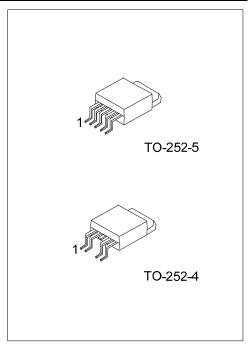
UNISONIC TECHNOLOGIES CO., LTD

R200LD10

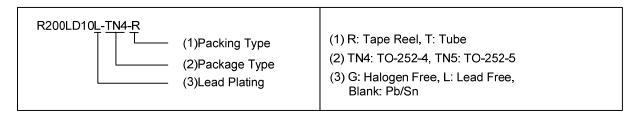
LINEAR INTEGRATED CIRCUIT


VOLTAGE REGULATOR

■ DESCRIPTION

The UTC **R200LD10** shows a high current, high accuracy, low-dropout voltage. The features are: low dropout voltage, very low ground current. Cause the series have been designed for high current loads, so they are also used in lower current, extremely low dropout-critical systems (in which their tiny dropout voltage and ground current values are important attributes).

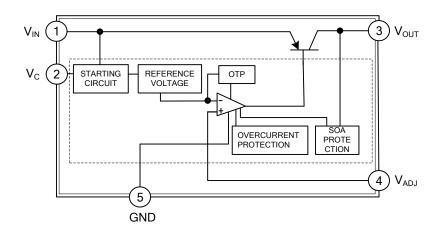
■ FEATURES


- * Built-in ON/OFF function,
- * Over current protection function,
- * ASO protection function
- * Overheat protection function
- * 0.3A / 3.3V(R1=2KΩ)
 Output low dropout voltage regulator

Lead-free: R200LD10L Halogen-free: R200LD10G

■ ORDERING INFORMATION

Ordering Number			Dookago	Dooking	
Normal	Lead Free	Halogen Free	Package	Packing	
R200LD10-TN4-R	R200LD10L-TN4-R	R200LD10G-TN4-R	TO-252-4	Tape Reel	
R200LD10-TN4-T	R200LD10L-TN4-T	R200LD10G-TN4-T	TO-252-4	Tube	
R200LD10-TN5-R	R200LD10L-TN5-R	R200LD10G-TN5-R	TO-252-5	Tape Reel	
R200LD10-TN5-T	R200LD10L-TN5-T	R200LD10G-TN5-T	TO-252-5	Tube	



<u>www.unisonic.com.tw</u>

■ PIN DESCRIPTIONS

PIN NO.	PIN NAME	PIN FUNCTION
1	V _{IN}	DC Input Voltage.
2	V_{C}	On/Off Control
3	V_{OUT}	DC Output Voltage.
4	V_{ADJ}	Output Voltage Adjustment
5	GND	Ground

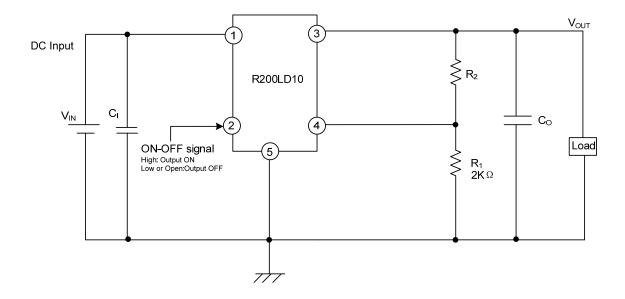
■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNITS
Input Voltage (Note 2)	V_{IN}	24	V
ON/OFF Control Terminal Voltage (Note 2)	V_{C}	24	V
Output Adjustment Pin Voltage (Note 2)	V_{ADJ}	5	V
Output Current	l _{out}	1	Α
Power Dissipation (with infinite heat sink)	P_{D}	8	W
Junction Temperature	TJ	+150	°C
Operating Temperature	T_{OPR}	-40 ~ +85	°C
Storage Temperature	T _{STG}	-40 ~ +150	°C

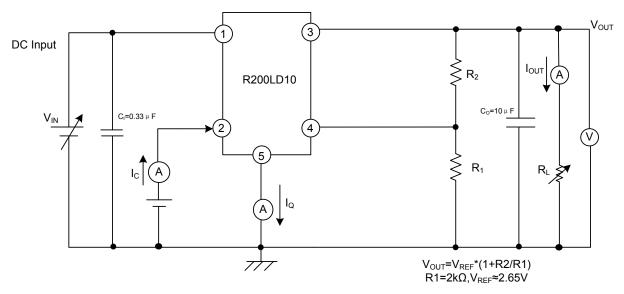
Note: 1.Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS

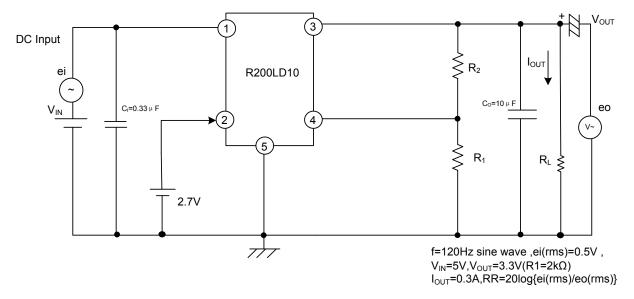

 $(V_{1N}=5V, V_{OUT}=3.3 \ V(R_1=2k\Omega), I_{OUT}=0.3A, V_C=2.7V, T_J=25^{\circ}C, C_l=0.33\mu F, C_O=10\mu F, unless otherwise specified)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Voltage	V_{IN}		3.5		24	V
Output Voltage	V_{OUT}		3.0		20	V
Load Regulation	$\Delta V_{OUT}/\Delta I_{OUT}$	I _{OUT} = 5mA~ 1A			1.0	%
Line Regulation	$\Delta V_{OUT}/\Delta V_{IN}$	V _{IN} = 4~ 10V, I _{OUT} =5mA			1.0	70
Ripple Rejection	RR	Refer to Fig 3		60		dB
Dropout Voltage	V_D	V _{IN} =3.5V			0.5	\ \
Reference Voltage	V_{REF}		2.583	2.65	2.717	V
Temperature Coefficient of Reference Voltage	$T_{C}V_{REF}$	T _J =0 ~ 125°C, I _{OUT} = 5mA		±1.0		%
On-State Voltage for Control	$V_{C(ON)}$	(Note)	2.0			V
On-State Current for Control	I _{C(ON)}				200	μΑ
On-State Voltage for Control	$V_{C(OFF)}$	I _{OUT} =0A			0.8	V
On-State Current for Control	$I_{C(OFF)}$	I _{OUT} =0A,V _C =0.4V			-2	μΑ
Quiescent Current	I_Q	I _{OUT} =0A			8	mA
Output Off-State Consumption Current	I_{QS}	V _C =0.4V			5	μA

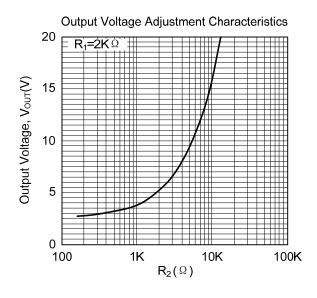
Note: In case of $V_{\mathbb{C}}$ pin, output voltage turns OFF.

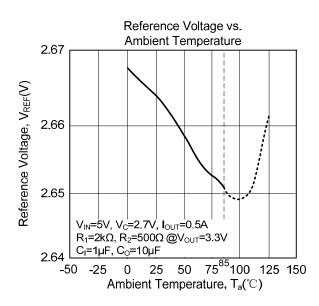

^{2.}All are open except GND and applicable terminals.

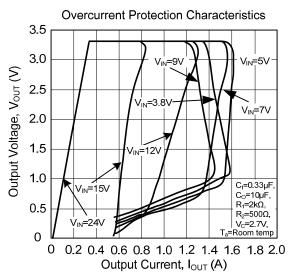
■ TYPICAL APPLICATION CIRCUIT

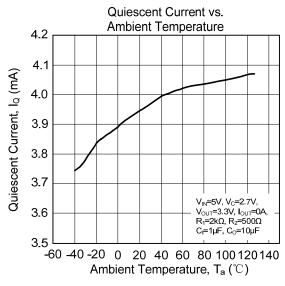


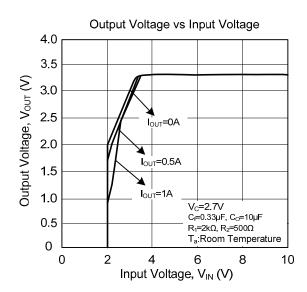
■ TEST CIRCUIT

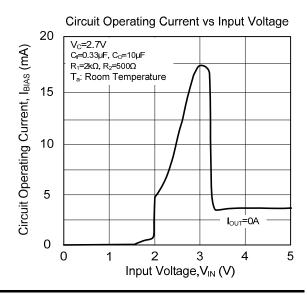

For Standard Measuring Circuit of Regulation Portion

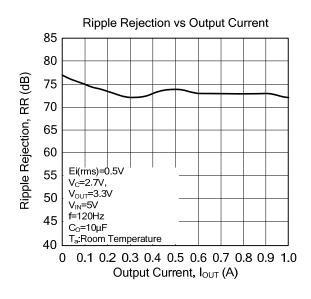


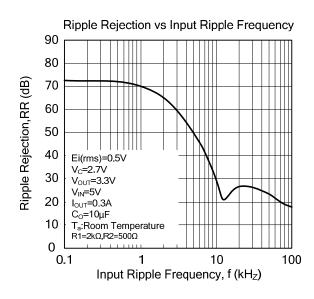

For Standard Measuring Circuit of Ripple Rejection Critical Rate

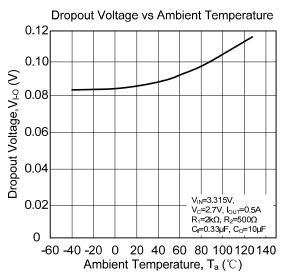


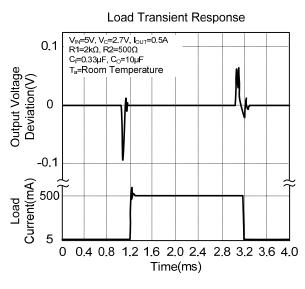

■ TYPICAL CHARACTERISTICS

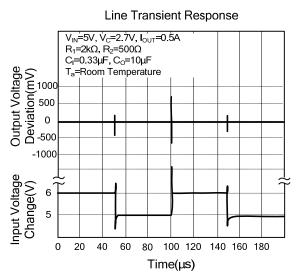


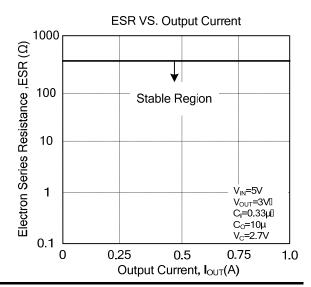









■ TYPICAL CHARACTERISTICS(Cont.)



UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.