GaAs Broadband 75 Ohm Default-On, SPDT Terminated Switch

Features

- Ideal for CATV, DTV, DVR, STB Applications
- Default-On in Unpowered State (RFC-RF1 Path)
- Broadband Performance: DC-2.5 GHz
- Low Insertion Loss: 1.1 dB at 1 GHz
- High Isolation: > 60dB @ 100MHz
- Single Control Operation
- Power Handling: > 20 dBm P1dB
- Lead-Free 3 mm 12-lead PQFN Package
- 100\% Matte Tin Plating over Copper
- Halogen-Free "Green" Mold Compound
- RoHS* Compliant and $260^{\circ} \mathrm{C}$ Reflow Compatible
- Configurable for Non-terminated Operation

Description

M/A-COM's MASWSS0201 is a broadband GaAs PHEMT MMIC SPDT terminated switch in a low cost, lead-free 3 mm 12-lead PQFN package. The MASWSS0201 is ideally suited for applications where an unpowered on state is critical in a single control line SPDT terminated switch. The unpowered condition is the same as the $\mathrm{V}_{\mathrm{C}}=0$ condition. This part can also be configured as a reflective switch with minimal impact to the RF performance.

The MASWSS0201 delivers high isolation, low insertion loss and high linearity up to 2.5 GHz .

The MASWSS0201 is fabricated using a 0.5 micron gate length GaAs E/D PHEMT process. The process features full passivation for performance and reliability.

Ordering Information ${ }^{1}$

Part Number	Package
MASWSS0201TR-3000	3000 piece reel
MASWSS0201SMB	Sample Test Board (Includes 5 Samples)

1. Reference Application Note M513 for reel size information.

Functional Schematic

Pin Configuration ${ }^{2}$

Pin No.	Pin Name	Description
1	N/C	No Connection
2	RF1	RF Port 1
3	Term 1 GND 3	Termination 1 Ground
4	GND	Ground
5	N/C	No Connection
6	GND	Ground
7	Term 2 GND	Termination 2 Ground
8	RF2	RF Port 2
9	VC	Control
10	RFC	Ground
11	GND	RF Input
12	Paddle ${ }^{4}$	Ground
13	RF and DC Ground	

2. M/A-COM recommends that all unused (N/C) pins be connected to ground. All data on this datasheet was taken with N / C pins connected to ground.
3. Terminated grounds require DC blocking capacitors; see application schematic.
4. The exposed pad centered on the package bottom must be connected to RF and DC ground.
[^0]- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macomtech.com for additional data sheets and product information.
M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

GaAs Broadband 75 Ohm Default-On, SPDT Terminated Switch
DC-2.5 GHz
Electrical Specifications: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Z}_{0}=75 \Omega, \mathrm{~V}_{\mathrm{C}}=0 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{P}_{\text {IN }}=0 \mathrm{dBm}{ }^{5}$

Parameter	Test Conditions	Units	Min.	Typ.	Max.
Insertion Loss RFC to RF1 $\left(\mathrm{V}_{\mathrm{C}}=\mathrm{OV}\right)$	100 MHz 1.0 GHz 2.0 GHz	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$	-	$\begin{aligned} & 0.9 \\ & 1.0 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 1.75 \\ & 1.85 \end{aligned}$
Insertion Loss RFC to RF2 $\left(\mathrm{V}_{\mathrm{C}}=3 \mathrm{~V}\right)$	100 MHz 1.0 GHz 2.0 GHz	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$	-	$\begin{aligned} & 1.0 \\ & 1.2 \\ & 1.5 \end{aligned}$	$\begin{gathered} 1.65 \\ 1.85 \\ - \end{gathered}$
Isolation	$\begin{gathered} 100 \mathrm{MHz} \\ 1.0 \mathrm{GHz} \\ 2.0 \mathrm{GHz}(\mathrm{RFC}-\mathrm{RF} 1) \\ 2.0 \mathrm{GHz}(\mathrm{RFC}-\mathrm{RF} 2) \end{gathered}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 60 \\ & 40 \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & 65 \\ & 45 \\ & 38 \\ & 43 \end{aligned}$	-
Return Loss	DC - 2.0 GHz	dB	-	25	-
$\begin{gathered} \text { IIP2 } \\ \left(\mathrm{V}_{\mathrm{C}}=0 \mathrm{~V} / 3 \mathrm{~V} / 5 \mathrm{~V}\right) \end{gathered}$	$\begin{gathered} \text { Two Tone, }+5 \mathrm{dBm} / \text { Tone, } 10 \mathrm{MHz} \text { Spacing } \\ 100 \mathrm{MHz} \\ 1.0 \mathrm{GHz} \end{gathered}$	dBm dBm	-	$\begin{aligned} & 54 / 51 / 53 \\ & 72 \text { / } 70 / 70 \end{aligned}$	-
IIP3 $\left(\mathrm{V}_{\mathrm{C}}=0 \mathrm{~V} / 3 \mathrm{~V} / 5 \mathrm{~V}\right)$	$\begin{gathered} \text { Two Tone, }+5 \mathrm{dBm} / \text { Tone, } 10 \mathrm{MHz} \text { Spacing } \\ 100 \mathrm{MHz} \\ 1.0 \mathrm{GHz} \end{gathered}$	dBm dBm	-	$\begin{aligned} & 38 / 38 / 39 \\ & 41 / 44 / 44 \end{aligned}$	-
$\begin{gathered} \text { Input P1dB } \\ \left(\mathrm{V}_{\mathrm{c}}=0 \mathrm{~V} / 3 \mathrm{~V} / 5 \mathrm{~V}\right) \end{gathered}$	$100 \mathrm{MHz}$ $1.0 \mathrm{GHz}$	dBm dBm	-	$\begin{aligned} & 21 / 21 / 22 \\ & 29 / 28 / 29 \end{aligned}$	-
T-rise T-fall	10\% to 90\% RF 90\% to 10\% RF	$\begin{aligned} & \mu \mathrm{S} \\ & \mathrm{nS} \end{aligned}$	-	$\begin{aligned} & \hline 1.4 \\ & 12 \end{aligned}$	-
$\begin{aligned} & \text { Ton } \\ & \text { Toff } \end{aligned}$	50\% control to 90% RF 50\% control to 10% RF	$\begin{aligned} & \mu \mathrm{S} \\ & \mathrm{nS} \end{aligned}$	-	$\begin{aligned} & 1.6 \\ & 12 \end{aligned}$	-
Transients	-	mV	-	550	-
Control Current	$\mathrm{V}_{\mathrm{C}}=3 \mathrm{~V}$	$\mu \mathrm{A}$	-	250	500

5. Electrical specifications apply to terminated configuration only.

Absolute Maximum Ratings ${ }^{6,7}$

Parameter	Absolute Maximum
Input Power @ 100 MHz	+22 dBm
Input Power @ 1 GHz	+29 dBm
Operating Voltage	+8.5 volts
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

6. Exceeding any one or combination of these limits may cause permanent damage to this device.
7. M/A-COM does not recommend sustained operation near these survivability limits.

Truth Table ${ }^{8,9,10}$

Control V	RFC-RF1	RFC-RF2
0	On	Off
1	Off	On

8. External DC blocking capacitors are required on all RF ports.
9. $0=0 \pm 0.1 \mathrm{~V}, 1=+2.9 \mathrm{~V}$ to +5 V .
10. The unpowered on state is the same as $\mathrm{V}_{\mathrm{C}}=0$.

GaAs Broadband 75 Ohm Default-On, SPDT Terminated Switch DC - 2.5 GHz

Typical Performance Curves: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Z}_{0}=75 \Omega$, Components per Application Schematic

Insertion Loss

Isolation (Below 200 MHz)

Isolation (Above 200 MHz)

RFC Return Loss

RF1 Return Loss

RF2 Return Loss

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macomtech.com for additional data sheets and product information.

Lead-Free 3 mm 12-lead PQFN ${ }^{\dagger}$

${ }^{\dagger}$ Reference Application Note M538 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level 1 requirements.

Application Schematic ${ }^{11,12}$

11. Non-connected pins (P1 and P5) are shown connected to ground as recommended. All data on this datasheet was taken with N/C pins connected to ground.
12. Application schematic shown is for terminated configuration. For non-terminated operation Term 1 and Term 2 ground pins are left open. See application section for data in unterminated configuration.

Qualification

Qualified to M/A-COM specification REL-201, Process Flow -2.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

M/A-COM's AN3007 Application Note outlines a method for ESD sensitivity mitigation. It can be found at the Tech/Apps section of the MACOM.COM website.

Application Section

Typical Performance Curves:

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Z}_{0}=75 \Omega$, Unterminated Configuration (Term 1\&2 GND pins open)

Insertion Loss

Isolation (Below 200 MHz)

Isolation (Above 200 MHz)

RFC Return Loss

RF1 Return Loss

RF2 Return Loss

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 Visit www.macomtech.com for additional data sheets and product information.

Application Section

Application Schematic - Unterminated Configuration

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.
PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology
Solutions has under development. Performance is based on engineering tests. Specifications are
typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available
Commitment to produce in volume is not guaranteed

[^0]: ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.
 PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

