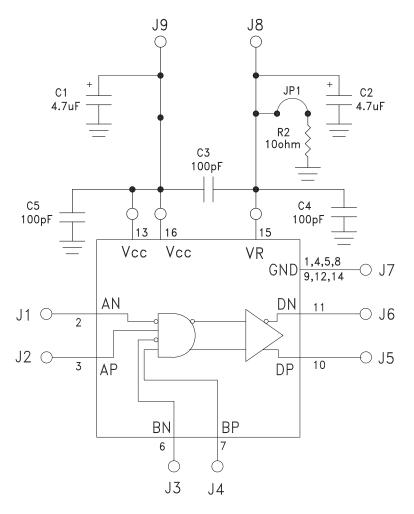
Pin Number	Function	Description	Interface Schematic
1, 4, 5, 8, 9, 12	GND	Signal Grounds	⊖ GND =
2, 3	AN, AP	Clock / Data Input A	AP, AN
6, 7	BN, BP	Clock / Data Input B	BP, BN
10, 11	DP, DN	Clock / Data Output	Vcc 500} DP, DN
13, 16	Vcc	Positive Supply	
14, Package Base	GND	Supply Ground	GND =
15	VR	Output level control. Output level may be adjusted by applying a voltage to VR per "Output Differential vs. VR" plot.	VR 0

Evaluation PCB

List of Materials for Evaluation PCB 122517 [1]

Item	Description	
J1 - J6	PCB Mount SMA RF Connectors	
J7 - J9	DC Pin	
JP1	Shorting Jumper	
C1, C2	4.7 μF Capacitor, Tantalum	
C3 - C5	100 pF Capacitor, 0402 Pkg.	
R2	10 Ohm Resistor, 0603 Pkg.	
U1	HMC746LC3C High Speed Logic, AND / NAND / OR / NOR	
PCB [2]	122515 Evaluation Board	

^[1] Reference this number when ordering complete evaluation PCB $\,$


The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown. The exposed package base should be connected to GND. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Arlon 25FR

Application Circuit

