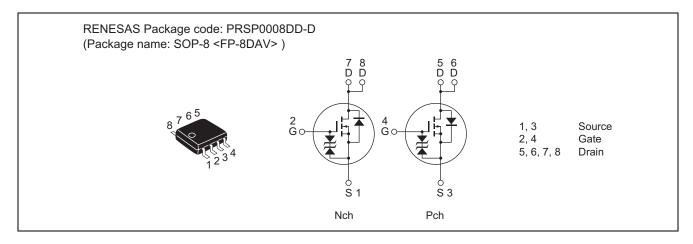


HAT3008R, HAT3008RJ


Silicon N / P Channel Power MOS FET High Speed Power Switching

REJ03G1198-0500 Rev.5.00 Aug 25, 2009

Features

- For Automotive Application (at Type Code "J")
- Low on-resistance
- Capable of 4 V gate drive
- High density mounting

Outline

Absolute Maximum Ratings

 $(Ta = 25^{\circ}C)$

Item		Comple al	Va	11:4	
		Symbol	Nch	Pch	Unit
Drain to source voltage	е	V _{DSS}	60	-60	V
Gate to source voltage	;	V _{GSS}	±20	±20	V
Drain current		I _D	5	-3.5	Α
Drain peak current		I _{D (pulse)} Note 1	40	-28	Α
Body-drain diode reverse drain current		I _{DR}	5	-3.5	Α
Avalanche current	HAT3008R	I _{AP} Note 4	_	_	_
	HAT3008RJ		5	-3.5	Α
Avalanche energy	HAT3008R	E _{AR} Note 4	_	_	_
	HAT3008RJ		2.14	1.05	mJ
Channel dissipation		Pch Note 2	2	2	W
Channel dissipation		Pch Note 3	3	3	W
Channel temperature		Tch	150	150	°C
Storage temperature		Tstg	-55 to +150	-55 to +150	°C

Notes: 1. PW \leq 10 μ s, duty cycle \leq 1%

- 2. 1 Drive operation: When using the glass epoxy board (FR4 40 \times 40 \times 1.6 mm), PW \leq 10 s
- 3. 2 Drive operation: When using the glass epoxy board (FR4 $40 \times 40 \times 1.6$ mm), PW ≤ 10 s
- 4. Value at Tch = 25°C, Rg \geq 50 Ω

Electrical Characteristics

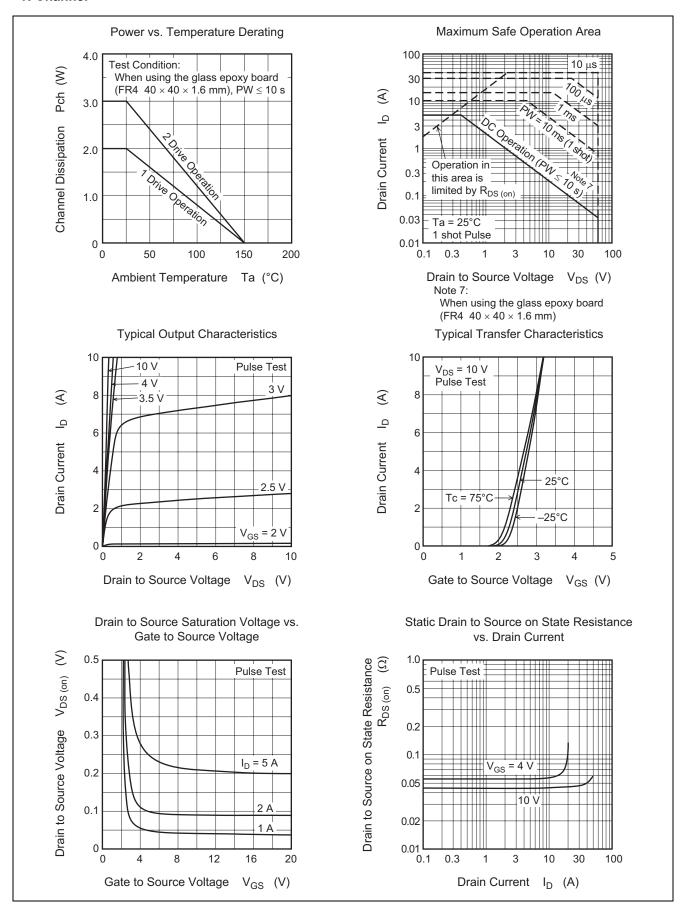
N Channel

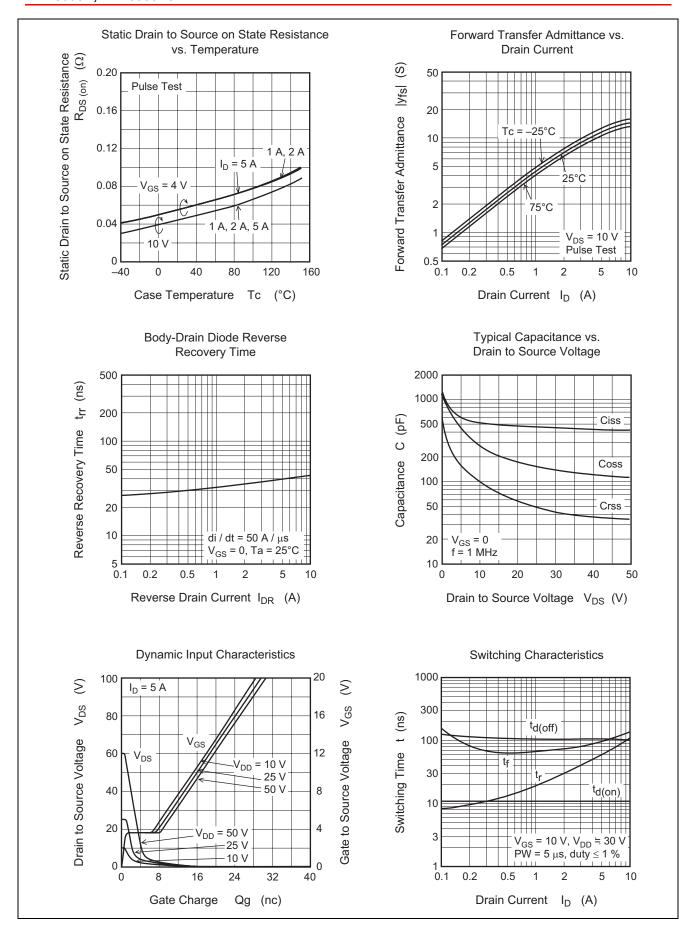
 $(Ta = 25^{\circ}C)$

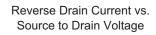
Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Drain to source breakdown voltage		V _{(BR) DSS}	60	_	_	V	$I_D = 10 \text{ mA}, V_{GS} = 0$
Gate to source breakdown voltage		V _{(BR) GSS}	±20	_	_	V	$I_G = \pm 100 \ \mu A, \ V_{DS} = 0$
Gate to source leak curren	Gate to source leak current		_	_	±10	μА	$V_{GS} = \pm 16 \text{ V}, V_{DS} = 0$
Zero gate voltage drain	HAT3008R	I _{DSS}	_	_	1	μА	V _{DS} = 60 V, V _{GS} = 0
current	HAT3008RJ	I _{DSS}	_	_	0.1	μА	
Zero gate voltage drain	HAT3008R	I _{DSS}	_	_	_	μА	V _{DS} = 48 V, V _{GS} = 0
current	HAT3008RJ	I _{DSS}	_	_	10	μА	Ta = 125°C
Gate to source cutoff voltage	ge	V _{GS (off)}	1.2	_	2.2	V	V _{DS} = 10 V, I _D = 1 mA
Static drain to source on st	ate resistance	R _{DS (on)}	_	0.043	0.058	Ω	$I_D = 3 A, V_{GS} = 10 V^{\text{Note 5}}$
		R _{DS (on)}	_	0.056	0.084	Ω	$I_D = 3 A, V_{GS} = 4 V^{\text{Note 5}}$
Forward transfer admittance		y _{fs}	6	9	_	S	$I_D = 3 A, V_{DS} = 10 V^{\text{Note 5}}$
Input capacitance		Ciss	_	520	_	pF	V _{DS} = 10 V
Output capacitance		Coss	_	270	_	pF	$V_{GS} = 0$
Reverse transfer capacitance		Crss	_	100	_	pF	f = 1 MHz
Turn-on delay time		t _{d (on)}	_	11	_	ns	$V_{GS} = 10 \text{ V}, I_D = 3 \text{ A}$
Rise time		t _r	_	40	_	ns	$V_{DD}\cong 30\ V$
Turn-off delay time		t _{d (off)}	_	110	_	ns	
Fall time		t _f	_	80	_	ns	
Body-drain diode forward voltage		V_{DF}	_	0.84	1.1	V	$I_F = 5 \text{ A}, V_{GS} = 0^{\text{Note 5}}$
Body-drain diode reverse recovery time		t _{rr}	_	40	_	ns	$I_F = 5 A, V_{GS} = 0$
							$di_F/dt = 50 A/\mu s$

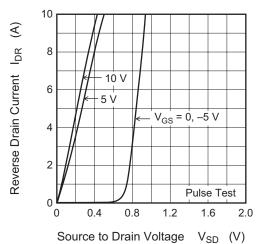
Note: 5. Pulse test

P Channel

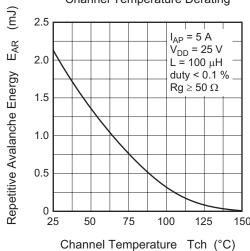

 $(Ta = 25^{\circ}C)$

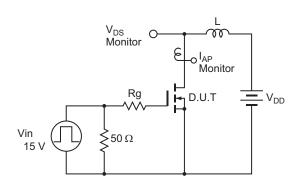

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Drain to source breakdown voltage		V _{(BR) DSS}	-60	_	_	V	$I_D = -10 \text{ mA}, V_{GS} = 0$
Gate to source breakdown voltage		V _(BR) GSS	±20	_	_	V	$I_G = \pm 100 \ \mu A, \ V_{DS} = 0$
Gate to source leak current		I _{GSS}	_	_	±10	μА	$V_{GS} = \pm 16 \text{ V}, V_{DS} = 0$
Zero gate voltage drain	HAT3008R	I _{DSS}	_	_	-1	μΑ	$V_{DS} = -60 \text{ V}, V_{GS} = 0$
current	HAT3008RJ	I _{DSS}	_	_	-0.1	μА	
Zero gate voltage drain	HAT3008R	I _{DSS}	_	_	_	μА	V _{DS} = -48 V, V _{GS} = 0
current	HAT3008RJ	I _{DSS}	_	_	-10	μА	Ta = 125°C
Gate to source cutoff voltage	ge	V _{GS (off)}	-1.2	_	-2.2	V	$V_{DS} = -10 \text{ V}, I_{D} = -1 \text{ mA}$
Static drain to source on st	Static drain to source on state resistance		_	0.12	0.15	Ω	$I_D = -2 \text{ A}, V_{GS} = -10 \text{ V}^{\text{Note 6}}$
		R _{DS (on)}	_	0.16	0.23	Ω	$I_D = -2 \text{ A}, V_{GS} = -4 \text{ V}^{\text{Note 6}}$
Forward transfer admittance		y _{fs}	3	4.5	_	S	$I_D = -2 A$, $V_{DS} = -10 V$ Note 6
Input capacitance		Ciss	_	600	_	pF	V _{DS} = -10 V
Output capacitance		Coss	_	290	_	pF	V _{GS} = 0
Reverse transfer capacitance		Crss	_	75	_	pF	f = 1 MHz
Turn-on delay time		t _{d (on)}	_	11	_	ns	$V_{GS} = -10 \text{ V}, I_D = -2 \text{ A}$
Rise time		t _r	_	30	_	ns	$V_{DD}\cong -30 \text{ V}$
Turn-off delay time		t _{d (off)}	_	100	_	ns	
Fall time		t _f	_	55	_	ns	
Body-drain diode forward voltage		V_{DF}	_	-0.98	-1.28	V	$I_F = -3.5 \text{ A}, V_{GS} = 0$ Note 6
Body-drain diode reverse recovery time		t _{rr}	_	70	_	ns	$I_F = -3.5 \text{ A}, V_{GS} = 0$
							$di_F/dt = 50 A/\mu s$

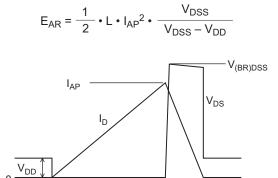

Note: 6. Pulse test

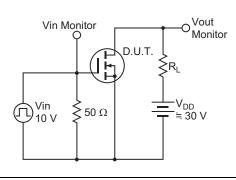

Main Characteristics

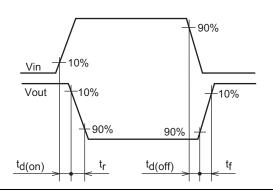
N Channel

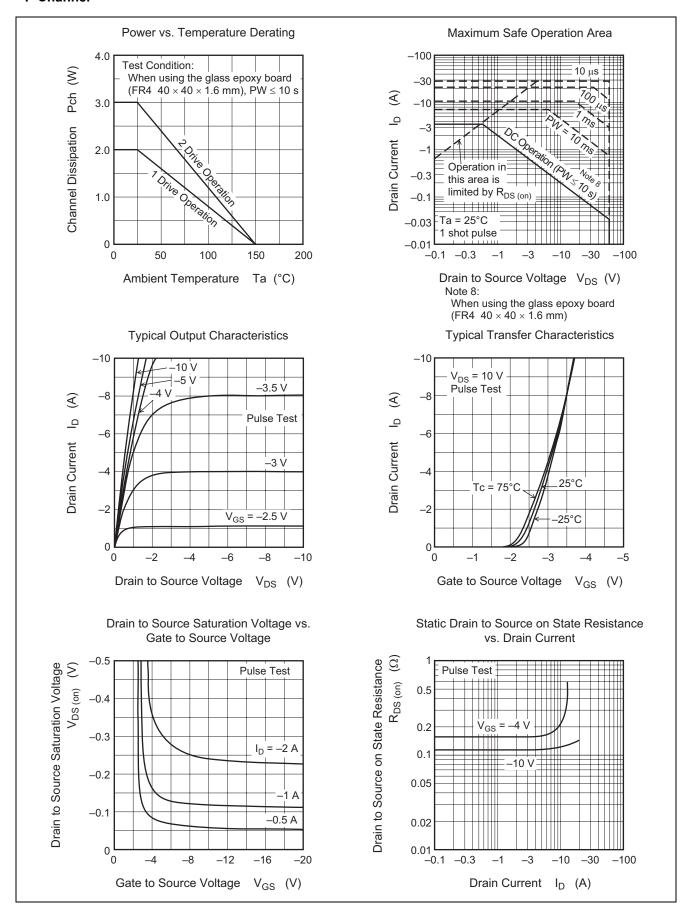




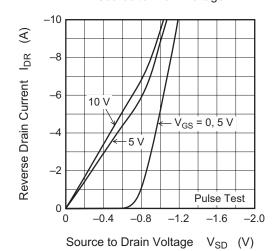

Maximum Avalanche Energy vs. Channel Temperature Derating


Avalanche Test Circuit

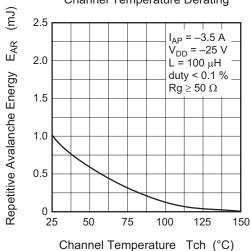

Avalanche Waveform

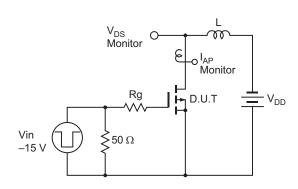

Switching Time Test Circuit

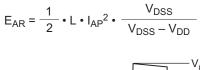
Switching Time Waveform

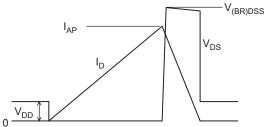


P Channel

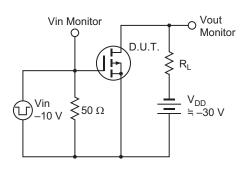



Reverse Drain Current vs. Source to Drain Voltage

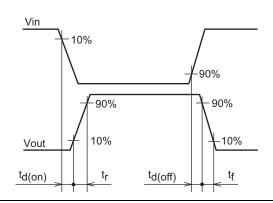

Maximum Avalanche Energy vs. Channel Temperature Derating

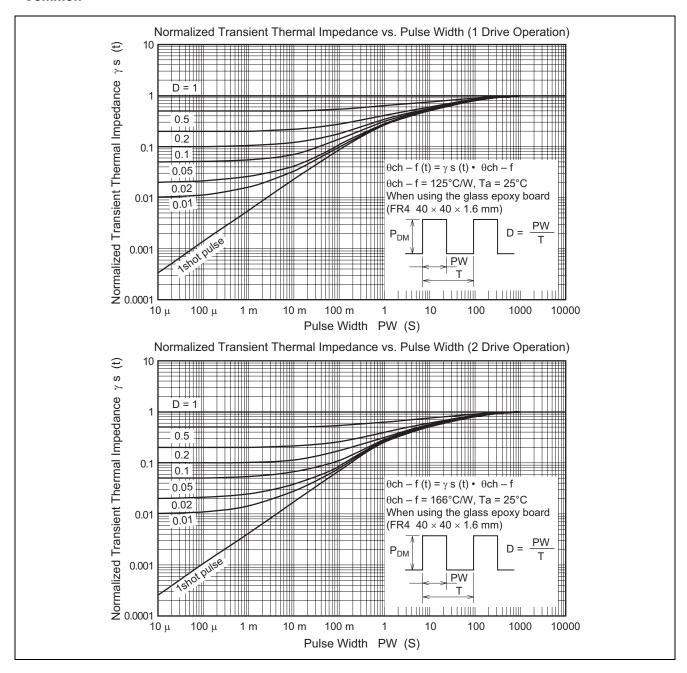


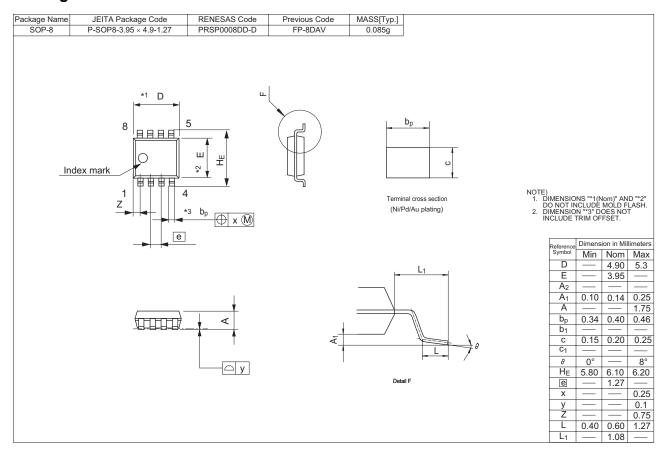
Avalanche Test Circuit



Avalanche Waveform




Switching Time Test Circuit


Switching Time Waveform

Common

Package Dimensions

Ordering Information

Part Name	Quantity	Shipping Container
HAT3008R-EL-E	2500 pcs	Taping
HAT3008RJ-EL-E	2500 pcs	Taping

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect to the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the development is satisfied. The procedure is such as the development of the dev

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510